首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The glutamine/amino acid transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted glutamine/amino acid transporter catalysed a first-order antiport reaction stimulated by external, not internal, Na+. Optimal activity was found at pH 7.0. The sulfhydryl reagents HgCl2, mersalyl and p-hydroxymercuribenzoate and the amino acids alanine, serine, threonine, cysteine, asparagine, methionine and valine strongly inhibited the transport, whereas the amino acid analogue methylaminoisobutyrate had no effect. Glutamine, alanine, serine, asparagine, threonine were efficiently translocated from outside to inside and from inside to outside the proteoliposomes as well. Cysteine and valine were translocated preferentially from outside to inside. The Km for glutamine on the external and internal side of the transporter was 0.47 and 11 mM, respectively; the values were not influenced by the type of the counter substrate. The transporter is functionally asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. By a bisubstrate kinetic analysis of the glutamine antiport, a random simultaneous mechanism was found. The glutamine antiport was strongly stimulated by internal nucleoside triphosphates and, to a lower extent, by pyrophoshate. The reconstituted glutamine/amino acid transporter functionally corresponds to the ASCT2 protein.  相似文献   

2.
3.
Na+ dependent [3H]glutamine uptake was found in liposomes reconstituted with solubilized rat kidney brush border in the presence of intraliposomal K+. The reconstituted system was optimised with respect to the critical parameters of the cyclic detergent removal procedure, i.e., the detergent used for the solubilization, the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. Time dependent [3H]glutamine accumulation in proteoliposomes occurred only in the presence of external Na+ and internal K+. The transporter showed low if there is any tolerance towards the substitution of Na+ or K+ for other cations. Valinomycin strongly stimulated the transport indicating that it is electrogenic. Intraliposomal glutamine had no effect. From the dependence of the transport rate on the Na+ concentration cooperativity index close to 1 was derived, indicating that 1 Na+ should be involved in the cotransport with glutamine. The electrogenicity of the transport originated from the Na+ transport. Optimal rate of 0.1 mM [3H]glutamine uptake was found in the presence of 50 mM intraliposomal K-gluconate. At higher K-gluconate concentrations the transport rate decreased. The activity of the reconstituted transporter was pH dependent with optimal function in the range pH 6.5-7.0. [3H]glutamine (and [3H]leucine) uptake was inhibited by all the neutral but not by the positively or negatively charged amino acids. The sulfhydryl reagents HgCl2, mersalyl, p-hydroxymercuribenzoate and the substrate analogue 2-aminobicyclo[2,2,1]heptane-2-carboxylate strongly inhibited the transporter, whereas the amino acid analogue alpha-(methylamino)isobutyrate had no effect. The inhibition by mersalyl was protected by the presence of the substrate. On the basis of the Na+ dependence, the electrogenic transport mode and the specificity towards the amino acids, the reconstituted transporter was classified as B degrees-like.  相似文献   

4.
5.
The carnitine transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted carnitine transporter catalysed a first-order antiport reaction (carnitine/carnitine or carnitine/substrate) stimulated by external, not internal, Na+, with a positive cooperativity. Na+ was co-transported with carnitine. Optimal activity was found between pH 5.5 and pH 6.0. The sulfhydryl reagents MTSES, MTSET and mercurials strongly inhibited the transport. Substrate analogues inhibited the transport; the most effective were acylcarnitines and betaine, followed by dimethylglicine, tetraethylammonium and arginine. Besides carnitine, only acylcarnitines and betaine were efficiently translocated. The Km for carnitine on the external and internal side of the transporter was 0.08 and 1.2 mM, respectively. The transporter is asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. The reconstituted carnitine transporter corresponds, very probably, to the OCTN2 protein.  相似文献   

6.
The mitochondrial oxoglutarate carrier (OGC) plays an important role in the malate-aspartate shuttle, the oxoglutarate-isocitrate shuttle and gluconeogenesis. To establish amino acid residues that are important for function, each residue in the transmembrane alpha-helices H1, H3 and H5 was replaced systematically by a cysteine in a fully functional mutant carrier that was devoid of cysteine residues. The transport activity of the mutant carriers was measured in the presence and absence of sulfhydryl reagents. The observed effects were rationalized by using a comparative structural model of the OGC. Most of the residues that are critical for function are found at the bottom of the cavity and they belong to the signature motifs P-X-[DE]-X-X-[KR] that form a network of three inter-helical salt bridges that close the carrier at the matrix side. The OGC deviates from most other carriers, because it has a conserved leucine (L144) rather than a positively charged residue in the signature motif of the second repeat and thus the salt bridge network is lacking one salt bridge. Incomplete salt-bridge networks due to hydrophobic, aromatic or polar substitutions are observed in other dicarboxylate, phosphate and adenine nucleotide transporters. The interaction between the carrier and the substrate has to provide the activation energy to trigger the re-arrangement of the salt-bridge network and other structural changes required for substrate translocation. For substrates such as malate, which has only two carboxylic and one hydroxyl group, a reduction in the number of salt bridges in the network may be required to lower the energy barrier for translocation. Another group of key residues, consisting of T36, A134, and T233, is close to the putative substrate binding site and substitutions or modifications of these residues may interfere with substrate binding and ion coupling. Residues G32, A35, Q40, G130, G133, A134, G230, and S237 are potentially engaged in inter-helical interactions and they may be involved in the movements of the alpha-helices during translocation.  相似文献   

7.
The mitochondrial oxoglutarate carrier exchanges cytosolic malate for 2-oxoglutarate from the mitochondrial matrix. Orthologs of the carrier have a high degree of amino acid sequence conservation, meaning that it is impossible to identify residues important for function on the basis of this criterion alone. Therefore, each amino acid residue in the transmembrane alpha-helices H2 and H6 was replaced by a cysteine in a functional mitochondrial oxoglutarate carrier that was otherwise devoid of cysteine residues. The effects of the cysteine replacement and subsequent modification by sulfhydryl reagents on the initial uptake rate of 2-oxoglutarate were determined. The results were evaluated using a structural model of the oxoglutarate carrier. Residues involved in inter-helical and lipid bilayer interactions tolerate cysteine replacements or their modifications with little effect on transport activity. In contrast, the majority of cysteine substitutions in the aqueous cavity had a severe effect on transport activity. Residues important for function of the carrier cluster in three regions of the transporter. The first consists of residues in the [YWLF]- [KR]-G-X-X-P sequence motif, which is highly conserved in all members of the mitochondrial carrier family. The residues may fulfill a structural role as a helix breaker or a dynamic role as a hinge region for conformational changes during translocation. The second cluster of important residues can be found at the carboxy-terminal end of the even-numbered transmembrane alpha-helices at the cytoplasmic side of the carrier. Residues in H6 at the interface with H1 are the most sensitive to mutation and modification, and may be essential for folding of the carrier during biogenesis. The third cluster is at the midpoint of the membrane and consists of residues that are proposed to be involved in substrate binding.  相似文献   

8.
The glutamine/amino acid transporter was solubilized from rat renal apical plasma membrane (brush-border membrane) with C12E8 and reconstituted into liposomes by removing the detergent from mixed micelles by hydrophobic chromatography on Amberlite XAD-4. The reconstitution was optimised with respect to the protein concentration, the detergent/phospholipid ratio and the number of passages through a single Amberlite column. The reconstituted glutamine/amino acid transporter catalysed a first-order antiport reaction stimulated by external, not internal, Na+. Optimal activity was found at pH 7.0. The sulfhydryl reagents HgCl2, mersalyl and p-hydroxymercuribenzoate and the amino acids alanine, serine, threonine, cysteine, asparagine, methionine and valine strongly inhibited the transport, whereas the amino acid analogue methylaminoisobutyrate had no effect. Glutamine, alanine, serine, asparagine, threonine were efficiently translocated from outside to inside and from inside to outside the proteoliposomes as well. Cysteine and valine were translocated preferentially from outside to inside. The Km for glutamine on the external and internal side of the transporter was 0.47 and 11 mM, respectively; the values were not influenced by the type of the counter substrate. The transporter is functionally asymmetrical and it is unidirectionally inserted into the proteoliposomal membrane with an orientation corresponding to that of the native membrane. By a bisubstrate kinetic analysis of the glutamine antiport, a random simultaneous mechanism was found. The glutamine antiport was strongly stimulated by internal nucleoside triphosphates and, to a lower extent, by pyrophoshate. The reconstituted glutamine/amino acid transporter functionally corresponds to the ASCT2 protein.  相似文献   

9.
The hypothesis that the primary Na+-pump, Na+-ATPase, functions in the plasma membrane (PM) of halotolerant microalga Dunaliella maritima was tested using membrane preparations from this organism enriched with the PM vesicles. The pH profile of ATP hydrolysis catalyzed by the PM fractions exhibited a broad optimum between pH 6 and 9. Hydrolysis in the alkaline range was specifically stimulated by Na+ ions. Maximal sodium dependent ATP hydrolysis was observed at pH 7.5-8.0. On the assumption that the ATP-hydrolysis at alkaline pH values is related to a Na+-ATPase activity, we investigated two ATP-dependent processes, sodium uptake by the PM vesicles and generation of electric potential difference (Deltapsi) across the vesicle membrane. PM vesicles from D. maritima were found to be able to accumulate 22Na+ upon ATP addition, with an optimum at pH 7.5-8.0. The ATP-dependent Na+ accumulation was stimulated by the permeant NO3- anion and the protonophore CCCP, and inhibited by orthovanadate. The sodium accumulation was accompanied by pronounced Deltapsi generation across the vesicle membrane. The data obtained indicate that a primary Na+ pump, an electrogenic Na+-ATPase of the P-type, functions in the PM of marine microalga D. maritima.  相似文献   

10.
The topological model proposed for the Kir2.1 inward rectifier predicts that seven of the channel 13 cysteine residues are distributed along the N- and C-terminus regions, with some of the residues comprised within highly conserved domains involved in channel gating. To determine if cytosolic cysteine residues contribute to the gating properties of Kir2.1, each of the N- and C-terminus cysteines was mutated into either a polar (S, D, N), an aliphatic (A,V, L), or an aromatic (W) residue. Our patch-clamp measurements show that with the exception of C76 and C311, the mutation of individual cytosolic cysteine to serine (S) did not significantly affect the single-channel conductance nor the channel open probability. However, mutating C76 to a charged or polar residue resulted either in an absence of channel activity or a decrease in open probability. In turn, the mutations C311S (polar), C311R (charged), and to a lesser degree C311A (aliphatic) led to an increase of the channel mean closed time due to the appearance of long closed time intervals (T(c) >or= 500 ms) and to a reduction of the reactivation by ATP of rundown Kir2.1 channels. These changes could be correlated with a weakening of the interaction between Kir2.1 and PIP(2), with C311R and C311S being more potent at modulating the Kir2.1-PIP(2) interaction than C311A. The present work supports, therefore, molecular models whereby the gating properties of Kir2.1 depend on the presence of nonpolar or neutral residues at positions 76 and 311, with C311 modulating the interaction between Kir2.1 and PIP(2).  相似文献   

11.
Calmodulin (CaM) is a ubiquitous Ca2 + receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.  相似文献   

12.
The proton-coupled amino acid transporter 1 (PAT1) represents a major route by which small neutral amino acids are absorbed after intestinal protein digestion. The system also serves as a novel route for oral drug delivery. Having shown that H+ affects affinity constants but not maximal velocity of transport, we investigated which histidine residues are obligatory for PAT1 function. Three histidine residues are conserved among the H+-coupled amino acid transporters PAT1 to 4 from different animal species. We individually mutated each of these histidine residues and compared the catalytic function of the mutants with that of the wild type transporter after expression in HRPE cells. His-55 was found to be essential for the catalytic activity of hPAT1 because the corresponding mutants H55A, H55N and H55E had no detectable l-proline transport activity. His-93 and His-135 are less important for transport function since H93N and H135N mutations did not impair transport function. The loss of transport function of His-55 mutants was not due to alterations in protein expression as shown both by cell surface biotinylation immunoblot analyses and by confocal microscopy. We conclude that His-55 might be responsible for binding and translocation of H+ in the course of cellular amino acid uptake by PAT1.  相似文献   

13.
We redirect attention to contributions to the energization of the active transport of amino acids in the Ehrlich cell, beyond the known energization by down-gradient comigration of Na+, beyond possible direct energization by coupling to ATP breakdown, and beyond known energization by exchange with prior accumulations of amino acids. We re-emphasize the uphill operation of System L, and by prior depletion of cellular amino acids show that this system must receive energy beyond that made available by their coupled exodus. After this depletion the Na+-independent accumulation of the norbornane amino acid, 2-aminobicycloheptane-2-carboxylic acid becomes strongly subject to stimulation by incubation with glucose. Energy transfer between Systems A and L through the mutual substrate action of ordinary amino acids was minimized although not entirely avoided by the use of amino acid analogs specific to each system.When 2,4-dinitrophenol was included in the depleting treatment, and pyruvate, phenazine methosulfate, or glucose used for restoration, recovery of uptake of the norbornane amino acid was independent of external Na+ or K+ levels. Restoration of the uptake of 2-(methylamino)isobutyric acid was, however, decreased by omission of external K+. Contrary to an earlier finding, restoration of uptake of each of these amino acids was associated with distinct and usually correlated rises in cellular ATP levels. ATP addition failed to stimulate exodus of the norbornane amino acid from plasma membrane vesicles, although either NADH or phenazine methosulfate did stimulate exodus. ATP production and use is thus associated with transport energization, although evidence for a direct role failed to appear.  相似文献   

14.
Na+/solute symporters are essential membrane integrated proteins that couple the flow of Na+ ions driven by electrochemical Na+ gradients to the transport of solutes across biological membranes. Here, we used a combination of molecular modeling techniques and evolutionary conservation analysis to construct and validate a first model of the Na+/proline symporter PutP of Escherichia coli based on the crystal structure of the bacterial Na+/galactose symporter vSGLT. Ligand docking experiments were employed to gain information about residues involved in proline binding. The proposed model is consistent with the available experimental data and was further validated by amino acid substitutions and kinetic and protein chemical analyses. Combination of the results of molecular modeling and functional studies predicts the location and organization of the Na+ and proline binding sites. Remarkably, as proposed computationally and discovered here experimentally, residues Y140, W244, and Y248 of transmembrane segments 4 and 7 are found to be particularly important for PutP function and suggested to participate in proline binding and/or gating.  相似文献   

15.
Otacilio C. Moreira 《BBA》2005,1708(3):411-419
The bidentate complex of ATP with Cr3+, CrATP, is a nucleotide analog that is known to inhibit the sarcoplasmic reticulum Ca2+-ATPase and the Na+,K+-ATPase, so that these enzymes accumulate in a conformation with the transported ion (Ca2+ and Na+, respectively) occluded from the medium. Here, it is shown that CrATP is also an effective and irreversible inhibitor of the plasma membrane Ca2+-ATPase. The complex inhibited with similar efficiency the Ca2+-dependent ATPase and the phosphatase activities as well as the enzyme phosphorylation by ATP. The inhibition proceeded slowly (T1/2 = 30 min at 37 °C) with a Ki = 28 ± 9 μM. The inclusion of ATP, ADP or AMPPNP in the inhibition medium effectively protected the enzyme against the inhibition, whereas ITP, which is not a PMCA substrate, did not. The rate of inhibition was strongly dependent on the presence of Mg2+ but unaltered when Ca2+ was replaced by EGTA. In spite of the similarities with the inhibition of other P-ATPases, no apparent Ca2+ occlusion was detected concurrent with the inhibition by CrATP. In contrast, inhibition by the complex of La3+ with ATP, LaATP, induced the accumulation of phosphoenzyme with a simultaneous occlusion of Ca2+ at a ratio close to 1.5 mol/mol of phosphoenzyme. The results suggest that the transport of Ca2+ promoted by the plasma membrane Ca2+-ATPase goes through an enzymatic phospho-intermediate that maintains Ca2+ ions occluded from the media. This intermediate is stabilized by LaATP but not by CrATP.  相似文献   

16.
Clinical efficacy of alkylating anticancer drugs, such as chlorambucil (4-[p-[bis [2-chloroethyl] amino] phenyl]-butanoic acid; CHB), is often limited by the emergence of drug resistant tumor cells. Increased glutathione (gamma-glutamylcysteinylglycine; GSH) conjugation (inactivation) of alkylating anticancer drugs due to overexpression of cytosolic glutathione S-transferase (GST) is believed to be an important mechanism in tumor cell resistance to alkylating agents. However, the potential involvement of microsomal GST in the establishment of acquired drug resistance (ADR) to CHB remains uncertain. In our experiments, a combination of lipid chromatography/electrospray ionization mass spectrometry (LC/ESI/MS) was employed for structural characterization of the resulting conjugates between CHB and GSH. The spontaneous reaction of 1mM CHB with 5 mM GSH at 37 degrees C in aqueous phosphate buffer for 1 h gave primarily the monoglutathionyl derivative, 4-[p-[N-2-chloroethyl, N-2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG) and the diglutathionyl derivative, 4-[p-[2-S-glutathionylethyl] amino]phenyl]-butanoic acid (CHBSG2) with small amounts of the hydroxy-derivative, 4-[p-[N-2-S-glutathionylethyl, N-2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBSGOH), 4-[p-[bis[2-hydroxyethyl] amino]phenyl]-butanoic acid (CHBOH2), 4-[p-[N-2-chloroethyl, N-2-S-hydroxyethyl]amino]phenyl]-butanoic acid (CHBOH). We demonstrated that rat liver microsomal GST presented a strong catalytic effect on these reactions as determined by the increase of CHBSG2, CHBSGOH and CHBSG and the decrease of CHB. We showed that microsomal GST was activated by CHB in a concentration and time dependent manner. Microsomal GST which was stimulated approximately two-fold with CHB had a stronger catalytic effect. Thus, microsomal GST may play a potential role in the metabolism of CHB in biological membranes, and in the development of ADR.  相似文献   

17.
During past years inhibition of the cyclooxygenase-2 (COX-2) enzyme has been proven as an effective strategy to suppress pain and inflammation. Based on this and other mechanistic findings, interest has also renewed in the molecular pathways underlying the anti-inflammatory effects of herbal drugs. The present study addressed this issue and investigated the impact of several polyunsaturated alkamides isolated from a CO2 extract of the roots of Echinacea angustifolia DC. on both activity and expression of COX-2. A 48-h treatment of H4 human neuroglioma cells with the CO2 extract led to a significant suppression of prostaglandin (PG) E2 formation. Analysis of eight different alkamides revealed a contribution of undeca-2Z-ene-8,10-diynoic acid isobutylamide (A5), dodeca-2E-ene-8,10-diynoic acid isobutylamide (A7), and dodeca-2E,4Z-diene-8,10-diynoic acid 2-methylbutylamide (A8) to this response. Using an established short-term COX-2 activity assay, all three alkamides were shown to interfere with COX-2 activity. In contrast, none of the COX-2-suppressing nor any other tested alkamide was found to inhibit COX-2 mRNA and protein expression. Instead, increased COX-2 mRNA and protein levels were registered in the presence of the CO2 extract and most of the analyzed alkamides which caused, however, no stimulation of PG formation. Overall, our results suggest that certain alkamides derived from E. angustifolia roots may contribute to the pharmacological action of the herbal extract by inhibiting COX-2-dependent PGE2 formation at sites of inflammation.  相似文献   

18.
We demonstrated several kinds of D-amino acids in plant seedlings, and moreover alanine racemase (E.C.5.1.1.1) in alfalfa (Medicago sativa L.) seedlings. This is the first evidence for the presence of amino acid racemase in plant. The enzyme was effectively induced by the addition of L- or D-alanine, and we highly purified the enzyme to show enzymological properties. The enzyme exclusively catalyzed racemization of L- and D-alanine. The K(m) and V(max) values of enzyme for L-alanine were 29.6 x 10(-3) M and 1.02 mol/s/kg, and those for D-alanine are 12.0 x 10(-3) M and 0.44 mol/s/kg, respectively. The K(eq) value was estimated to be about 1 and indicated that the enzyme catalyzes a typical racemization of both enantiomers of alanine. The enzyme was inactivated by hydroxylamine, phenylhydrazine and some other pyridoxal 5'-phosphate enzyme inhibitors. Accordingly, the enzyme required pyridoxal 5'-phosphate as a coenzyme, and enzymologically resembled bacterial alanine racemases studied so far.  相似文献   

19.
Man-Yin W. Tso  Torbj  rn Ljones  R. H. Burris 《BBA》1972,267(3):600-604
A method is described for the purification of the nitrogenase proteins from Clostridium pasteurianum by two polyethylene glycol precipitations and chromatography on columns of DEAE-cellulose, Sephadex G-100 and Sephadex G-200. The Mo-Fe protein and the Fe protein have been purified 70–80-fold from the crude extract, and they appear essentially pure when tested by anaerobic polyacrylamide gel electrophoresis.  相似文献   

20.
In crystals of complexes of thermine and d(CGCGCG)2 molecules grown at 4, 10, and 20 °C, the numbers of thermine molecules connected to the DNA molecule were dependent on the temperature of the crystallization. Two molecules of thermine and one Mg2+ ion were connected to DNA molecule when thermine and d(CGCGCG)2 were co-crystallized at 4 and at 20 °C. When an increased concentration of magnesium and thermine molecules were co-crystallized with d(CGCGCG)2 molecules at 10 °C, three Mg2+ ions and only one thermine molecule were bound with a d(CGCGCG)2 molecule. The number of polyamines and of Mg2+ ions connected to DNA was dependent on the atomic values of the polyamine and of the metal ion. The binding of more Mg2+ ions occurred when the atomic value of Mg2+ exceeded that of the corresponding mono- or polyamine, and when the Mg2+ ion concentration was elevated. Furthermore, this study is the first documentation of a naturally occurring polyamine bound to the minor groove of DNA in a crystal structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号