首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

2.
A comparative study was performed on lysozyme modification after exposure to Fenton reagent (Fe(II)/H2 O2) or hydroxyl radicals produced by y radiation. The conditions were adjusted to obtain, with both systems, a 50% loss of activity of the modified ensemble. Gamma radiation modified almost all types of amino acid residues in the enzyme, with little specificity. The modification order was Tyr > Met = Cys > Lys > Ile + Leu > Gly > Pro = Phe > Thr + Ala > Trp = Ser > Arg > Asp + Glu, with 42 mol of modified residues per initial mole of native enzyme. In contrast, when the enzyme was exposed to the Fenton reaction, only some types of amino acids were modified. Furthermore, a smaller number of residues (13.5) were damaged per initial mole of enzyme. The order of the modified residues was Tyr > Cys > Trp > Met His > Ile + Leu > Val > Arg. These results demonstrate that the modifications elicited by these two free radical sources follow different mechanisms. An intramolecular free radical chain reaction is proposed to play a dominant role in the oxidative modification of the protein promoted by gamma radiation.  相似文献   

3.
Atlantic cod is a marine fish that lives at low temperatures of 0-10 degrees C and contains a cold-adapted alkaline phosphatase (AP). Preparations of AP from either the lower part of the intestines or the pyloric caeca area were subjected to proteolytic digestion, mass spectrometry and amino acid sequencing by Edman degradation. The primary structure exhibits greatest similarity to human tissue non-specific AP (80%), and approximately 30% similarity to AP from Escherichia coli. The key residues required for catalysis are conserved in the cod AP, except for the third metal binding site, where cod AP has the same variable residues as mammalian APs (His153 and His328 by E. coli AP numbering). General comparison of the amino acid composition with mammalian APs showed that cod AP contains fewer Cys, Leu, Met and Ser, but proportionally more Asn, Asp, Ile, Lys, Trp and Tyr residues. Three N-linked glycosylation sites were found. The glycan structure was determined as complex biantennary in type with fucose and sialic acid attached, although a trace of complex tri-antennary structure was also observed. A three-dimensional model was obtained by homology modelling using the human placental AP scaffold. Cod AP has fewer charged and hydrophobic residues, but more polar residues at the intersubunit surface. The N-terminal helix arm that embraces the second subunit in dimeric APs may be more flexible due to a replaced Pro at its base. One disulfide bridge was found instead of the two present in most other APs. This may invoke greater movement in the structure that together with weaker subunit contacts leads to improved catalytic efficiency.  相似文献   

4.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

5.
Generation of hydrogen peroxide and hydroxyl radicals in L-amino acid solutions in phosphate buffer, pH 7.4, under X-ray irradiation was determined by enhanced chemiluminescence in the luminol-p-iodophenol-peroxidase system and using the fluorescent probe coumarin-3-carboxylic acid, respectively. Amino acids are divided into three groups according to their effect on the hydrogen peroxide formation under irradiation: those decreasing yield of H2O2, having no effect, and increasing its yield. All studied amino acids at 1 mM concentration decrease the yield of hydroxyl radicals in solution under X-ray irradiation. However, the highest effect is observed in the order: Cys > His > Phe = Met = Trp > Tyr. At Cys, Tyr, and His concentrations close to physiological, the yield of hydroxyl radicals decreases significantly. Immunoenzyme analysis using monoclonal antibodies to 8-oxoguanine (8-oxo-7,8-dihydroguanine) was applied to study the effect of amino acids with the most pronounced antioxidant properties (Cys, Met, Tyr, Trp, Phe, His, Lys, Arg, Pro) on 8-oxoguanine formation in vitro under X-ray irradiation. It is shown that amino acids decrease the content of 8-oxoguanine in DNA. These amino acids within DNA-binding proteins may protect intracellular DNA against oxidative damage caused by formation of reactive oxygen species in conditions of moderate oxidative stress.  相似文献   

6.
A comparative study was performed on lysozyme modification after exposure to Fenton reagent (Fe(II)/H 2 O 2 ) or hydroxyl radicals produced by &#110 radiation. The conditions were adjusted to obtain, with both systems, a 50% loss of activity of the modified ensemble. &#110 radiation modified almost all types of amino acid residues in the enzyme, with little specificity. The modification order was Tyr > Met=Cys > Lys > Ile+Leu > Gly > Pro=Phe>Thr+Ala>Trp=Ser>Arg>Asp+Glu, with 42 mol of modified residues per initial mole of native enzyme. In contrast, when the enzyme was exposed to the Fenton reaction, only some types of amino acids were modified. Furthermore, a smaller number of residues (13.5) were damaged per initial mole of enzyme. The order of the modified residues was Tyr > Cys > Trp > Met >His > Ile+Leu > Val > Arg. These results demonstrate that the modifications elicited by these two free radical sources follow different mechanisms. An intramolecular free radical chain reaction is proposed to play a dominant role in the oxidative modification of the protein promoted by &#110 radiation.  相似文献   

7.
Methods of structural mass spectrometry have become more popular to study protein structure and dynamics. Among them, fast photochemical oxidation of proteins (FPOP) has several advantages such as irreversibility of modifications and more facile determination of the site of modification with single residue resolution. In the present study, FPOP analysis was applied to study the hemoglobin (Hb) – haptoglobin (Hp) complex allowing identification of respective regions altered upon the complex formation. FPOP footprinting using a timsTOF Pro mass spectrometer revealed structural information for 84 and 76 residues in Hp and Hb, respectively, including statistically significant differences in the modification extent below 0.3%. The most affected residues upon complex formation were Met76 and Tyr140 in Hbα, and Tyr280 and Trp284 in Hpβ. The data allowed determination of amino acids directly involved in Hb – Hp interactions and those located outside of the interaction interface yet affected by the complex formation. Also, previously modeled interaction between Hb βTrp37 and Hp βPhe292 was not confirmed by our data. Data are available via ProteomeXchange with identifier PXD021621.  相似文献   

8.
Unfolding-refolding of Escherichia coli DsbC, a homodimeric molecule, induced by GdnHCl was studied by intrinsic fluorescence. Interpretation of experimental fluorescence data was done together with the analysis of protein 3D structure. It is shown that although Cys 141 is the next neighbor of the single tryptophan residue (Trp 140), the sulfur atoms of the disulfide bond Cys 141-Cys 163 are far apart from the indole ring and cannot quench its fluorescence, while the potential quenchers are Met 136 and His 170. It was revealed that though each subunit of DsbC contains eight tyrosine residues, only three tyrosine residues (Tyr 171, Tyr 38, and Tyr 52) contribute to the bulk fluorescence of the molecule. The character of intrinsic fluorescence intensity changes induced by GdnHCl (equilibrium and kinetic data) and its parametric representation, the existence of an isosbestic point of fluorescence spectra at different GdnHCl concentrations, allowed suggesting a one-step character of DsbC denaturation and its reversibility.  相似文献   

9.
Atomic models representing the electron density of two crystalline forms of aspartate carbamoyltransferase from Escherichia coli are reported here. The unliganded form (R32 crystal symmetry) and the CTP-liganded form (P321 crystal symmetry) have been refined independently at resolutions of 3.0 å and 2.8 Å, respectively, each to a crystallographic R-factor of 27%. The molecular models include at least 95% of the theoretical number of atoms for the aspartate Carbamoyltransferase molecule based on chemical sequence information. We provide details of the refinement process for the two structures, and an evaluation of the accuracy of the molecular models.For the most part, the regulatory and catalytic chains of the unliganded enzyme and the CTP-liganded form are in similar conformations. Large conformational differences in the CTP and native forms exist, however, specifically in the region of CTP binding to the regulatory chain. In addition, a segment of ten amino acid residues, which includes Lys83 and Lys84 of the catalytic chain, is disordered in the CTP-liganded form, in contrast to the native structure, where the same residues have refined well into density.Each catalytic monomer of aspartate carbamoyltransferase is in contact with three catalytic chains and two regulatory monomers. Each regulatory monomer borders on one other regulatory chain and two catalytic chains. The catalytic trimera are in contact in the hexamer; residues important to homotropic effects and catalysis (Tyr165 and Tyr232) are integral parts of the interface. We present a thorough survey of interface regions, cataloging polar interactions between sidechains throughout the molecule.We discuss, in context with the present structures, the chemical modifications and mutations of the enzyme. Highlighted specifically are Cys47, Tyr165 and Tyr232, Lys83, Lys84, Trp209 and Trp279 and Gly128, residues of demonstrated importance to the catalytic of regulatory function or aspartate carbamoyltransferase. The spatial arrangement of “active site” residues argues for a catalytic pocket shared between two monomers within catalytic subunit.  相似文献   

10.
We report the use of thiol chemistry to define specific and reversible disulfide interactions of Cys-substituted NK2 receptor mutants with analogues of neurokinin A (NKA) containing single cysteine substitutions. The NKA analogues were N-biotinylated to facilitate the rapid detection of covalent analogue-receptor interactions utilizing streptavidin reactivity. N-biotinyl-[Tyr1,Cys9]NKA, N-biotinyl-[Tyr1,Cys10]NKA were both found to reversibly disulfide bond to the NK2 receptor mutant Met297 --> Cys. This is consistent with the improved affinities of these particular analogues for the Met297 --> Cys receptor as compared with those for the wild-type and Met297 --> Leu receptors. In our three-dimensional model, Met297 occupies the equivalent position in helix 7 to the retinal binding Lys296 in rhodopsin. Binding of the NK2 receptor antagonist [3H]SR 48968 and of 125I-NKA was used to characterize additional receptor mutants. It seems that the aromatic residues Trp99 (helix 3), His198 (helix 5), Tyr266, His267, and Phe270 play an important role in NKA binding as structural determinants. The existence of overlapping SR 48968 and NKA binding sites is also evident. These data suggest that the peptide binding site of the NK2R is at least in part formed by residues buried deep within the transmembrane bundle and that this intramembranous binding domain may correspond to the binding sites for substantially smaller endogenous GPCR ligands.  相似文献   

11.
We examined the effects of orally administrated amino acids on myfibrillar proteolysis in food-deprived chicks. Plasma N(tau)-methylhistidine concentration, as an index of myofibrillar proteolysis, was decreased by the administration of Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg but not by Asp, Val, Phe, Tyr or His to chicks. Orally administrated Cys was fatal to chicks. These results indicate that oral Glu, Gly, Ala, Leu, Ile, Ser, Thr, Met, Trp, Asn, Gln, Pro, Lys and Arg administration suppressed myofibrillar proteolysis in chicks.  相似文献   

12.
Unfolding--refolding of Escherichia coli disulfide isomerase C (DsbC) induced by GdnHCl was studied by intrinsic fluorescence. Interpretation of experimental fluorescence data was done together with the analysis of protein 3D structure. It is shown that although Cys 141 is the next neighbour of a single tryptophan residue Trp 140, sulfur atoms of the disulfide bond Cys 141--Cys 163 are far apart from the indole ring and cannot quench its fluorescence, while the potential quenchers are Met 136 and His 170. It has been revealed that, though each subunit of DsbC contains eight tyrosine residues, only three tyrosine residues (Tyr 171, Tyr 38 and Tyr 52) contribute to the bulk fluorescence of the molecule. The character of intrinsic fluorescence intensity changes induced by GdnHCl (equilibrium and kinetic data), the character of parametric dependencies between fluorescence intensity recorded at 320 and 365 nm, and the existence of an isosbestic point of protein fluorescence spectra in solutions with different GdnHCl concentrations, allowed suggesting a one-step character of DsbC denaturation. The reversibility of this process is also shown.  相似文献   

13.
Pattison DI  Davies MJ 《Biochemistry》2004,43(16):4799-4809
Hypohalous acids (HOX, X = Cl, Br) are produced by activated neutrophils, monocytes, eosinophils, and possibly macrophages. These oxidants react readily with biological molecules, with amino acids and proteins being major targets. Elevated levels of halogenated Tyr residues have been detected in proteins isolated from patients with atherosclerosis, asthma, and cystic fibrosis, implicating the production of HOX in these diseases. The quantitative significance of these findings requires knowledge of the kinetics of reaction of HOX with protein targets, and such data have not been previously available for HOBr. In this study, rate constants for reaction of HOBr with protein components have been determined. The second-order rate constants (22 degrees C, pH 7.4) for reaction with protein sites vary by 8 orders of magnitude and decrease in the order Cys > Trp approximately Met approximately His approximately alpha-amino > disulfide > Lys approximately Tyr > Arg > backbone amides > Gln/Asn. For most residues HOBr reacts 30-100 fold faster than HOCl, though Cys and Met residues are approximately 10-fold less reactive, and ring halogenation of Tyr is approximately 5000-fold faster. Thus, Tyr residues are more, and Cys and Met much less, important targets for HOBr than HOCl. Kinetic models have been developed to predict the targets of HOX attack on proteins and free amino acids. Overall, these results shed light on the mechanisms of cell damage induced by HOX and indicate, for example, that the 3-chloro-Tyr:3-bromo-Tyr ratio does not reflect the relative roles of HOCl and HOBr in disease processes.  相似文献   

14.
The sequence of 96 amino acid residues from the COOH-terminus of the active subunit of cholera toxin, A1, has been determined as PheAsnValAsnAspVal LeuGlyAlaTyrAlaProHisProAsxGluGlu GluValSerAlaLeuGlyGly IleProTyrSerGluIleTyrGlyTrpTyrArg ValHisPheGlyValLeuAsp GluGluLeuHisArgGlyTyrArgAspArgTyr TyrSerAsnLeuAspIleAla ProAlaAlaAspGlyTyrGlyLeuAlaGlyPhe ProProGluHisArgAlaTrp ArgGluGluProTrpIleHisHisAlaPro ProGlyCysGlyAsnAlaProArg(OH). This is the largest fragment obtained by BrCN cleavage of the subunit A1 (Mr 23,000), and has previously been indicated to contain the active site for the adenylate cyclase-stimulating activity. Unequivocal identification of the COOH-terminal structure was achieved by separation and analysis of the terminal peptide after the specific chemical cleavage at the only cysteine residue in A1 polypeptide. The site of self ADP-ribosylation in the A1 subunit [C. Y. Lai, Q.-C. Xia, and P. T. Salotra (1983) Biochem. Biophys. Res. Commun.116, 341–348] has now been identified as Arg-50 of this peptide, 46 residues removed from the COOH-terminus. The cysteine that forms disulfide bridge to A2 subunit in the holotoxin is at position 91.  相似文献   

15.
Cai S  Zheng X  Dong X 《Journal of bacteriology》2011,193(19):5199-5206
Previously, we found that exoglucanase Cel48A from Cellulosilyticum ruminicola H1 bound intensively to Avicel; however, no known carbohydrate-binding module (CBM) was observed in the protein. Bioinformatics suggested that a C-terminal fragment of 127 amino acids, named the Cellulosilyticum-specific paralogous module (CPM), could function in binding. CPM-appended proteins are all putative (hemi)cellulases from Cellulosilyticum spp. In the present work, we demonstrated that Cel48A without the CPM retained only exoglucanase activity and lost the Avicel-binding ability, while the isolated CPM exhibited a high affinity for Avicel. In addition, the CPM bound to chitin, but not to soluble polysaccharides, making it a type A CBM, which binds only insoluble polysaccharides. Phylogenetic analysis clustered the CPM and its homologs as a separate branch that was distantly related to CBM subfamilies 3a (28% identity), 3b (24% identity), and 3c (21% identity). Sequence alignment revealed distinct secondary structures of the new CBM 3 group, in particular, a conserved Pro66-Trp67 insert preceding strand β4', a deletion preceding strand β6, and incomplete strands β8 and β9. An alanine scan for six aromatic and three nonaromatic amino acid residues (D66, P66, and R111) by site-directed mutagenesis determined that Phe62, Pro66, Trp67, Tyr68, Arg111, and Trp117 were the functional residues for binding. Among them, Phe62, Pro66, and Trp67 were the newly determined key sites in the CPM for binding. Three-dimensional homolog modeling revealed two types of substrate-binding sites, planar and groove, in the CPM. Thus, a new subfamily, CBM family 3d, is proposed.  相似文献   

16.
The primary structure of the core protein of Semliki Forest virus has been established by protein chemical characterization of 102 peptides, generated by digestion with trypsin, pepsin, thermolysin, and by partial acid cleavage of the protein. Besides a difference in one position, the sequence as established by these experiments is in agreement with the sequence predicted from the nucleotide sequence of the mRNA [Garoff et al. (1980) Proc. Natl Acad. Sci. USA, 77, 6376-6380]. The core protein has a blocked N terminus, consists of 267 amino acid residues, and has the following amino acid composition: Asp12, Asn9, Thr16, Ser10, Glu11, Gln15, Pro23, Gly20, Ala23, Val19, Met8, Ile11, Leu9, Tyr7, Phe6, His7, Lys37, Arg15, Trp5, Cys4, and an Mr of 29919. It contains 22.1% basic amino acids, mainly lysines, compared with a total of 8.6% acidic residues. The resulting surplus of positive charge is located in the N-terminal half of the protein (predominantly arginines at positions 12-21 and lysines at positions 66-114). Other amino acids are also unevenly distributed; proline and glutamine are accumulated in the N-terminal half of the sequence whereas histidine, glycine and the acidic residues are mainly present in the C-terminal part. This distribution suggests that the virus core protein consists of two or more structural domains.  相似文献   

17.
Met53 in barley alpha-amylase 1 (AMY1) is situated at the high-affinity subsite -2. While Met53 is unique to plant alpha-amylases, the adjacent Tyr52 stacks onto substrate at subsite -1 and is essentially invariant in glycoside hydrolase family 13. These residues belong to a short sequence motif in beta-->alpha loop 2 of the catalytic (beta/alpha)8-barrel and site-directed mutagenesis was used to introduce a representative variety of structural changes, Met53Glu/Ala/Ser/Gly/Asp/Tyr/Trp, to investigate the role of Met53. Compared to wild-type, Met53Glu/Asp AMY1 displayed 117/90% activity towards insoluble Blue Starch, and Met53Ala/Ser/Gly 76/58/38%, but Met53Tyr/Trp only 0.9/0.1%, even though both Asp and Trp occur frequently at this position in family 13. Towards amylose DP17 (degree of polymerization = 17) and 2-chloro-4-nitrophenyl beta-d-maltoheptaoside the activity (kcat/Km) of all mutants was reduced to 5.5-0.01 and 1.7-0.02% of wild-type, respectively. Km increased up to 20-fold for these soluble substrates and the attack on glucosidic linkages in 4-nitrophenyl alpha-d-maltohexaoside (PNPG6) and PNPG5 was determined by action pattern analysis to shift to be closer to the nonreducing end. This indicated that side chain replacement at subsite -2 weakened substrate glycon moiety contacts. Thus whereas all mutants produced mainly PNPG2 from PNPG6 and similar amounts of PNPG2 and PNPG3 accounting for 85% of the products from PNPG5, wild-type released 4-nitrophenol from PNPG6 and PNPG and PNPG2 in equal amounts from PNPG5. Met53Trp affected the action pattern on PNPG7, which was highly unusual for AMY1 subsite mutants. It was also the sole mutant to catalyze substantial transglycosylation - promoted probably by slow substrate hydrolysis - to produce up to maltoundecaose from PNPG6.  相似文献   

18.
K Ogasahara  S Sawada  K Yutani 《Proteins》1989,5(3):211-217
CD spectra in the aromatic region of a series of the mutant alpha-subunits of tryptophan synthase from Escherichia coli, substituted at position 49 buried in the interior of the molecule, were measured at pH 7.0 and 25 degrees C. These measurements were taken to gain information on conformational change produced by single amino acid substitutions. The CD spectra of the mutant proteins, substituted by Tyr or Trp residue in place of Glu residue at position 49, showed more intense positive bands due to one additional Tyr or Trp residue at position 49. The CD spectra of other mutant proteins also differed from that of the wild-type protein, despite the fact that the substituted residues at position 49 were not aromatic. Using the spectrum of the wild-type protein (Glu49) as a standard, the spectra of the other mutants were classified into three major groups. For 10 mutant proteins substituted by Ile, Ala, Leu, Met, Val, Cys, Pro, Ser, His, or Gly, their CD values of bands (due to Tyr residues) decreased in comparison with those of the wild-type protein. The mutant protein substituted by Phe also belonged to this group. These substituted amino acid residues are more hydrophobic than the original residue, Glu. In the second group, three mutant proteins were substituted by Lys, Gln, or Asn, and the CD values of tyrosyl bands increased compared to those of the wild-type proteins. These residues are polar. In the third group, the CD values of tyrosyl bands of two mutant proteins substituted by Asp or Thr were similar to those of the wild-type protein, except for one band at 276.5 nm. These results suggested that the changes in the CD spectra for the mutant proteins were affected by the hydrophobicity of the residues at position 49.  相似文献   

19.
A cysteine protease, phytolacain R from full-growth greenish fruits of pokeweed, Phytolacca americana L, was purified to electrophoretic homogeneity by a simple purification procedure employing CM-Sepharose ion-exchange chromatography. The enzyme was present in low content in the young fruits about 50 d after flowering but gradually accumulated in growing fruits. Its molecular mass was estimated to be ca. 23 kDa by SDS-PAGE, and its sugar content was zero. Its amino acid sequence was established by automated sequence analysis of the peptides obtained by cleavage with Achromobacter protease I, chymotrypsin, trypsin, and cyanogen bromide. The enzyme is composed of 218 amino acid residues, of which it shares 110 residues (50%) with papain, 104 (47%) with actinidain, and 87 (40%) with stem bromelain. The amino acid residues forming the substrate-binding the S2 pocket of papain, Tyr61, Tyr67, Pro68, Trp69, Val133, and Phe207, were predicted to be replaced by Gly, Trp, Met, His, Ala, and Met in phytolacain R, respectively. As a consequence of these substitutions, the S2 pocket is expected to be less hydrophobic in phytolacain R than in papain.  相似文献   

20.
Fungal methionine synthase, Met6p, transfers a methyl group from 5-methyl-tetrahydrofolate to homocysteine to generate methionine. The enzyme is essential to fungal growth and is a potential anti-fungal drug design target. We have characterized the enzyme from the pathogen Candida albicans but were unable to crystallize it in native form. We converted Lys103, Lys104, and Glu107 all to Tyr (Met6pY), Thr (Met6pT) and Ala (Met6pA). All variants showed wild-type kinetic activity and formed useful crystals, each with unique crystal packing. In each case the mutated residues participated in beneficial crystal contacts. We have solved the three structures at 2.0–2.8 Å resolution and analyzed crystal packing, active-site residues, and similarity to other known methionine synthase structures. C. albicans Met6p has a two domain structure with each of the domains having a (βα)8-barrel fold. The barrels are arranged face-to-face and the active site is located in a cleft between the two domains. Met6p utilizes a zinc ion for catalysis that is bound in the C-terminal domain and ligated by four conserved residues: His657, Cys659, Glu679 and Cys739.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号