首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Algae of various taxonomic groups are capable of assimilating dissolved organic carbon (DOC) from their environments (mixotrophy). Recently, we reported that, with increasing biomass of mixotrophs, heterotrophic bacteria did not increase. We hypothesized that algal uptake of external DOC may outweigh their release of DOC by exudation (H1). Here, we addressed an alternative hypothesis that algae did not assimilate external DOC but constrained the release of DOC (H2). In chemostat experiments, we cultured the mixotrophic Chlamydomonas acidophila Negoro together with heterotrophic bacteria. As external substrates, we used glucose, which was potentially available for both bacteria and algae, or fructose, which was available only for bacteria. We increased the biomass of algae by the stepwise addition of phosphorus. Bacterial biomass did not increase in experiments using glucose or when fructose was offered, suggesting that mechanisms other than algal mixotrophy (H1) kept concentrations of bacteria low. Measured exudation rates (percent extracellular release, PER) of mixotrophic algae (Cd. acidophila, Chlorella protothecoides W. Krüger) were very low and ranged between 1.0% and 3.5% at low and moderately high phosphorus concentrations. In contrast, an obligately phototrophic alga (Chlamydomonas segnis H. Ettl) showed higher exudation rates, particularly under phosphorus limitation (70%). The results support H2. If mixotrophy is considered as a mechanism to recycle organic exudates from near the cell surface, this would explain why algae retained mixotrophic capabilities although they cannot compete with bacteria for external organic carbon.  相似文献   

2.
Three physiological states of a single bacterial strain, namely, balanced, phosphorus-rich, and nitrogen-rich bacteria, were obtained by culturing a bacterial strain in chemostats under three different nutrient regimens. Each was shown to be distinctly different in elemental composition with respect to C/N/P ratio. These bacteria were fed to four species of heterotrophic nanoflagellates in batch culture grazing experiments, and the percent regeneration efficiencies of bacterium-bound nitrogen and phosphorus by the flagellates were compared. All flagellate species regenerated comparable amounts of nitrogen, which was thought to be due to their similar internal C/N ratios. There was, however, interspecies variation with regard to phosphorus regeneration: the two faster-growing species (Paraphysomonas imperforata and Bodo designis) released significantly more phosphorus than the two slower-growing species (Stephanoeca diplocostata and Jakoba libera). The observed differences were thought to have been influenced by a combination of life cycle strategies and internal C/P ratios.  相似文献   

3.
海水中藻菌共培养体系对碳氮磷的吸收转化   总被引:1,自引:0,他引:1  
张艳敏  王江涛  谭丽菊 《生态学报》2017,37(14):4843-4851
海洋环境中,细菌和微藻之间的物质交换是生源要素在自然界中迁移转化的重要方式。为进一步了解生源要素的生物地球化学循环,在实验室模拟条件下,研究了共培养体系中营养盐和有机物在细菌和微藻之间的转换。通过纯培养中肋骨条藻(Skeletonema costatum)、东海原甲藻(Prorocentrum donghaiense)、天然海水中的细菌以及藻菌混合培养,分析了营养盐和有机物随藻菌生物量的变化情况,并计算了溶解有机碳(DOC)和溶解有机氮(DON)的浓度比值[(DOC/DON)a]。结果发现,在共培养体系中,细菌对中肋骨条藻的生长有抑制作用,对东海原甲藻影响不明显;中肋骨条藻有利于细菌生长,东海原甲藻抑制细菌生长,这种不同可能与微藻的粒径有关。海洋细菌在2种藻的指数生长均期均会促进微藻吸收氨氮(NH_4-N),但在生长末期NH_4-N以释放为主。硝氮(NO_3-N)的浓度与藻的生长呈负相关,但在衰亡期NO_3-N略有增加,表明NO_3-N再生所需时间较长。细菌对硝氮的吸收量较少,但对其再生有贡献。细菌和中肋骨条藻对磷酸盐(PO_4-P)的吸收存在竞争,但与东海原甲藻的竞争关系不明显。不同培养体系中DOC浓度变化不同,在藻菌共培养体系中增加较快,纯藻培养体系中增加缓慢,在纯菌培养体系中缓慢减少。通过对DOC与DON浓度比值的分析,发现用判断颗粒有机碳(POC)来源的方法可以分析DOC的来源。  相似文献   

4.
Liu H  Zhou Y  Xiao W  Ji L  Cao X  Song C 《Microbiological research》2012,167(5):292-298
The impacts of different nutrient additions (N + P, N + P + C, 4N + P, 4N + P + C, N + 2P) on the growth of algae and bacteria were studied in a microcosm experiment. Since alkaline phosphatase activity (APA) provides an indication of phosphorus deficiency, the higher value for algal APA in the treatments with excess nitrogen and for bacterial APA in the treatments with excess carbon suggested that, algal and bacterial phosphorus-limited status were induced by abundant nitrogen and carbon input, respectively. Bacterial phosphorus-limited status was weakened due to higher bacterial competition for phosphorus, compared to algae. In comparison with the bacterial and specific bacterial APA, higher values of algal and specific algal APA were found, which showed a gradual increase that coincided with the increase of chlorophyll a concentration. This fact indicated not only a stronger phosphorus demand by algae than by bacteria, but also a complementary relationship for phosphorus demand between algae and bacteria. However, this commensalism could be interfered by glucose input resulting in the decline of chlorophyll a concentration. Furthermore, the correlation between bacterial numbers and chlorophyll a concentration was positive in treatments without carbon and blurry in treatments with carbon. These observations validate a hypothesis that carbon addition can stimulate bacterial growth justifying bacterial nutrient demand, which decreases the availability of nutrients to algae and affects nutrient relationship between algae and bacteria. However, this interference would terminate after algal and bacterial adaption to carbon input.  相似文献   

5.
Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 approximately 3, where Q10 is the proportional change with a 10 degrees C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures.  相似文献   

6.
The impacts of nutrient amendment termination on the growth strategies of algae and bacteria were conducted in experimentally designed mesocosm in which two different phosphorus (P) dosages were treated. The algal community composition did not change greatly in Group A (low phosphorus) and Group B (high phosphorus). In Group A, the secretion of bacterial alkaline phosphatase (AP) after nutrient termination stimulated bacterial phosphorus acquisition, which caused the decrease in algal phosphorus levels, in terms of the increase of bacterial abundance and bacterial production, as well as the decrease in chlorophyll a and particulate organic carbon. The algal collapse resulted in dissolved organic carbon secretion, further fuelling bacterial growth. In Group B, excess phosphorus input urged algae to store phosphorus as poly-phosphate. When phosphorus input ceased, in order to maintain their used high phosphorus demand, algae strengthened to gain phosphorus through the hydrolysis of dissolved organic phosphorus in water column and ploy-phosphate inside the cells by AP, evidenced by high algal alkaline phosphatase activity, algal growth continuation, and bacterial growth decline. These facts indicated that phosphorus content should reduce to a lower level than expected, so that algal bloom can be effectively controlled in eutrophic water bodies.  相似文献   

7.
Commensalism based on organic carbon supplied by phytoplanktonand competition for mineral nutrients are important interactionsbetween bacteria and phytoplankton in oligotrophic clear-watersystems. Both interactions are influenced by zooplankton activity.To examine the relation ship between algae and bacteria in LakeLa Caldera, we studied: the correlations among phyto plankton,bacteria and phosphorus (P) dynamics; the ratio of organic carbonsupplied by algae to organic carbon demand by bacteria; andthe importance of P remineralized by metazooplankton for bothcommunities. Phytoplankton and bacteria had a similar seasonaldynamics, and there was a sig nificant and positive relationshipbetween bacterial abundance and algal biomass (P<0.01). However,the release of organic carbon from phytoplankton was usuallyhigher than the bacterioplankton carbon requirement. P availablevia zooplankton remineralization satisfied between 74 and 316%of the minimum P demands of algae and bacteria. To elucidatewhether zooplankton operate similarly on algae and bacterialgrowth or indirectly influence bacterial growth through phytoplanktonmetab olism, we performed zooplankton manipulation experiments.High zooplankton biomass in these experiments stimulated bothprimary and bacterial production, but release of organic carbonfrom phytoplankton declined. These results suggest a directstimulus of bacterial growth, so algae and bac teria can balancegrazing losses by compensatory growth. Further, the algal decreaseof the organic carbon supply for bacteria could, over time,lead to a change in the algae-bacteria interaction from competitionto commensalism. This reduction in organic carbon excretioncould affect the balance of the competitive interaction.  相似文献   

8.
Phosphate uptake and utilization by bacteria and algae   总被引:6,自引:2,他引:4  
Mats Jansson 《Hydrobiologia》1988,170(1):177-189
Bacterial uptake of inorganic phosphate (closely investigated in Escherichia coli) is maintained by two different uptake systems. One (Pst system) is Pi-repressible and used in situations of phosphorus deficiency. The other system (Pit system) is constitutive. The Pit system also takes part in the phosphate exchange process where orthophosphate is continuously exchanged between the cell and the surrounding medium.Algal uptake mechanisms are less known. The uptake capacity increases during starvation but no clearly defined transport systems have been described. Uptake capacity seems to be regulated by internal phosphorus pools, e.g., polyphosphates. In mixed algal and bacterial populations, bacteria generally seem to be more efficient in utilizing low phosphate concentrations. The second half of this paper discusses how bacteria and algae can share limiting amounts of phosphate provided that the bacteria have pronouncedly higher affinity for phosphate. Part of the solution to this problem may be that bacteria are energy-limited rather than phosphate-limited and dependent on algal organic exudates for their energy supply.The possible phosphate exchange mechanism so convincingly demonstrated in Escherichia coli is here suggested to play a key role for the flux of phosphorus between bacteria and algae. Such a mechanism can also be used to explain the rapid phosphate exchange between the particulate and the dissolved phase which always occurs in short-term 32P-uptake experiments in lake waters.  相似文献   

9.
The effect of different concentrations of nitrogen and phosphorus on extracellular release was investigated. Phosphorus induced the enhanced extracellular release of metabolites by Chlorella vulgaris. No influence of nitrogen on extracellular release was observed. In the initial stages of C. vulgaris culture the algae release was observed. In the initial stages of C. vulgaris culture the algae release compounds readily assimilated by the accompanying bacteria, hence the observed drop of percentage of extracellular release (PER) in culture medium caused by the bacteria. Both, the glycolic acid and the products of photoassimilation released to the environment in the first stages of cultivation were assimilated by the bacteria accompanying-algae at a similar rate. The ageing of C. vulgaris culture resulted in the accumulation of extracellularly released metabolites and increase of PER. These products were not assimilated by the bacteria present in the algal culture.  相似文献   

10.
The alkaline phosphatase (AP) characteristics of three algal bloom species in the coastal waters of China [Prorocentrum donghaiense D. Lu, Alexandrium catenella (Whedon et Kof.) Balech, and Skeletonema costatum (Grev.) Cleve] were analyzed in a laboratory batch culture experiment using bulk assay and the single‐cell enzyme‐labeled fluorescence (ELF) method. Results showed that the AP of these three test species shared some common characteristics: AP was inducible in all three species and was expressed by algae under phosphorus (P)–stress conditions; no constitutive AP enzyme was detected in the three test species. Once AP was produced, all three test species gradually released the enzymes into the water, and the algae would reinduce AP production. There were also different specific AP characteristics among the three test species under severe P‐stressed conditions. In P. donghaiense, AP covered most of the cell, and the AP production sites were mainly on the cell surface, although some could be observed inside cells. AP also covered the whole cell of A. catenella, but the AP sites were mainly inside the cell with only some on the cell surface. Only one or two AP sites could be detected in S. costatum, and they were all on the cell surface.  相似文献   

11.
Can bacteria outcompete phytoplankton for phosphorus? a chemostat test   总被引:3,自引:0,他引:3  
Although the bacterioplankton of lakes are usually considered primarily in terms of mineralization processes, recent studies suggest that they may also strongly compete for phosphorus with the phytoplankton. In the present study, we have tested in chemostat culture, and found support for the hypotheses that (1) a freshwater bacterium (Pseudomonas paucimobilis), whose carbon source is excretion from a phosphorus-limited alga (Synedra ulna var.danica), can outcompete that alga for phosphorus (P) under widely varied P supply rates; (2) exogenously-supplied organic carbon positively influences bacterial biomass and negatively influences algal biomass; (3) the ratio of bacterial to algal phosphorus uptake in short-term32P orthophosphate uptake experiments is an accurate predictor of their relative long-term phosphorus assimilation (i.e., growth) in mixed culture.  相似文献   

12.
Ultraviolet solar radiation (UVR) and atmospheric nutrient loads to pristine ecosystems are global climate change phenomena that simultaneously affect aquatic organisms in ways not easily predicted by single factor studies. Plankton in a high mountain lake was exposed in situ to increasing phosphorus (P) concentrations (mimicking atmospheric pulses) in absence or presence of UVR in order to identify their interactive effect on functional [primary production, organic carbon (C) release (EOC), and percentage of C released (%EOC)], growth rate, structural–physiological (algal biomass, sestonic C, P content, chlorophyll a (Chl a), and Chl a : C ratio, P cell quota, cell‐specific Chl a), and stoichiometric (autotroph C : P ratio) traits. The availability of P after the pulse determined the intensity of responses by primary producers to UVR stress. All structural–physiological and functional variables significantly increased by up to two orders of magnitude in response to P enrichment. UV radiation, over a long‐term scale, exerted significant deleterious effects on most structural–physiological variables when inorganic P was added at high levels (≥30 μg P L?1). The subsequent unexpected negative synergistic UVR × P effect on algal development did not support our initial hypothesis that P input might buffer the harmful UVR effect. UVR exerted a weak negative effect on primary production but strongly enhanced the absolute and percentage excretion of C (up to 60%), mechanism responsible of a significant reduction in autotroph C : P ratios. We propose that low sestonic C : P ratios are the outcome of an adaptive strategy of algae in environments with high UVR exposure and extreme nutrient limitation and have important implications for C flux through grazing vs. microbial food webs in oligotrophic systems.  相似文献   

13.
Continuous culture techniques are used to study long-term population interactions between Plectonema boryanum Gomont, a filamentous bluegreen alga, and the LPP-viruses which infect it. After LPP-I (virulent cyanophage) infection of sensitive algae, 3 oscillations occur in cell density with concomitant oscillations in virus titer before final stabilization of both algal and viral concentrations. After LPP-ID and LPP-2 (temperate viruses) infection, oscillation in cell density occurred with burst of virus particles. Resistant algae always repopulated the chemostat; lysogeny was not established. The interaction between Plectonema that was resistant to virus infection and the 3 LPP-cyanophages resulted in rapid elimination of the viruses from the chemostat in the effluent. When lysogenic P. boryanum was tested, a law population of virus was present in the chemostat throughout the incubation period indicative of spontancous induction. Clones of lysogenic algae were isolated.  相似文献   

14.
Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10≈3, where Q10 is the proportional change with a 10°C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures.  相似文献   

15.
Summary The method of utilizing the principles of carbonate equilibrium chemistry to monitor the rate of inorganic carbon uptake by a variety of algal species is presented and discussed. The usefulness of this technique is demonstrated for both batch and chemostat algal culture. Data obtained from carbon limited batch and chemostat cultures suggest that the specific growth rate of a variety of algal species may best be represented as a Monod response to the free carbon dioxide concentration. The monitoring of carbonate equilibrium in the batch method provides a simple, rapid and inexpensive technique for obtaining rates of algal carbon fixation. This technique is well suited for obtaining the large volumes of detailed kinetic data necessary in building a basis for understanding the factors involved in algal productivity and algae species shifts, in both controlled and natural aquatic ecosystems.  相似文献   

16.
The partial pressure of carbon dioxide (pCO2) in lake ecosystems varies over four orders of magnitude and is affected by local and global environmental perturbations associated with both natural and anthropogenic processes. Little is known, however, about how changes in pCO2 extend into the function and structure of food webs in freshwater ecosystems. To fill this gap, we performed laboratory experiments using the ecologically important planktonic herbivore Daphnia and its algal prey under a natural range of pCO2 with low light and phosphorus supplies. The experiment showed that increased pCO2 stimulated algal growth but reduced algal P : C ratio. When feeding on algae grown under high pCO2, herbivore growth decreased regardless of algal abundance. Thus, high CO2‐raised algae were poor food for Daphnia. Short‐term experimental supplementation of PO4 raised the P content of the high CO2‐raised algae and improved Daphnia growth, indicating that low Daphnia growth rates under high pCO2 conditions were due to lowered P content in the algal food. These results suggest that, in freshwater ecosystems with low nutrient supplies, natural processes as well as anthropogenic perturbations resulting in increased pCO2 enhance algal production but reduce energy and mass transfer efficiency to herbivores by decreasing algal nutritional quality.  相似文献   

17.
To investigate the consequences of increased temperature and enhanced input of dissolved organic matter (DOM) into lakes for heterotrophicic bacteria and for mixotrophic algae which use DOM in addition to photosynthesis, the hypotheses were tested whether (1) both bacteria and mixotrophic algae benefit from increased input of DOM, or (2) increased DOM input enhances bacterial biomass and thereby decreases algal biomass. Growth experiments in batch cultures, exudation measurements, and competition experiments in chemostats were performed at two temperature levels. Increased temperature stimulated the autotrophic growth rate of Chlorella protothecoides. Bacteria and Chlorella increased their heterotrophic growth rates at higher DOM concentration at lower temperature whereas enhanced DOM concentration hardly stimulated their growth at higher temperature. In chemostats, enhanced input of soil extract increased both bacterial and algal biomass at lower temperature whereas bacterial biomass increased only slightly and algal biomass decreased at higher temperature. Thus, the temperature determines the response of microorganisms to enhanced DOM concentration.  相似文献   

18.
During exponential growth in batch culture, assimilation numbersof eleven algal species ranged from 1.6–20.8, with a meanvalue of 5.3 g C/g Chlorophyll a/hr. The highest assimilationnumber of 20.8 g C/g Chlorophyll a/hr was observed in Coccolithuspelagicus, due to the relatively low concentration of chlorophylla/cell. The assimilation number declined from exponential tostationary phase in batch cultures for ten algal species, butincreased with age in batch culture in Amphiprora paludasa (abenthic diatom). The assimilation number declined with decreasinggrowth rate in nitrate-limited chemostat cultures of Phaeodactylumtricornutum and in iron-limited chemostat cultures of Phaeodactylumtricornutum and Isochrysis galbana.  相似文献   

19.
Microcosms with three different food web structures and phosphorus (P) limited growth medium were used to study the interactions between P and organic carbon (C) fractions in pelagic food webs. The cultures were run with low dilution to allow the biological processes to determine the outcome. A double isotope technique was used to follow the C and P compartments. In all systems the primary production was P limited. The measured P:C ratios and the observed accumulation of degradable dissolved organic carbon (DOC) indicated that the growth of heterotrophic bacteria was also P limited. The presence of neither algal grazers nor flagellates feeding on bacteria altered the limitation pattern. A net loss of P from the bacterial fraction was observed after the bloom. Different strategies for nutrient aquisition and growth are proposed as mechanisms enabling simultaneous P limitation of algae and bacteria, and a concomitant accumulation of degradable DOC. The ability of the algae to grow with low P:C ratio keeps the regeneration of P through grazers low enough to cause sustained P limitation of both algae and bacteria. The grazers were important producers of DOC when present. This implies that the usual assumption of carbon limited bacterial growth may lead to wrong conclusions regarding the dynamics of plankton communities and the DOC pool.  相似文献   

20.
Jamet  Dominique  Aleya  Lofti  Devaux  Jean 《Hydrobiologia》1995,(1):49-56
The diel changes of the size fractioned alkaline phosphatase activity (APA) were studied in relation to several abiotic and biotic factors in Villerest reservoir (located on the Loire river, near the city of Roanne, France), bihourly during two days in July 1992. The APA measured in this work exceeded considerably those reported in the literature, suggesting that dissolved mineral phosphorus was not available to microorganisms. At 1 m, the APA was primarily due to bacteria which actively assimilated organic P compounds released by photosynthetic algal metabolism. At 5, 10 and 20 m, the APA was predominantly algal. The high concentrations in SRP (soluble reactive phosphorus) would indicate that orthophosphates were not bioavailable. The reverse (i. e availability to phytoplankton) would have resulted in undetectable levels of P-PO inf4 sup3– due to the massive proliferation of algae in Villerest reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号