首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epsin is an endocytic adaptor protein involved in the regulation of clathrin-dependent endocytosis. We and others have demonstrated that Epsin is ubiquitylated in cells and requires its ubiquitin interacting motifs (UIMs) for this modification. To further elucidate the mechanism of Epsin ubiquitylation, we initiated studies to identify the E3 ligase(s) that modifies Epsin. In this study, we discovered that the U-box ubiquitin ligase carboxyl-terminus of Hsc70 interacting protein (CHIP) ubiquitylated Epsin. Using an in vitro ubiquitylation assay, we demonstrate that CHIP specifically ubiquitylated Epsin in a UIM-dependent manner. Furthermore, overexpression of CHIP in cells increased Epsin ubiquitylation also in a UIM-dependent manner. Together, these data provide evidence that CHIP functions to ubiquitylate the endocytic protein Epsin.  相似文献   

2.
The ubiquitin-interacting motif (UIM) is a short, approximately 20 residue, structural element, which is present in, but not limited to, the proteins involved in endocytotic and proteasomal degradation. UIMs facilitate endocytotic vesicular sorting of the monoubiquitinated proteins and may be important for the targeting of the polyubiquitinated proteins to the proteasome. Using heteronuclear NMR backbone and side-chain chemical shift mapping of the ubiquitin interaction surface, the UIM from the hepatocyte growth factor-regulated tyrosine kinase substrate, Hrs, specifically binds to the ubiquitin hydrophobic surface using UIM's well-conserved central helical LALAL motif. Molecular modeling of the ubiquitin:UIM_Hrs complex suggests that binding occurs through a specific interaction of Leu263 and Leu267 of the UIM_Hrs with two ubiquitin hydrophobic patches located in close proximity to the ubiquitin major polyubiquitination site, Lys48. Intramolecular binding of ubiquitin to a UIM in monoubiquitinated proteins would render Lys48 unavailable for further ubiquitination, thus, explaining the absolute requirement of UIMs for monoubiquitination. Two leucines, Leu265 and Leu269, located on the opposite face of UIM_Hrs can also interact, albeit less favorably than Leu263 and Leu267, with the ubiquitin hydrophobic patches, suggesting a possible mode for polyubiquitin:UIM binding and apparent preference of UIMs for polyubiquitins.  相似文献   

3.
The mechanism of ubiquitin-dependent endocytosis of cell surface proteins is not completely understood. Here we examine the role of the ankyrin repeat domain (Ankrd) 13A, 13B, and 13D proteins, which constitute a functionally unknown family of ubiquitin-interacting motif (UIM)-bearing proteins, in the process. Stimulation of human HeLa cells with epidermal growth factor (EGF) rapidly induced direct binding of Ankrd 13 proteins to ubiquitinated EGF receptor (EGFR) via the UIMs. The binding was inhibited when the Ankrd 13 proteins underwent UIM-dependent monoubiquitination, suggesting that their activity is regulated by ubiquitination of themselves. Ankrd 13 proteins bound specifically to Lys-63-linked ubiquitin chains, which was consistent with a previous report that EGFR mainly undergoes Lys-63-linked polyubiquitination. Ankrd 13 proteins were anchored, via the central region and UIMs, to the plasma membrane, where they colocalized with EGFR. Finally, overexpression of wild-type as well as truncated-mutant Ankrd 13 proteins strongly inhibited rapid endocytosis of ubiquitinated EGFR from the surface in EGF-treated cells. We conclude that by binding to the Lys-63-linked polyubiquitin moiety of EGFR at the plasma membrane, Ankrd 13 proteins regulate the rapid internalization of ligand-activated EGFR.  相似文献   

4.
5.
Ubiquitin is a key regulatory molecule in diverse cellular events. How cells determine the outcome of ubiquitylation remains unclear; however, a likely determinant is the specificity of ubiquitin receptor proteins for polyubiquitin chains of certain length and linkage. Proteasome subunit S5a contains two ubiquitin-interacting motifs (UIMs) through which it recruits ubiquitylated substrates to the proteasome for their degradation. Here, we report the structure of S5a (196-306) alone and complexed with two monoubiquitin molecules. This construct contains the two UIMs of S5a and we reveal their different ubiquitin-binding mechanisms and provide a rationale for their unique specificities for different ubiquitin-like domains. Furthermore, we provide direct evidence that S5a (196-306) binds either K63-linked or K48-linked polyubiquitin, and in both cases prefers longer chains. On the basis of these results we present a model for how S5a and other ubiquitin-binding proteins recognize polyubiquitin.  相似文献   

6.
Ubiquitin receptors connect substrate ubiquitylation to proteasomal degradation. HHR23a binds proteasome subunit 5a (S5a) through a surface that also binds ubiquitin. We report that UIM2 of S5a binds preferentially to hHR23a over polyubiquitin, and we provide a model for the ternary complex that we expect represents one of the mechanisms used by the proteasome to capture ubiquitylated substrates. Furthermore, we demonstrate that hHR23a is surprisingly adept at sequestering the ubiquitin moieties of a polyubiquitin chain, and provide evidence that it and the ubiquitylated substrate are committed to each other after binding.  相似文献   

7.
Ubiquitin-interacting motifs (UIMs) are an important class of protein domains that interact with ubiquitin or ubiquitin-like proteins. These approximately 20-residue-long domains are found in a variety of ubiquitin receptor proteins and serve as recognition modules towards intracellular targets, which may be individual ubiquitin subunits or polyubiquitin chains attached to a variety of proteins. Previous structural studies of interactions between UIMs and ubiquitin have shown that UIMs adopt an extended structure of a single α-helix, containing a hydrophobic surface with a conserved sequence pattern that interacts with key hydrophobic residues on ubiquitin. In light of this large body of structural studies, details regarding the presence and the roles of structural dynamics and plasticity are surprisingly lacking. In order to better understand the structural basis of ubiquitin-UIM recognition, we have characterized changes in the structure and dynamics of ubiquitin upon binding of a UIM domain from the yeast Vps27 protein. The solution structure of a ubiquitin-UIM fusion protein designed to study these interactions is reported here and found to consist of a well-defined ubiquitin core and a bipartite UIM helix. Moreover, we have studied the plasticity of the docking interface, as well as global changes in ubiquitin due to UIM binding at the picoseconds-to-nanoseconds and microseconds-to-milliseconds protein motions by nuclear magnetic resonance relaxation. Changes in generalized-order parameters of amide groups show a distinct trend towards increased structural rigidity at the UIM-ubiquitin interface relative to values determined in unbound ubiquitin. Analysis of 15N Carr-Purcell-Meiboom-Gill relaxation dispersion measurements suggests the presence of two types of motions: one directly related to the UIM-binding interface and the other induced to distal parts of the protein. This study demonstrates a case where localized interactions among protein domains have global effects on protein motions at timescales ranging from picoseconds to milliseconds.  相似文献   

8.
9.
Ubiquitin interacting motifs (UIMs) are short α‐helices found in a number of eukaryotic proteins. UIMs interact weakly but specifically with ubiquitin conjugated to other proteins, and in so doing, mediate specific cellular signals. Here we used phage display to generate ubiquitin variants (UbVs) targeting the N‐terminal UIM of the yeast Vps27 protein. Selections yielded UbV.v27.1, which recognized the cognate UIM with high specificity relative to other yeast UIMs and bound with an affinity more than two orders of magnitude higher than that of ubiquitin. Structural and mutational studies of the UbV.v27.1‐UIM complex revealed the molecular details for the enhanced affinity and specificity of UbV.v27.1, and underscored the importance of changes at the binding interface as well as at positions that do not contact the UIM. Our study highlights the power of the phage display approach for selecting UbVs with unprecedented affinity and high selectivity for particular α‐helical UIM domains within proteomes, and it establishes a general approach for the development of inhibitors targeting interactions of this type.  相似文献   

10.
Hrs has an essential role in sorting of monoubiquitinated receptors to multivesicular bodies for lysosomal degradation, through recognition of ubiquitinated receptors by its ubiquitin-interacting motif (UIM). Here, we present the structure of a complex of Hrs-UIM and ubiquitin at 1.7-A resolution. Hrs-UIM forms a single alpha-helix, which binds two ubiquitin molecules, one on either side. These two ubiquitin molecules are related by pseudo two-fold screw symmetry along the helical axis of the UIM, corresponding to a shift by two residues on the UIM helix. Both ubiquitin molecules interact with the UIM in the same manner, using the Ile44 surface, with equal binding affinities. Mutational experiments show that both binding sites of Hrs-UIM are required for efficient degradative protein sorting. Hrs-UIM belongs to a new subclass of double-sided UIMs, in contrast to its yeast homolog Vps27p, which has two tandem single-sided UIMs.  相似文献   

11.
Numerous cellular processes are regulated by (poly)ubiquitin-mediated signaling events, which involve a covalent modification of the substrate protein by a single ubiquitin or a chain of ubiquitin molecules linked via a specific lysine. Remarkably, the outcome of polyubiquitination is linkage-dependent. For example, Lys48-linked chains are the principal signal for proteasomal degradation, while Lys63-linked chains act as nonproteolytic signals. Despite significant progress in characterization of various cellular pathways involving ubiquitin, understanding of the structural details of polyubiquitin chain recognition by downstream cellular effectors is missing. Here we use NMR to study the interaction of a ubiquitin-interacting motif (UIM) of the proteasomal subunit S5a with di-ubiquitin, the simplest model for polyubiquitin chain, to gain insights into the mechanism of polyubiquitin recognition by the proteasome. We have mapped the binding interface and characterized the stoichiometry and the process of UIM binding to Lys48- and Lys63-linked di-ubiquitin chains. Our data provide the first direct evidence that UIM binding involves a conformational transition in Lys48-linked di-ubiquitin, which opens the hydrophobic interdomain interface. This allows UIM to enter the interface and bind directly to the same ubiquitin hydrophobic-patch surface as utilized in UIM:monoubiquitin complexes. The results indicate that up to two UIM molecules can bind di-ubiquitin, and the binding interface between UIM and ubiquitin units in di-ubiquitin is essentially the same for both Lys48- and Lys63-linked chains. Our data suggest possible structural models for the binding of UIM and of full-length S5a to di-ubiquitin.  相似文献   

12.
Monoubiquitylation is a well-characterized signal for the internalization and sorting of integral membrane proteins to distinct cellular organelles. Recognition and transmission of monoubiquitin signals is mediated by a variety of ubiquitin-binding motifs such as UIM, UBA, UEV, VHS and CUE in endocytic proteins. The yeast Vps27 protein requires two UIMs for efficient interactions with ubiquitin and for sorting cargo into multivesicular bodies. Here we show that the individual UIMs of Vps27 exist as autonomously folded alpha-helices that bind ubiquitin independently, non-cooperatively and with modest affinity. The Vps27 N-terminal UIM engages the Leu8-Ile44-Val70 hydrophobic patch of ubiquitin through a helical surface conserved in UIMs of diverse proteins, including that of the S5a proteasomal regulatory subunit. The Leu8-Ile44-Val70 ubiquitin surface is also the site of interaction for CUE and UBA domains in endocytic proteins, consistent with the view that ubiquitin-binding endocytic proteins act serially on the same monoubiquitylated cargo during transport from cell surface to the lysosome.  相似文献   

13.
Ubiquitin-specific proteases (USPs) consist of a family of deubiquitinating enzymes with more than 50 members in humans. Three of them, including USP37, contain ubiquitin-interacting motifs (UIMs), an ∼20-amino acid α-helical stretch that binds to ubiquitin. However, the roles of the UIMs in these USP enzymes remain unknown. USP37 has three UIMs, designated here as UIMs 1, 2, and 3 from the N-terminal side, between the Cys and His boxes comprising the catalytic core. Here, we examined the role of the UIMs in USP37 using its mutants that harbor mutations in the UIMs. The nuclear localization of USP37 was not affected by the UIM mutations. However, mutations in UIM2 or UIM3, but not UIM1, resulted in a significant decrease in USP37 binding to ubiquitinated proteins in the cell. In vitro, a region of USP37 harboring the three UIMs also bound to both Lys48-linked and Lys63-linked ubiquitin chains in a UIM2- and UIM3-dependent manner. The level of USP37 ubiquitination was also reduced by mutations in UIM2 or UIM3, suggesting their role in ubiquitination of USP37 itself. Finally, mutants lacking functional UIM2 or UIM3 exhibited a reduced isopeptidase activity toward ubiquitinated proteins in the cell and both Lys48-linked and Lys63-linked ubiquitin chains. These results suggested that the UIMs in USP37 contribute to the full enzymatic activity, but not ubiquitin chain substrate specificity, of USP37 possibly by holding the ubiquitin chain substrate in the proximity of the catalytic core.  相似文献   

14.
Ubiquitin functions as a signal for sorting cargo at multiple steps of the endocytic pathway and controls the activity of trans-acting components of the endocytic machinery (reviewed in refs 1, and 2). By contrast to proteasome degradation, which generally requires a polyubiquitin chain that is at least four subunits long, internalization and sorting of endocytic cargo at the late endosome are mediated by mono-ubiquitination. Here, we demonstrate that ubiquitin-interacting motifs (UIMs) found in epsins and Vps27p (ref. 9) from Saccharomyces cerevisiae are required for ubiquitin binding and protein transport. Epsin UIMs are important for the internalization of receptors into vesicles at the plasma membrane. Vps27p UIMs are necessary to sort biosynthetic and endocytic cargo into vesicles that bud into the lumen of a late endosomal compartment, the multivesicular body. We propose that mono-ubiquitin regulates internalization and endosomal sorting by interacting with modular ubiquitin-binding domains in core components of the protein transport machinery. UIM domains are found in a broad spectrum of proteins, consistent with the idea that mono-ubiquitin can function as a regulatory signal to control diverse biological activities.  相似文献   

15.
RAP80 has a key role in the recruitment of the Abraxas–BRCC36–BRCA1–BARD1 complex to DNA‐damage foci for DNA repair through specific recognition of Lys 63‐linked polyubiquitinated proteins by its tandem ubiquitin‐interacting motifs (UIMs). Here, we report the crystal structure of the RAP80 tandem UIMs (RAP80‐UIM1‐UIM2) in complex with Lys 63‐linked di‐ubiquitin at 2.2 Å resolution. The two UIMs, UIM1 and UIM2, and the α‐helical inter‐UIM region together form a continuous 60 Å‐long α‐helix. UIM1 and UIM2 bind to the proximal and distal ubiquitin moieties, respectively. Both UIM1 and UIM2 of RAP80 recognize an Ile 44‐centered hydrophobic patch on ubiquitin but neither UIM interacts with the Lys 63‐linked isopeptide bond. Our structure suggests that the inter‐UIM region forms a 12 Å‐long α‐helix that ensures that the UIMs are arranged to enable specific binding of Lys 63‐linked di‐ubiquitin. This was confirmed by pull‐down analyses using RAP80‐UIM1‐UIM2 mutants of various length inter‐UIM regions. Further, we show that the Epsin1 tandem UIM, which has an inter‐UIM region similar to that of RAP80‐UIM1‐UIM2, also selectively binds Lys 63‐linked di‐ubiquitin.  相似文献   

16.
Ubiquitylation is used to target proteins into a large number of different biological processes including proteasomal degradation, endocytosis, virus budding, and vacuolar protein sorting (Vps). Ubiquitylated proteins are typically recognized using one of several different conserved ubiquitin binding modules. Here, we report the crystal structure and ubiquitin binding properties of one such module, the ubiquitin-interacting motif (UIM). We found that UIM peptides from several proteins involved in endocytosis and vacuolar protein sorting including Hrs, Vps27p, Stam1, and Eps15 bound specifically, but with modest affinity (Kd = 0.1-1 mm), to free ubiquitin. Full affinity ubiquitin binding required the presence of conserved acidic patches at the N and C terminus of the UIM, as well as highly conserved central alanine and serine residues. NMR chemical shift perturbation mapping experiments demonstrated that all of these UIM peptides bind to the I44 surface of ubiquitin. The 1.45 A resolution crystal structure of the second yeast Vps27p UIM (Vps27p-2) revealed that the ubiquitin-interacting motif forms an amphipathic helix. Although Vps27p-2 is monomeric in solution, the motif unexpectedly crystallized as an antiparallel four-helix bundle, and the potential biological implications of UIM oligomerization are therefore discussed.  相似文献   

17.
Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein   总被引:8,自引:2,他引:6  
Epsin 1 engages several core components of the endocytic clathrin coat, yet the precise mode of operation of the protein remains controversial. The occurrence of tandem ubiquitin-interacting motifs (UIMs) suggests that epsin could recognize a ubiquitin internalization tag, but the association of epsin with clathrin-coat components or monoubiquitin is reported to be mutually exclusive. Here, we show that endogenous epsin 1 is clearly an integral component of clathrin coats forming at the cell surface and is essentially absent from caveolin-1-containing structures under normal conditions. The UIM region of epsin 1 associates directly with polyubiquitin chains but has extremely poor affinity for monoubiquitin. Polyubiquitin binding is retained when epsin synchronously associates with phosphoinositides, the AP-2 adaptor complex and clathrin. The enrichment of epsin within clathrin-coated vesicles purified from different tissue sources varies and correlates with sorting of multiubiquitinated cargo, and in cultured cells, polyubiquitin, rather than non-conjugable monoubiquitin, promotes rapid internalization. As epsin interacts with eps15, which also contains a UIM region that binds to polyubiquitin, epsin and eps15 appear to be central components of the vertebrate poly/multiubiquitin-sorting endocytic clathrin machinery.  相似文献   

18.
GGAs (Golgi-localizing, gamma-adaptin ear domain homology, ADP-ribosylation factor (ARF)-binding proteins), constitute a family of monomeric adaptor proteins and are associated with protein trafficking from the trans-Golgi network to endosomes. Here, we show that GGA3 is monoubiquitylated by a RING-H2 type-ubiquitin ligase hVPS18 (human homologue of vacuolar protein sorting 18). By in vitro ubiquitylation assays, we have identified lysine 258 in the GAT domain as a major ubiquitylation site that resides adjacent to the ubiquitin-binding site. The ubiquitylation is abolished by a mutation in either the GAT domain or ubiquitin that disrupts the GAT-ubiquitin interaction, indicating that the ubiquitin binding is a prerequisite for the ubiquitylation. Furthermore, the GAT domain ubiquitylated by hVPS18 no longer binds to ubiquitin, indicating that ubiquitylation negatively regulates the ubiquitin-binding ability of the GAT domain. These results suggest that the ubiquitin binding and ubiquitylation of GGA3-GAT domain are mutually inseparable through a ubiquitin ligase activity of hVPS18.  相似文献   

19.
Epsin is a key molecule in receptor-mediated endocytosis. Epsin is phosphorylated and ubiquitinated, and these post-translational modifications are necessary for the regulation of endocytosis. Since human Epsin (hEpsin) has two ubiquitin-interacting motifs (UIMs), we investigated the roles of these UIMs in endocytosis. hEpsin formed a complex with ubiquitinated proteins but did not bind to monoubiquitin. Neither of the two UIMs of hEpsin alone was sufficient to form a complex with ubiquitinated proteins: both UIMs were necessary. Mutations of Asp209 and Asp210 to Ala in UIM (hEpsinDA) abolished the binding activity of hEpsin to ubiquitinated proteins. However, hEpsinDA interacted with Eps15, POB1, and AP-2, which are involved in receptor-mediated endocytosis, as efficiently as wild-type hEpsin. Expression of hEpsinDA in CHO-IR cells affected neither the binding of insulin to nor insulin-dependent autophosphorylation of its receptor. Expression of wild-type hEpsin inhibited the internalization of insulin, whereas that of hEpsinDA did not. These results suggest that the UIM motifs of hEpsin interact with proteins modified with ubiquitin, and that the complex formation is involved in insulin-dependent receptor endocytosis.  相似文献   

20.
Many proteins contain ubiquitin-binding domains or motifs (UBDs), such as the UIM (ubiquitin-interacting motif) and are referred to as ubiquitin receptors. Ubiquitin receptors themselves are frequently monoubiquitinated by a process that requires the presence of a UBD and is referred to as coupled monoubiquitination. Using a UIM-containing protein, eps15, as a model, we show here that coupled monoubiquitination strictly depends on the ability of the UIM to bind to monoubiquitin (mUb). We found that the underlying molecular mechanism is based on interaction between the UIM and a ubiquitin ligase (E3), which has itself been modified by ubiquitination. Furthermore, we demonstrate that the in vivo ubiquitination of members of the Nedd4 family of E3 ligases correlates with their ability to monoubiquitinate eps15. Thus, our results clarify the mechanism of coupled monoubiquitination and identify the ubiquitination of E3 ligases as a critical determinant in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号