首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The cholinesterase inhibitor neostigmine indirectly stimulates muscarinic M(1)/M(2)/M(3) receptors, thereby reducing colonic distension in acute colonic pseudo-obstruction. We investigated the dose-response profile for the colonic sensorimotor effects of neostigmine and bethanechol, a direct muscarinic M(2)/M(3) agonist in humans. A barostat-manometric assembly recorded phasic pressures, tone, and pressure-volume relationships (compliance) in the descending colon and rectum of 30 healthy subjects who received intravenous neostigmine (0.25, 0.75, or 1.5 mg; n = 15) or subcutaneous bethanechol (2.5, 5, or 10 mg; n = 15). Sensation to luminal distension was also assessed. Thereafter, the effects of neostigmine and bethanechol on colonic transit (geometric center) were compared with those of saline by scintigraphy in 21 subjects. Both drugs increased colonic phasic pressure activity, reduced rectal compliance, and enhanced urgency during rectal distension. Neostigmine also reduced colonic and rectal balloon volumes, reflecting increased tone by an average of 12% and 25% for the highest dose, respectively. Only neostigmine reduced colonic compliance, accelerated colonic transit [mean geometric center at 90 min 2.5 vs. 1.0 (placebo)], and increased pain perception during colonic distension. We conclude that neostigmine has more prominent colonic motor and sensory effects than bethanechol. Moreover, neostigmine induces coordinated colonic propulsion, perhaps by stimulating muscarinic M(1) receptors in the myenteric plexus.  相似文献   

2.
Alterations in normal intestinointestinal reflexes may be important contributors to the pathophysiology of irritable bowel syndrome (IBS). Our aims were to compare the rectal tonic responses to colonic distension in female IBS patients with predominant constipation (IBS-C) and with predominant diarrhea (IBS-D) to those in healthy females, both fasting and postprandially. Using a dual barostat assembly, 2-min colonic phasic distensions were performed during fasting and postprandially. Rectal tone was recorded before, during, and after the phasic distension. Colonic compliance and colonic sensitivity in response to the distension were also evaluated fasting and postprandially. Eight IBS-C patients, 8 IBS-D patients, and 8 age- and sex-matched healthy subjects (group N) participated. The fasting increments in rectal tone in response to colonic distension in both IBS-C (rectal balloon volume change -4.6 +/- 6.1 ml) and IBS-D (-7.9 +/- 4.9 ml) were significantly reduced compared with group N (-34 +/- 9.7 ml, P = 0.01). Similar findings were observed postprandially (P = 0.02). When adjusted for the colonic compliance of individual subjects, the degree of attenuation in the rectal tonic response in IBS compared with group N was maintained (fasting P = 0.007; postprandial P = 0.03). When adjusted for colonic sensitivity there was a trend for the attenuation in the rectal tonic response in IBS patients compared with group N to be maintained (fasting P = 0.07, postprandial P = 0.08). IBS patients display a definite attenuation of the normal increase in rectal tone in response to colonic distension (colorectal reflex), fasting and postprandially. Alterations in colonic compliance and sensitivity in IBS are not likely to contribute to such attenuation.  相似文献   

3.
Tonic reflexes in the colon and rectum are likely to be important in health and in disorders of gastrointestinal function. The aim of this study was to evaluate the fasting and postprandial "colorectal" and "rectocolic" reflexes in response to 2-min isobaric distensions of the colon and rectum, accounting for enteric sensation, compliance, and distending balloon volume. In 14 healthy fasting subjects, a dual barostat assembly was positioned (descending colon and rectum). A 2-min phasic distension was performed in the colon and rectum in random order while the opposing balloon volume was recorded. Sensation (phasic distension) and compliance (ramp distension) were also determined. The experiment was repeated postprandially. Colonic distension resulted in significant rectal tonic contraction in the fasting (rectal volume change: -35.4 +/- 8.4 ml, P < 0.01) and postprandial (-22.2 +/- 8.4 ml, P < 0.01) states. After adjustment for colonic sensitivity, for compliance, and for distending balloon volume, the rectal volume change remained significant; the extent of the tonic response, however, correlated significantly with increasing pain score (P < 0.01). In contrast, rectal distension did not produce a significant tonic response in the colon (fasting: -6.5 +/- 7.3 ml; postprandial: 2.7 +/- 7.3 ml), either unadjusted or adjusted for rectal sensitivity, compliance, and distending balloon volume. In conclusion, the colorectal reflex, but not the rectocolic reflex, can be readily demonstrated both before and after a meal in response to a 2-min isobaric distension in the colon and rectum, respectively. Although the presence of the colorectal reflex does not depend on colonic sensitivity or the volume of the distending colonic balloon, these factors modulate the reflex, especially in the fasting state.  相似文献   

4.
To compare the effects of the kappa-opioid agonist asimadoline and placebo on visceral sensation and gastrointestinal (GI) motor functions in humans, 91 healthy participants were randomized in a double-blind fashion to 0.15, 0.5, or 1.5 mg of asimadoline or placebo orally twice a day for 9 days. We assessed satiation (nutrient drink test), colonic compliance, tone, perception of colonic distension (barostat), and whole gut transit (scintigraphy). Treatment effect was assessed by analysis of covariance. Asimadoline increased nutrient drink intake (P = 0.03). Asimadoline decreased colonic tone during fasting (P = 0.03) without affecting postprandial colonic contraction, compliance, or transit. Gas scores in response to colonic distension were decreased with 0.5 mg of asimadoline at low levels (8 mmHg above operating pressure) of distension (P = 0.04) but not at higher levels of distension. Asimadoline at 1.5 mg increased gas scores at 16 mmHg of distension (P = 0.03) and pain scores at distensions of 8 and 16 mmHg (P = 0.003 and 0.03, respectively) but not at higher levels of distension. Further studies of this compound in diseases with altered satiation or visceral sensation are warranted.  相似文献   

5.
There is increased prevalence of abdominal pain and diarrhea and decreased gastric sensation with increased body mass index (BMI). Our hypothesis is that increased BMI is associated with increased colonic motility and sensation. The study aim was to assess effect of BMI on colonic sensory and motor functions and transit. We used a database of colonic tone, compliance, and perception of distensions measured by intracolonic, barostat-controlled balloon, and gastrointestinal transit was measured by validated scintigraphy in healthy obese and nonobese subjects. Regression analysis was applied to assess the association of BMI with colonic sensory and motor functions. We included adjustments for sex differences, age, height, balloon volumes during distension, and psychological stress. Among 165 participants (87 women, 78 men), increased BMI was associated with decreased colonic compliance (P < 0.006, adjusted), decreased pain rating during distensions (P = 0.02, adjusted), and a higher threshold for pain (P = 0.042, adjusted). Sensation for gas, colonic tone, and contraction after meal ingestion were not significantly associated with BMI. Transit was assessed in 72 participants (41 women, 31 men); colonic transit was faster with BMI >30 kg/m(2) (P = 0.003 unadjusted, P = 0.08 adjusted for gender). In conclusion, BMI >25 kg/m(2) is associated with decreased colonic compliance and pain sensation; colonic transit is accelerated particularly with BMI >30 kg/m(2) in women. These data suggest that colonic dysfunction may contribute to diarrhea, but the cause of increased abdominal pain in obesity is not explained by the studies of colonic sensation and requires further study of afferent, spinal, and central mechanisms.  相似文献   

6.
We aimed to determine whether rectal distension and/or infusion of bile acids stimulates propagating or nonpropagating activity in the unprepared proximal colon in 10 healthy volunteers using a nasocolonic manometric catheter (16 recording sites at 7.5-cm spacing). Sensory thresholds and proximal colonic motor responses were assessed following rectal distension by balloon inflation and rectal instillation of chenodeoxycholic acid. Maximum tolerated balloon volume and the volume that stimulated a desire to defecate were both significantly (P < 0.01) reduced after rectal chenodeoxycholic acid. The frequency of colonic propagating pressure wave sequences decreased significantly in response to initial balloon inflations (P < 0.05), but the frequency doubled after subsequent chenodeoxycholic acid infusion (P < 0.002). Nonpropagating activity decreased after balloon inflation, was not influenced by acid infusion, and demonstrated a further decrease in response to repeat balloon inflation. We concluded that rectal chenodeoxycholic acid in physiological concentrations is a potent stimulus for propagating pressure waves arising in the proximal colon and reduces rectal sensory thresholds. Rectal distension inhibits all colonic motor activity.  相似文献   

7.
The human colon can dilate, often to life-threatening proportions. Our aim was to explore nitrergic mechanisms underlying colonic dilation in conscious dogs with enterically isolated ileocolonic loops either extrinsically innervated (n = 4) or extrinsically denervated (n = 4). We recorded phasic pressures in ileum and ileocolonic sphincter (ICS), colonic tone, compliance, and relaxation during ileal distension. By NADPH-diaphorase histochemistry, we assessed effects of extrinsic denervation and enteric isolation on nitrergic fibers. Extrinsic denervation increased phasic pressures in ileum, ICS, and colon and abolished ICS and colonic relaxation in response to ileal distension. The nitric oxide synthase (NOS) inhibitor N(omega)-nitro-L-arginine (L-NNA) increased phasic pressures at all sites and ICS tone but did not abolish colonic relaxation during ileal distension in innervated loops. L-NNA reduced compliance and induced colonic high-amplitude propagated contractions in denervated loops. The NOS substrate donor L-arginine reversed effects of L-NNA. The number of NADPH-diaphorase fibers increased in both enterically isolated preparations. Nonnitrergic extrinsic nerve pathways mediate reflex colonic relaxation during ileal distension. Enteric isolation augments the number of NOS fibers, an effect not modified by extrinsic denervation.  相似文献   

8.
We previously showed that slow-ramp rectal distensions induce graded inhibitions of the somatic nociceptive RIII reflex recorded from the lower limb, which correlated with both distension volume and visceral sensation. In contrast, rapid phasic rectal distensions induced facilitatory or biphasic effects (i.e., facilitations followed by inhibitions) depending on the level of distension. To examine the role of mucosal and serosal rectal mechanoreceptors in these viscerosomatic interactions, we analyzed, in six healthy volunteers, the effects of both types of rectal distension on the RIII reflex after topical application of lidocaine or placebo administered in a double-blind and crossover fashion. Inhibitions of the RIII reflex induced by both slow-ramp and rapid distensions were strongly reduced after administration of lidocaine but not after placebo. In contrast, facilitations of the RIII reflex observed during the initial phase of rapid distensions were not modified after lidocaine or placebo applications. These results suggest that inhibitions, but not facilitations, of the nociceptive RIII reflex triggered by rectal distensions depend preferentially on the activation of superficial mucosal receptors. This reflexologic technique might thus represent an interesting tool for studying the role of the different rectal mechanoreceptors involved in visceral sensations.  相似文献   

9.
The aim of the present study was to analyze the neuromodulation of rectoanal reflex activity by lumbar sympathetic nerves in guinea pigs. The mechanical activities of the rectum were recorded with a balloon connected to a pressure transducer, and those of the internal anal sphincter (IAS) were recorded with a custom-made strain gauge force transducer. Gradual and sustained rectal distension evoked the rectoanal reflex, causing cholinergic contractions of the rectum and synchronous nitrergic relaxations of the IAS. Section of the lumbar colonic nerves enhanced both rectal contractions and IAS relaxations. Section of the 13th thoracic cord abolished both rectal contractions and IAS relaxations, but section of the lumbar colonic nerves restored them. Lumbar sympathectomy and pithing sacral cords greatly diminished these rectal contractions and IAS relaxations, but the intrinsic reflex component remained. NG-nitro-L-arginine methyl ester enhanced the intrinsic reflex-mediated contraction of the rectum and abolished reflex-mediated relaxation of the IAS and converted into cholinergic contractions. The present results indicate that the extrinsic lumbar inhibitory outflow causes marked inhibition of the rectoanal reflex via the lumbar colonic nerves.  相似文献   

10.
The rate and pattern of rectal distension affect rectal distensibility, perception, and anal relaxation in health. Because rectal urgency is a prominent symptom in fecal incontinence (FI), we assessed rectal distensibility, contractions, perception, and anal pressures during rectal distention in 21 healthy, asymptomatic women (age 61 +/- 2 yr, mean +/- SE) and 51 women with FI (60 +/- 2 yr). Rectal staircases (0-32 mmHg, 4-mm steps) and ramp distensions [0-200 ml at 25, 50, and 100 ml/min with a phase of sustained distension (SD), lasting 1 min, between inflation and deflation]. The rectum was stiffer during rapid than slow ramp distention. This effect was more prominent at a lower volume (50 ml) and was also more pronounced in older subjects and in FI. A rectal contractile response was observed not only during inflation but also during SD and during deflation. During inflation, this contractile response was rate dependent in controls but not in FI. During staircase but not ramp distentions, the threshold for the desire to defecate was lower in FI. During ramp distentions, the duration of perception was significantly longer in FI. The rate of distention did not affect rectal perception (i.e., sensory thresholds or duration of perception) during ramp distentions. Baseline anal pressures and the magnitude of anal relaxation during rectal distention were also reduced in FI. In addition to reduced rectal capacity and compliance, women with FI had an exaggerated rate-dependent reduction in rectal distensibility, lower sensory thresholds, and more prolonged perception, indicative of rectoanal dysfunctions.  相似文献   

11.
Cannabinoid receptors (CBR) are located on cholinergic neurons in the brain stem, stomach, and colon. CBR stimulation inhibits motility in rodents. Effects in humans are unclear. Dronabinol (DRO), a nonselective CBR agonist, inhibits colonic motility and sensation. The aim of this study was to compare effects of DRO and placebo (PLA) on colonic motility and sensation in healthy volunteers. Fifty-two volunteers were randomly assigned (double-blind) to a single dose of 7.5 mg DRO or PLA postoperative with concealed allocation. A balloon-manometric assembly placed into the descending colon allowed assessment of colonic compliance, motility, tone, and sensation before and 1 h after oral ingestion of medication, and during fasting, and for 1 h after 1,000-kcal meal. There was an overall significant increase in colonic compliance (P = 0.045), a borderline effect of relaxation in fasting colonic tone (P = 0.096), inhibition of postprandial colonic tone (P = 0.048), and inhibition of fasting and postprandial phasic pressure (P = 0.008 and 0.030, respectively). While DRO did not significantly alter thresholds for first gas or pain sensation, there was an increase in sensory rating for pain during random phasic distensions at all pressures tested and in both genders (P = 0.024). In conclusion, in humans the nonselective CBR agonist, DRO, relaxes the colon and reduces postprandial colonic motility and tone. Increase in sensation ratings to distension in the presence of relaxation of the colon suggests central modulation of perception. The potential for CBR to modulate colonic motor function in diarrheal disease such as irritable bowel syndrome deserves further study.  相似文献   

12.
Conscious sensations in response to gut distensions may be modulated by temporospatial interactions among different stimuli. This study investigated whether symptoms induced by gastric distension may be modified by hydrochloric acid (HCl) gastric infusion and meal ingestion. In nine healthy subjects, fixed pressure (isobaric) and fixed volume (isovolumetric) distensions were performed during continuous (4 ml/min) intragastric saline or HCl infusion, during fasting and after meal ingestion, until the maximal distension step defined as discomfort or a predefined maximal volume. During fasting isobaric distensions, the maximal distension step was significantly decreased during HCl compared with saline. The intragastric volumes were not significantly different, but the wall tension was significantly lower during HCl than saline. HCl increased gastric compliance. Meal ingestion relaxed the stomach and decreased the pressure at the maximal distension step during saline, but HCl did not further decrease it compared with fasting. During isovolumetric distensions, HCl also increased gastric compliance, but in both fasted and fed states it did not modify the maximal distension steps. In conclusion, sensations in response to gastric isobaric distensions, but not to isovolumetric distensions, are influenced by gastric acid infusion and meal ingestion. The effects of HCl might be related to a sensitization of mucosal mechanoreceptors.  相似文献   

13.
Study of the mechanism of rectal motility: the 'mass squeeze contraction'   总被引:3,自引:0,他引:3  
The motor physiology of the rectum has remained largely obscure, especially concerning the mechanism of rectal motility. In the current communication we tested the possibility of characterizing the mechanism of rectal motility during filling and evacuation through the study of the rectal electric activity in 16 healthy volunteers (mean age 43.6 +/- 10.8 years; 11 men). Two monopolar silver-silver chloride electrodes were introduced per annum and fixed to the rectal mucosa by suction. The rectum was distended in 10 ml increments of water by means of a balloon-ended catheter inserted into the rectum. The rectal pressure was measured by one catheter placed above and a second one below the rectal balloon, and the 2 catheters were connected to 2 strain gauge pressure transducers. Regular triphasic slow waves or pacesetter potentials (PPs) were recorded from the 2 electrodes at rest. PPs were superimposed or followed randomly by action potentials (APs). APs but not PPs were coupled with elevated rectal pressure. Rectal distension with 10 ml of water caused no significant changes of the rectal pressure or EMG activity. Distension with a mean volume of 27.3 +/- 4.7 ml effected a significant increase (p < 0.05) of the rectal electromechanical activity proximally to the balloon and a decrease distally (p < 0.05) to it. With progressive increase of the rectal distension, the electromechanical activity continued to increase proximally and to decrease distally to the balloon, until, at a mean distending volume of 76.3 +/- 3.7 ml, the balloon was dispelled to the exterior. In conclusion, the identification of the modality of rectal motility during defecation was feasible by recording the rectal electromechanical activity. The rectal contraction is suggested to occur in a 'mass squeeze manner' which squeezes the rectal contents aborally into the anal canal. The recognition of the rectal motor modality appears to be important for the understanding of rectal motility disorders. However, further studies are required to confirm these findings.  相似文献   

14.
In irritable bowel syndrome (IBS) patients, the relationship between sex and sensitivity to visceral stimuli is incompletely understood. Our aim was to evaluate the effect of sex on perceptual responses to visceral stimulation in IBS. Fifty-eight IBS patients (mean age 42+/-1 yr; 34 men, 24 women) and 26 healthy controls (mean age 38+/-3 yr; 9 men, 17 women) underwent barostat-assisted distensions of the rectum and sigmoid colon. Rectal discomfort thresholds were measured using a randomized, phasic distension paradigm before and after repeated noxious sigmoid stimulation (SIG, 60-mmHg pulses). Sex had a significant effect on rectal discomfort thresholds. Women with IBS were the most sensitive (lower thresholds [27+/-2.7 mmHg] and higher ratings), with significantly lower rectal discomfort thresholds compared with men with IBS (38+/-2.3 mmHg) and healthy women who were the least sensitive (41.9+/-3.2 mmHg; both P<0.01). There were no significant differences in rectal discomfort thresholds between healthy men (34+/-4.3 mmHg) and men with IBS. Across both IBS and control groups, women demonstrated a significant lowering of discomfort thresholds after noxious sigmoid stimulation (P<0.01), while men did not. Sex significantly influences perceptual sensitivity to rectosigmoid distension. Women show greater perceptual responses to this paradigm.  相似文献   

15.
Animal studies have demonstrated that visceral afferent stimulation alters autonomic cardiovascular reflexes. This mechanism might play an important role in the pathophysiology of conditions associated with visceral hypersensitivity, such as irritable bowel syndrome (IBS). As such, studies in humans are lacking, we measured viscerosensory-cardiovascular reflex interactions in IBS patients and healthy controls. Systolic blood pressure (SBP), heart rate (HR), and arterial baroreflex sensitivity (BRS) were studied in 87 IBS patients and 36 healthy controls under baseline conditions and during mild (15 mmHg) and intense (35 mmHg) visceral stimulation by rectal balloon distension. BRS was computed from continuous ECG and arterial blood pressure signals (Finapres-method) during 5-min periods of 15-min metronome respiration. Baseline SBP and HR were not different between patients and controls. In both groups, SBP increased similarly during rectal stimulation, whereas HR decreased during mild and increased intense stimulation. BRS was significantly higher in patients compared with controls at baseline (7.9 +/- 5.4 vs. 5.7 +/- 3.7 ms/mmHg, P = 0.03) and increased significantly in both groups during mild stimulation. This increase persisted in controls during intense stimulation, but BRS returned to baseline in patients. BRS was not significantly different between groups during rectal distension. This study demonstrates the presence of a viscerosensory-cardiovascular reflex in healthy individuals and in IBS patients. The increased BRS in IBS patients at baseline may either be a training-effect (frequent challenging of the reflex) or reflects altered viscerosensory processing at the nucleus tractus solitarii.  相似文献   

16.
Distal gastric distension may contribute to meal-related dyspeptic symptoms. This study's aims were to determine the effects of distinct nutrient classes on symptoms induced by distal gastric distension and their dependence on 5-hydroxytryptamine(3) (5-HT3) receptors. Nine healthy subjects rated pain, nausea, and bloating induced by isobaric distal gastric distensions (6-24 mmHg) during duodenal lipid, carbohydrate, protein, or saline perfusion after treatment with placebo or the 5-HT3 receptor antagonist granisetron (10 microg/kg iv). Distensions produced greater pain, nausea, and bloating with lipid at 1.5 kcal/min compared with saline (P < or = 0.02), primarily because of greater distal gastric volumes at each distending pressure. In contrast, carbohydrate and protein had no significant effect. At 3 kcal/min, lipid increased symptoms through a volume-independent as well as a volume-dependent effect. Granisetron did not affect symptom perception or gastric pressure-volume relationships. In conclusion, isobaric distal gastric distension produces more intense symptoms during duodenal lipid compared with saline perfusion. Symptom perception during distal gastric distension is unaffected by 5-HT3 receptor antagonism.  相似文献   

17.
The purpose of this study was to determine if tonic restrain of blood pressure by nitric oxide (NO) is impaired early in the development of hypertension. Impaired NO function is thought to contribute to hypertension, but it is not clear if this is explained by direct effects of NO on vascular tone or indirect modulation of sympathetic activity. We determined the blood pressure effect of NO synthase inhibition with N(ω)-monomethyl-l-arginine (L-NMMA) during autonomic blockade with trimethaphan to eliminate baroreflex buffering and NO modulation of autonomic tone. In this setting, impaired NO modulation of vascular tone would be reflected as a blunted pressor response to L-NMMA. We enrolled a total of 66 subjects (39 ± 1.3 yr old, 30 females), 20 normotensives, 20 prehypertensives (blood pressure between 120/80 and 140/90 mmHg), 17 hypertensives, and 9 smokers (included as "positive" controls of impaired NO function). Trimethaphan normalized blood pressure in hypertensives, suggesting increased sympathetic tone contributing to hypertension. In contrast, L-NMMA produced similar increases in systolic blood pressure in normal, prehypertensive, and hypertensive subjects (31 ± 2, 32 ± 2, and 30 ± 3 mmHg, respectively), whereas the response of smokers was blunted (16 ± 5 mmHg, P = 0.012). Our results suggest that sympathetic activity plays a role in hypertension. NO tonically restrains blood pressure by ~30 mmHg, but we found no evidence of impaired modulation by NO of vascular tone contributing to the early development of hypertension. If NO deficiency contributes to hypertension, it is likely to be through its modulation of the autonomic nervous system, which was excluded in this study.  相似文献   

18.
Pregabalin, an α2δ ligand, is used clinically to treat somatic pain. A prior study suggested that pregabalin reduces distension-induced pain while increasing rectal compliance. We aimed to quantify effects of pregabalin on colonic sensory and motor functions and assess relationships between sensory effects and colonic compliance. We conducted a randomized, double-blind, placebo-controlled, parallel-group study of a single oral administration of 75 or 200 mg of pregabalin in 62 healthy adults (aged 18-75 yr). Subjects underwent left colon intubation. We assessed "stress-arousal symptoms", compliance, sensation thresholds, sensation ratings averaged over four levels of distension, fasting and postprandial colonic tone, and phasic motility index (MI). Analysis of covariance (adjusted for age, sex, body mass index, and corresponding predrug response) and proportional hazard models were used. There were no clinically important differences among treatment groups for demographics, predrug compliance, tone, MI, and sensation. Treatment was associated with reduced energy and increased drowsiness but no change in tension or relaxation. Sensation ratings averaged over the four distension levels were lower for gas sensation [overall effect P = 0.14, P = 0.05 (pregabalin 200 mg vs. placebo)] and for pain sensation [overall effect P = 0.12, P = 0.04 (pregabalin 200 mg vs. placebo)]. The magnitude of the effect of 200 mg of pregabalin relative to placebo is on average a 25% reduction of both gas and pain sensation ratings. Pregabalin did not significantly affect colonic compliance, sensation thresholds, colonic fasting tone, and MI. Thus 200 mg of pregabalin reduces gas and pain sensation and should be tested in patients with colonic pain.  相似文献   

19.
The reflex effects of left ventricular distension on venous return, vascular capacitance, vascular resistance, and sympathetic efferent nerve activity were examined in dogs anesthetized with sodium pentobarbital. In addition, the interaction of left ventricular distension and the carotid sinus baroreflex was examined. Vascular capacitance was assessed by measuring changes in systemic blood volume, using extracorporeal circulation with constant cardiac output and constant central venous pressure. Left ventricular distension produced by balloon inflation caused a transient biphasic change in venous return; an initial small increase was followed by a late relatively large decrease. Left ventricular distension increased systemic blood volume by 3.8 +/- 0.6 mL/kg and decreased systemic blood pressure by 27 +/- 2 mmHg (1 mmHg = 133.3 Pa) at an isolated carotid sinus pressure of 50 mmHg. These changes were accompanied by a simultaneous decrease in sympathetic efferent nerve activity. When the carotid sinus pressure was increased to 125 and 200 mmHg, these responses were attenuated. It is suggested that left ventricular mechanoreceptors and carotid baroreceptors contribute importantly to the control of venous return and vascular capacitance.  相似文献   

20.
Background and aimsTo be able to characterize intestinal mechano-electrical transduction, i.e. the mechanoreceptor behaviour, quantitative nerve studies with controlled and quantified stimulus are needed. This study aimed to determine the relationship between mechanical stress relaxation and afferent discharge adaptation evoked by fast isovolumetric bag distensions in the rat jejunum.MethodsMultiunit afferent activity was recorded in vivo from jejunum afferents from five male Wistar rats. The jejunum was distended via a bag at a distension speed of 0.5 ml/s to volumes of 0.2, 0.25, 0.3 and 0.4 ml, respectively. The distension was stopped and the volume was kept constant for 2 min to induce stress relaxation. The pressure in the bag, the afferent discharge (spike rate) and the diameter of the segment during the relaxation time were recorded simultaneously.ResultsThe afferent discharge responses to distension showed a pattern with a peak during the sudden loading followed by decreasing activity with time. At distension volumes of 0.2, 0.25, 0.3 and 0.4 ml, the afferent discharge declined faster and to a greater extent (94%, 91%,96% and 87%) than the stress decreased (55%, 45%, 59% and 56%) during stress relaxation (p<0.001). Both the stress and the afferent discharge during the constant volume distension were independent of the distension volumes (p>0.5). The stress and the afferent discharge during the distension can be described mathematically on the basis of the quasi-linear theory of viscoelasticity. The association between the stress and the afferent discharge during the constant volume distension is linear with the same slope under various distension volumes.ConclusionsIntestinal mechanoreceptors were sensitive to the stress stimulus and a linear association between the stress relaxation and afferent discharge adaptation was found. The quasi-linear theory of visco-elasticity can be transferred to analysis of mechanical stimulus evoked afferent discharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号