首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In 1973 tobacco mosaic virus (TMV) strain M II-16 was successfully used by growers in the United Kingdom to protect commercial tomato crops against the severe effects of naturally occurring strains of TMV. However, plants in many crops had mosaic leaf symptoms which were occasionally severe, so possible reasons for symptom appearance were examined. The concentration of the mutant strain in commercially produced inocula (assessed by infectivity and spectrophotometry) ranged from 28 to 1220 μg virus/ml; nevertheless all samples contained sufficient virus to infect a high percentage of inoculated tomato seedlings. Increasing the distance between the plants and the spray gun used for inoculation from 5 to 15 cm resulted in a significant decrease in the number of tomato seedlings infected. When M II-16 infected tomato plants were subsequently inoculated with each of fifty-three different isolates of TMV, none showed severe symptoms of the challenging isolates within 4 wk, although some isolates of strain o induced atypically mild leaf symptoms. In a further experiment, M II-16 infected plants showed conspicuous leaf symptoms only 7 wk after inoculation with a virulent TMV isolate. M II-16 multiplied more slowly in tomato plants and had a lower specific infectivity than a naturally occurring strain of TMV. More than 50% of plants in crops inoculated with strain M II-16 which subsequently showed conspicuous leaf mosaic contained TMV strain 1 or a form intermediate between strains o and 1. It is suggested that the production of TMV symptoms in commercial crops previously inoculated with strain M II-16 may result from an initially low level of infection, due to inefficient inoculation, which allows subsequent infection of unprotected plants by virulent strains. Incomplete protection by strain M II-16 against all naturally occurring strains may also be an important factor.  相似文献   

2.
《Journal of Asia》2022,25(3):101971
The symbiotic relationship between plants and arbuscular mycorrhizal fungi (AMF) improves plant growth and increases its resistance to pests and diseases. Mycorrhizal fungi are among the specialized fungi associated with the rhizosphere and are completely dependent on plant organic carbon. In this research tomato, Solanum lycopersicum L. was used as the host plant to evaluate the interaction effects between inoculation of tomato plant with AMF and feeding of tomato leaf miner, Tuta absoluta (Meyrick). In addition, plant growth parameters and growth rate of insect were assessed. The mycorrhizal treatment included a mixture of four fungal species (Funneliformis mosseae, Rhizophagus intraradices, R. irregularis and Glomus iranicus). The results of the experiment showed that tomato plant roots were well colonized (66.29%) by AMF and there was a significant mutual relationship between the insects feeding on the plants and the fungi. Feeding by the insects on plants inoculated with the fungus increased percentage of colonization by AMF in plants infested with the insect as compared to the control plants. The results also indicated that growth parameters and phosphorus content of the plants inoculated with fungi significantly increased compared to the control group. Moreover, significantly lower growth rate and consumption index observed in the T. absoluta larvae were fed on the leaves of plants treated with AMF compared to leaves of plants not inoculated with AMF.  相似文献   

3.
The role of flagellar motility in determining the epiphytic fitness of an ice-nucleation-active strain of Pseudomonas syringae was examined. The loss of flagellar motility reduced the epiphytic fitness of a normally motile P. syringae strain as measured by its growth, survival, and competitive ability on bean leaf surfaces. Equal population sizes of motile parental or nonmotile mutant P. syringae strains were maintained on bean plants for at least 5 days following the inoculation of fully expanded primary leaves. However, when bean seedlings were inoculated before the primary leaves had expanded and bacterial populations on these leaves were quantified at full expansion, the population size of the nonmotile derivative strain reached only 0.9% that of either the motile parental or revertant strain. When fully expanded bean primary leaves were coinoculated with equal numbers of motile and nonmotile cells, the population size of a nonmotile derivative strain was one-third of that of the motile parental or revertant strain after 8 days. Motile and nonmotile cells were exposed in vitro and on plants to UV radiation and desiccating conditions. The motile and nonmotile strains exhibited equal resistance to both stresses in vitro. However, the population size of a nonmotile strain on leaves was less than 20% that of a motile revertant strain when sampled immediately after UV irradiation. Epiphytic populations of both motile and nonmotile P. syringae declined under desiccating conditions on plants, and after 8 days, the population size of a nonmotile strain was less than one-third that of the motile parental or revertant strain.  相似文献   

4.
Biotic stress like pathogenic infection increases ethylene biosynthesis in plants and ethylene inhibitors are known to alleviate the severity of plant disease incidence. This study aimed to reduce the bacterial spot disease incidence in tomato plants caused by Xanthomonas campestris pv. vesicatoria (XCV) by modulating stress ethylene with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity of Methylobacterium strains. Under greenhouse condition, Methylobacterium strains inoculated and pathogen challenged tomato plants had low ethylene emission compared to pathogen infected ones. ACC accumulation and ACC oxidase (ACO) activity with ACO related gene expression increased in XCV infected tomato plants over Methylobacterium strains inoculated plants. Among the Methylobacterium spp., CBMB12 resulted lowest ACO related gene expression (1.46 Normalized Fold Expression), whereas CBMB20 had high gene expression (3.42 Normalized Fold Expression) in pathogen challenged tomato. But a significant increase in ACO gene expression (7.09 Normalized Fold Expression) was observed in the bacterial pathogen infected plants. In contrast, Methylobacterium strains enhanced β-1,3-glucanase and phenylalanine ammonia-lyase (PAL) enzyme activities in pathogen challenged tomato plants. The respective increase in β-1,3-glucanase related gene expressions due to CBMB12, CBMB15, and CBMB20 strains were 66.3, 25.5 and 10.4% higher over pathogen infected plants. Similarly, PAL gene expression was high with 0.67 and 0.30 Normalized Fold Expression, in pathogen challenged tomato plants inoculated with CBMB12 and CBMB15 strains. The results suggest that ethylene is a crucial factor in bacterial spot disease incidence and that methylobacteria with ACC deaminase activity can reduce the disease severity with ultimate pathogenesis-related protein increase in tomato.  相似文献   

5.
The talc-based formulation of two Pseudomonas fluorescens strains (Pf1 and VPT10) and its mixture (with and without chitin) were tested against tomato leaf curl virus in tomato under greenhouse and field conditions. The mean percentage of tomato leaf curl virus infected plants were significantly lower (25%) with less symptom severity and delayed symptom expression up to nine additional days in Pseudomonas with chitin (VPT10 + chitin) treated tomato plants compared to non-bacterised control plants upon challenge inoculation with tomato leaf curl virus. Tomato leaf curl virus was partially purified and antiserum was developed. Using the antiserum the tomato leaf curl virus was detected in symptomatic leaves and in whitefly vector through direct antigen coating enzyme linked immunosorbent assay which revealed the low virus titre in Pseudomonas treated plants (VPT10 + chitin) and insect vector compared to untreated tomato plants. The results indicate the potentiality of plant growth promoting rhizobacteria strains and talc-powder formulations in the effective management of this tomato leaf curl virus in tomato under field conditions.  相似文献   

6.
Tumor Growth Complementation Among Strains of Agrobacterium   总被引:2,自引:1,他引:1       下载免费PDF全文
The ability of 31 strains of Agrobacterium to initiate the production of a tumor growth factor (TGF) which is associated with crown-gall tumors on primary pinto bean leaves was determined. Extracts from bean leaves inoculated with these bacteria were tested and they showed that 16 of the 19 strains that induced tumors on the leaves also initiated TGF production. The three strains for which no TGF was detected were of low infectivity and included two strains of A. tumefaciens and a strain of A. rhizogenes. Five of the 12 strains that did not induce pinto bean leaf tumors were found to initiate TGF production. Representatives of A. tumefaciens, A. rhizogenes, and A. radiobacter among these 12 strains were present in both categories. Mixed inocula composed of one of the three infectious TGF-negative strains and one of the five nontumorigenic TGF-positive strains resulted in increased growth of tumors induced by the former. These growth changes were not correlated with changes in tumor number. The ability of different strains to show these tumor growth complementation effects corresponded fully with their ability to initiate TGF, as determined by the assay of leaf extracts. The nontumorigenic TGF-positive strains also promoted the growth of tumors initiated by low concentrations of strain B6. These complementation effects were due, therefore, to the same TGF found in extracts of B6 inoculated leaves and of leaves inoculated with most tumorigenic as well as many nontumorigenic strains of Agrobacterium. Heat-inactivated cells of strain B6 failed to initiate sufficient TGF to be detected in extracts, and heat-inactivated cells of several strains failed to show tumor growth complementation, indicating bacterial viability to be one prerequisite for TGF initiation. Heat inactivated cells also inhibited TGF production by viable cells, similar to their ability to inhibit tumor initiation. Consequently, bacteria capable of attaching to the A. tumefaciens infection site may initiate one of four patterns of events: (i) TGF production only, (ii) tumor induction only, (iii) both, or (iv) neither. Suggestive evidence for a second tumor-associated growth factor is presented.  相似文献   

7.
Dramatic differences in the height of lima beans (Phaseolus lunatus L.) treated with two different Rhizobium strains were studied. Lima beans were grown in Perlite in the greenhouse or in a minus-N culture solution in the growth chamber. The plants were inoculated with either Rhizobium sp. (lima bean) strain 127E15, which contains the constitutive nitrate reductase activity, or strain 127E14, which lacks that activity. For up to 3 weeks, no growth differences were observed in the plants inoculated with either strain. Five weeks after inoculation, however, those plants inoculated with strain 127E14 were significantly taller and had a larger number of leaves than those inoculated with strain 127E15. The difference in plant height was the result of increased internode elongation caused by inoculation with Rhizobium sp. 127E14. This response was observed with all lima bean cultivars tested, including Henderson, Fordhook, Allgreen, and Early Thorogreen. The growth difference occurred in plants cultured in the greenhouse or in the growth chamber.  相似文献   

8.
Cucumber mosaic virus strains differed in their ability to multiply in plants at 37° C. Some strains multiplied in inoculated leaves and produced systemic symptoms in plants at this temperature; plants systemically infected with one such strain remained infected after prolonged treatment at 37° C. Other strains did not appear to multiply in inoculated leaves at 37° C. and heat treatment was successful in freeing plants from infection with these. Tests with one strain of each type showed both to be rapidly inactivated in expressed sap at 37° C.
Strains of cucumber mosaic virus forming small necrotic local lesions in leaves of french bean var. Canadian Wonder, produced many fewer lesions in plants kept after inoculation at 25° C. for 24 hr. and then at 15° C. than in plants kept continuously at the lower temperature.  相似文献   

9.
An assessment of 27 mutant tomato lines from four countries (Germany, USA, Russia, Bulgaria) was carried out for resistance to five Alternaria alternata strains under conditions of the South of Russia. Five strains of the A. alternata fungus were isolated from naturally infected plants selected in five agroclimatic zones of Krasnodar Krai: Central - strain 1, Western - strain 6, North - strain 11, South Foothill - strain 12, Chernomorskaya - strain 13. The assessment was carried out in the field during 2018–2020, in a greenhouse and under the laboratory conditions three times for each studied strain. In the field, the plants were treated every year with a spore suspension of A. alternata strain 1. Mutant lines obtained from the United States: 868, 663, 533, 544 and 898 showed the greatest resistance to Alternaria in 2018–2020, the lesion of which averaged 4.5–8.0% over three years. 13 mutant lines: 17, 40, 688, 722 (Germany), 311, 394, 418, 542, 728, 743, 917 (USA), 322 (Russia), 159 (Bulgaria) showed average resistance with the development of the disease 10.2–24.9% over three years of the research. Mutant lines 743, 663, 868, 544 obtained from the USA possessed relatively high resistance to all the studied strains under greenhouse conditions; moreover, no signs of damage with strains 1 and 11 were observed on Mo 868, signs of damage by strain 11 of A. alternata were not observed on Mo 743. Under laboratory conditions, mutant lines 663, 743, 868, obtained from the United States, were most resistant. Mo 663 showed resistance to strains 1, 13; line 743 - to strains 11, 12; line 868 - to strains 1, 11. There was a predominantly positive correlation between the results of field, greenhouse and laboratory assessments, which indicates a strong connection between them and the possibility of using these methods to assess the resistance of tomato samples to Alternaria independently of each other.  相似文献   

10.
Secondary tumours were formed on the cotyledonary leaf petiole,the hypocotyl, and first true leaf of castor bean seedlingsafter inoculating the blades of the cotyledonary leaves withAgrobacterium tumefaciens. Depending on the strain of bacteriaemployed, 0 to 80 per cent of the plants developed secondarytumours. The ability of different strains to initiate secondarytumours was not obviously correlated with their relative effectivenessin initiating primary tumours. Though all produced primary tumours,five out of ten auxotrophic strains failed to yield secondarytumours, whereas only one out of 14 prototrophic strains failedto do so. Both the number of plants developing secondary tumoursand the frequency with which these tumours occurred on differentparts of the plant were positively correlated with the concentrationof the primary inoculum. Tumours also developed on the cotyledonaryleaf petiole and on the hypocotyl after vacuum infiltrationof A. tumefaciens into the blade of cotyledonary leaves. Inmost instances (9 out of 11 plants) no tumours were formed onthe blade of the infiltrated leaf. Thus, tumour formation equivalentto secondary tumours can occur in the absence of a primary tumouror an overt primary wound. Excision of inoculated leaves showedthat the stimulus for secondary tumour formation moves fromthe blade to the hypocotyl within 24 h. Attempts to demonstratethe presence of a sub-cellular tumour-initiating agent in homogenatesof inoculated leaves were unsuccessful. A. tumefaciens, however,was found in the petiole of the cotyledonary leaf and in thehypocotyl within 24 h of inoculation. The migrating agent responsiblefor secondary tumour formation in castor beans is concludedto be intact bacteria.  相似文献   

11.
许珂  王萍  崔晓伟  张颖 《西北植物学报》2021,41(10):1673-1680
以籽用美洲南瓜(Cucurbita pepo L.)白粉病抗病品系F2和感病品系M3为试材,在人工气候箱内接种白粉病生理小种2US孢子悬浮液,考察在接种白粉病菌后南瓜幼苗植株与白粉病菌的互作、叶片活性氧代谢及保护酶活性的变化,探讨南瓜抵御白粉病的生理机制。结果表明:(1)与感病品系M3相比,接种白粉病菌后,抗病品系F2叶片上病原菌发育缓慢,较难侵染叶片。(2)抗病品系F2在感病初期叶片H2O2、O2-·含量迅速升高后逐渐下降,而感病品系在感病初期H2O2、O2-·含量上升缓慢,在达最大值后始终保持较高水平,且感病品系叶片MDA含量始终高于抗病品系;组织化学染色分析发现,抗病品系叶片着色比感病品系快,之后着色面积有所减少并趋于较低水平。(3)抗病品系F2和感病品系M3叶片抗氧化酶CAT、SOD、POD活性及PAL、PPO活性在接种白粉病菌后均显著增加,但抗病品系的活性及其增幅均高于感病品系。研究发现,籽用美洲南瓜抗病品系叶片上白粉病菌发育缓慢,较难受到侵染,生成菌丝体后叶片上粉状斑点较小;抗病品系在被白粉病菌侵染初期依靠活性氧的增加抵御病原菌的入侵,随着活性氧含量增加抗病品系通过迅速增加自身抗氧化酶活性来防止氧化胁迫;与感病品系相比,抗病品系在受病原菌侵染后能迅速增加PAL、PPO活性以抵御病原菌侵染。  相似文献   

12.
A crown-gall tumor growth factor (TGF-II) isolated from bean leaves inoculated with Agrobacterium tumefaciens strain 13333 is shown to be γ-aminobutyric acid (GABA). This identification is based on the comparative behavior of purified TGF-II and authentic GABA with respect to elution from preparative ion exchange and molecular sieve columns, ninhydrin reaction, TLC, co-chromatography on an automated amino acid analyzer, MS analysis and biological activity. GABA is detected by bioassay only in bean leaves infected with the bacterium and is in growth limiting supply when only a few tumors are present per leaf. GABA promotes tumor growth when as little as 1 ng is applied per leaf.  相似文献   

13.
The ability of several Bacillus thuringiensis strains to colonize plant surfaces was assessed and compared with that of more common epiphytic bacteria. While all B. thuringiensis strains multiplied to some extent after inoculation on bean plants, their maximum epiphytic population sizes of 106 cfu/g of leaf were always much less than that achieved by other resident epiphytic bacteria or an epiphytically fit Pseudomonas fluorescens strain, which attained population sizes of about 107 cfu/g of leaf. However B. thuringiensis strains exhibited much less decline in culturable populations upon imposition of desiccation stress than did other resident bacteria or an inoculated P. fluorescens strain, and most cells were in a spore form soon after inoculation onto plants. B. thuringiensis strains produced commercially for insect control were not less epiphytically fit than strains recently isolated from leaf surfaces. The growth of B. thuringiensis was not affected by the presence of Pseudomonas syringae when co-inoculated, and vice versa. B. thuringiensis strains harboring a green fluorescent protein marker gene did not form large cell aggregates, were not associated with other epiphytic bacteria, and were not found associated with leaf structures, such as stomata, trichomes, or veins when directly observed on bean leaves by epifluorescent microscopy. Thus, B. thuringiensis appears unable to grow extensively on leaves and its common isolation from plants may reflect immigration from more abundant reservoirs elsewhere.  相似文献   

14.
In order to identify novel traits involved in epiphytic colonization, a technique for the rapid identification of bacterial mutants with quantitatively different population sizes in a natural habitat based on measurements of ice nucleation activity was developed. The threshold freezing temperatures of leaves harboring different numbers of cells of ice nucleation-active Pseudomonas syringae B728a differed substantially. While few leaves containing less than about 106 cells per g (fresh weight) froze at assay temperatures of -2.75°C or higher, nearly all leaves froze at these temperatures when population sizes of this strain increased to about 107 cells per g (fresh weight). Presumptive epiphytic fitness mutants could readily be identified as strains which initiated freezing in fewer leaves than did other strains within a given experiment. Most Tn5-induced mutants of strain B728a which conferred a low frequency of ice nucleation on inoculated bean leaves generally had a smaller population size than the parental strain at the time of the leaf freezing assay. The leaf freezing assay was capable of differentiating samples which varied by approximately three- to fivefold in mean bacterial population size.  相似文献   

15.
The sterols from healthy bean leaves are β-sitosterol, stigmasterol, campesterol and 28-isofucosterol. An additional sterol observed in bean leaves infected with Uromyces phaseoli was identified as 7,(Z)-24(28)-stigmastadien-3β-ol, which is the major sterol of the uredospores of the fungus. The fungus appears to stimulate sterol synthesis, but most of the increased sterol content of infected leaves can be attributed to the sterol of the uredospores.  相似文献   

16.
The invasion and exclusion abilities of coexisting Pseudomonas syringae strains were quantified on leaves. Twenty-nine P. syringae strains were inoculated onto plants in 107 pairwise combinations. All pairs were duplicated so that each strain was inoculated both first as an antagonist strain (day 0) and second as a challenge strain (day 3). The population size of each strain in a mixture was quantified on day 6 following incubation under moist conditions. For P. syringae strains, the presence of an established population often significantly reduced the growth of subsequently arriving challenge strains on the leaf surface. Invasion and exclusion abilities, quantified by contrasting population sizes of challenge strains in the presence and in the absence of another strain, varied significantly among P. syringae strains and were partly a function of the particular strain pair. The population size of a strain when present alone on a leaf was not predictive of invasion or exclusion ability. Successful invaders were significantly less likely to exclude challenge populations than were nonsuccessful invaders. Population sizes of successful excluders were negatively correlated with population sizes of coexisting challenge strains, while population sizes of successful invaders were positively correlated with those of coexisting antagonist strains. The patterns of interaction among coexisting strains suggest mechanisms for successful invasion and exclusion among P. syringae strains on leaves.  相似文献   

17.
Pseudomonas syringae pv. tomato, the causal agent of bacterial speck of tomato, and the plant growth-promoting bacterium Azospirillum brasilense were inoculated onto tomato plants, either alone, as a mixed culture, or consecutively. The population dynamics in the rhizosphere and foliage, the development of bacterial speck disease, and their effects on plant growth were monitored. When inoculated onto separate plants, the A. brasilense population in the rhizosphere of tomato plants was 2 orders of magnitude greater than the population of P. syringae pv. tomato (107 versus 105 CFU/g [dry weight] of root). Under mist chamber conditions, the leaf population of P. syringae pv. tomato was 1 order of magnitude greater than that of A. brasilense (107 versus 106 CFU/g [dry weight] of leaf). Inoculation of seeds with a mixed culture of the two bacterial strains resulted in a reduction of the pathogen population in the rhizosphere, an increase in the A. brasilense population, the prevention of bacterial speck disease development, and improved plant growth. Inoculation of leaves with the mixed bacterial culture under mist conditions significantly reduced the P. syringae pv. tomato population and significantly decreased disease severity. Challenge with P. syringae pv. tomato after A. brasilense was established in the leaves further reduced both the population of P. syringae pv. tomato and disease severity and significantly enhanced plant development. Both bacteria maintained a large population in the rhizosphere for 45 days when each was inoculated separately onto tomato seeds (105 to 106 CFU/g [dry weight] of root). However, P. syringae pv. tomato did not survive in the rhizosphere in the presence of A. brasilense. Foliar inoculation of A. brasilense after P. syringae pv. tomato was established on the leaves did not alleviate bacterial speck disease, and A. brasilense did not survive well in the phyllosphere under these conditions, even in a mist chamber. Several applications of a low concentration of buffered malic acid significantly enhanced the leaf population of A. brasilense (>108 CFU/g [dry weight] of leaf), decreased the population of P. syringae pv. tomato to almost undetectable levels, almost eliminated disease development, and improved plant growth to the level of uninoculated healthy control plants. Based on our results, we propose that A. brasilense be used in prevention programs to combat the foliar bacterial speck disease caused by P. syringae pv. tomato.  相似文献   

18.

Background and aims

Six mutualistic endophytic fungi that are known to colonize the endorhiza have shown biological control properties against plant-parasitic nematodes. In this study we aim to investigate the potential of these endophytic fungi to reduce the phloem-feeding insect Trialeurodes vaporariorum (Westwood) on tomato.

Methods

To determine the host plant choice of T. vaporariorum, the total number of insects present on each plant was counted daily for 10 days, and then the second leaf below the shoot apex were examined for its chlorophyll content index (CCI).To separate and quantify the active compounds produced in the tomato leaves, a reversed phase high liquid chromatography (RP-HPLC) analysis was performed.

Principle results

A greenhouse choice test showed that Trichoderma atroviride strain MT-20, T. atroviride strain S-2 and Fusarium oxysporum strain 162 (Fo162) reduced the number of greenhouse whiteflies fifty percent when compared to the untreated control during ten days after insect release. The highest level of biocontrol activity was attained with Fo162. The strains MT20, S-2, and Fo162 all demonstrated acropedal induction of resistance to the insects. The isolate Fusarium sp. strain Bonn-7 enhanced plant growth. The negative effect on insect attraction to the leaves of the endophyte treated plants was not associated with leaf altered chlorophyll content. RP-HPLC analysis revealed that inoculation of the fungus Fo162 induced a change in the accumulation of specific organic compounds in the tomato leaves that could be the cause of insect repellence.

Conclusions

This study demonstrated the high potential of mutualintic endophytic fungi, in particular of Fo162, to induce resistance in tomato against the phloemfeeding T. vaporariorum.  相似文献   

19.
Beauveria bassiana: endophytic colonization and plant disease control   总被引:1,自引:0,他引:1  
Seed application of Beauveria bassiana 11-98 resulted in endophytic colonization of tomato and cotton seedlings and protection against plant pathogenic Rhizoctonia solani and Pythium myriotylum. Both pathogens cause damping off of seedlings and root rot of older plants. The degree of disease control achieved depended upon the population density of B. bassiana conidia on seed. Using standard plating techniques onto selective medium, endophytic 11-98 was recovered from surface-sterilized roots, stems, and leaves of tomato, cotton, and snap bean seedlings grown from seed treated with B. bassiana 11-98. As the rate of conidia applied to seed increased, the proportion of plant tissues from which B. bassiana 11-98 was recovered increased. For rapid detection of B. bassiana 11-98 in cotton tissues, we developed new ITS primers that produce a PCR product for B. bassiana 11-98, but not for cotton. In cotton samples containing DNA from B. bassiana11-98, the fungus was detected at DNA ratios of 1:1000; B. bassiana 11-98 was detected also in seedlings grown from seed treated with B. bassiana 11-98. Using SEM, hyphae of B. bassiana11-98 were observed penetrating epithelial cells of cotton and ramifying through palisade parenchyma and mesophyll leaf tissues. B. bassiana11-98 induced systemic resistance in cotton against Xanthomonas axonopodis pv. malvacearum (bacterial blight). In parasitism assays, hyphae of B. bassiana 11-98 were observed coiling around hyphae of Pythium myriotylum.  相似文献   

20.
Lima bean (Phaseolus lunatus L.) plants inoculated with Bradyrhizobium sp. strain 127E14 displayed a period of marked internode elongation that was not observed in plants inoculated with other compatible bradyrhizobia, including strain 127E15. When strain 127E14 nodulated an alternate host, cowpea (Vigna unguiculata L. Walp), a similar, although less dramatic growth response induced by the bacteria was observed. It has been speculated that the elongative growth promotion brought about by inoculation with strain 127E14 is mediated by gibberellins (GAs). Using deuterated internal standards and gas chromatography-mass spectroscopy analysis, we have quantified the levels of GA1, GA20, GA19, and GA44 in nodules and stems of two varieties of lima bean (bush and pole) and one variety of cowpea that were inoculated with either strain 127E14 or 127E15. In nodules formed by strain 127E14 on lima bean, endogenous levels of GA20 and GA19 were 10 to 40 times higher (35-88 ng/g dry weight) than amounts found in nodules formed by strain 127E15 (2.2-3.9 ng/g dry weight). Relative amounts of GA44 were also higher (4- to 11-fold) in 127E14 nodules, but this increase was less pronounced. The rhizobial-induced increase of these GAs in the nodule occurred in both pole and bush varieties and seemed to be independent of host morphology. Regardless of rhizobial inoculum, levels of the “bioactive” GA1 in the nodule (0.3-1.1 ng/g dry weight) were similar. In cowpea nodules, a similar, although smaller, difference in GA content due to rhizobial strain was observed. The concentration of GA1 in lima bean stems was generally higher than that observed in the nodule, whereas concentrations of the other GAs measured were lower. In contrast with the nodule, GA concentrations in lima bean stems were not greater in plants inoculated with strain 127E14, and in some cases the slower growing plants inoculated with strain 127E15 actually had higher levels of GA20, GA19, and GA44. Thus, there were major differences in concentrations of the precursors to GA1 in nodules formed by the two bacterial strains, which were positively correlated with the observed elongation growth. These results support the hypothesis that the rhizobial strain modifies the endogenous GA status of the symbiotic system. This alteration in GA balance within the plant, presumably, underlies the observed growth response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号