首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Submucosal cholinergic and noncholinergic neurons in intestines have been shown to be involved in regulating epithelial transport functions, particularly stimulating Cl(-) secretion. This study investigates the role of submucosal cholinergic neurons in regulating electrogenic Na(+) absorption in distal colon. Amiloride-sensitive short-circuit current (I(sc)) and (22)Na(+) flux were measured in mucosal and mucosal-submucosal preparations mounted in Ussing chambers. In the mucosal preparation, carbachol (CCh) added to the serosal side inhibited amiloride-sensitive I(sc) and amiloride-sensitive (22)Na(+) absorption. The inhibitory effect of CCh was observed at approximately 0.1 microM, and maximum inhibition of approximately 70% was attained at approximately 30 microM (IC(50) = approximately 1 microM). CCh-induced inhibition of amiloride-sensitive I(sc) was almost totally abolished by 10 microM atropine. Treatment of the tissue with ionomycin markedly reduced amiloride-sensitive I(sc), but a subsequent addition of CCh further decreased it. Also, CCh still had an inhibitory effect, although significantly attenuated, after the tissue had been incubated with a low-Ca(2+) solution containing ionomycin and BAPTA-AM. Applying electrical field stimulation to submucosal neurons in the mucosal-submucosal preparation resulted in inhibition of amiloride-sensitive I(sc), approximately 33% of this inhibition being atropine sensitive. Physostigmine inhibited amiloride-sensitive I(sc), this effect being abolished by atropine. In conclusion, submucosal cholinergic and noncholinergic neurons were involved in inhibiting electrogenic Na(+) absorption in colon. This inhibition by cholinergic neurons was mediated by muscarinic receptor activation.  相似文献   

2.
Both stimulation of purinergic receptors by ATP and activation of the cystic fibrosis transmembrane conductance regulator (CFTR) inhibit amiloride-sensitive Na+ transport and activate Cl- secretion. These changes in ion transport may well affect cell volume. We therefore examined whether cell shrinkage or cell swelling do affect amiloride-sensitive Na+ transport in epithelial tissues or Xenopus oocytes and whether osmotic stress interferes with regulation of Na+ transport by ATP or CFTR. Stimulation of purinergic receptors by ATP/UTP or activation of CFTR by IBMX and forskolin inhibited amiloride-sensitive transport in mouse trachea and colon, respectively, by a mechanism that was Cl- dependent. When exposed to a hypertonic but not hypotonic bath solution, amiloride-sensitive Na+ transport was inhibited in mouse trachea and colon, independent of the extracellular Cl- concentration. Both inhibition of Na+ transport by hypertonic bath solution and ATP were additive. When coexpressed in Xenopus oocytes, activation of CFTR by IBMX and forskolin inhibited the epithelial Na+ channel (ENaC) in a Cl- dependent fashion. However, both hypertonic and hypotonic bath solutions showed only minor effects on amiloride-sensitive conductance, independent of the bath Cl- concentration. Moreover, CFTR-induced inhibition of ENaC could be detected in oocytes even after exposure to hypertonic or hypotonic bath solutions. We conclude that amiloride-sensitive Na+ absorption in mouse airways and colon is inhibited by cell shrinkage by a mechanism that does not interfere with purinergic and CFTR-mediated inhibition of ENaC.  相似文献   

3.
4.
The present study investigated the inhibitory effect of extracellular ATP on Na(+) absorption and the possible underlying mechanism in cultured mouse endometrial epithelium using the short-circuit current (I(SC)) technique. The cultured epithelia exhibited a Na(+)-dependent basal current that could be predominately blocked by the epithelial Na(+) channel (ENaC) blocker, amiloride (10 microM). Apical addition of ATP (10 microM) induced a reduction in basal I(SC). However, in the presence of amiloride or when apical Na(+) was removed, the ATP-induced reduction was abolished and an increase in the I(SC) was observed with kinetic characteristics similar to those reported previously for the ATP-induced Cl(-) secretion, indicating that ATP could induce both Cl(-) secretion and inhibition of Na(+) absorption. Further reduction in I(SC) after ATP challenge could be obtained with forskolin (10 microM), which indicates that different inhibitory mechanisms are involved. The ATP-induced inhibition of Na(+) absorption, but not that induced by forskolin, could be abolished by the P(2) receptor antagonist, reactive blue (100 microM), indicating the involvement of a P(2) receptor in mediating the ATP response. ATP and uridine 5'-diphosphate (UDP; 100 microM), a relatively selective agonist for the pyrimidinoceptor, induced separate I(SC) reduction, and distinct I(SC) increases in the presence of amiloride, regardless of the order of drug administration, indicating the involvement of two receptor populations. The ATP-induced inhibition of Na(+) absorption was mimicked by the Ca(2+) ionophore, ionomycin (1 microM), whereas the Ca(2+) chelators, EGTA and BAPTA-AM, abolished the ATP-induced, but not the forskolin-induced, inhibition of Na(+) absorption, suggesting the involvement of a Ca(2+)-dependent pathway. In the presence of the Cl(-) channel blocker, DIDS (100 microM), both inhibitory and stimulatory responses to ATP were abolished, suggesting the involvement of a Ca(2+)-activated Cl(-) channels (CaCCs) in mediating both ATP responses. The ATP-induced as well as the forskolin-induced reduction in I(SC) was not observed when Cl(-) was removed from the bathing solution, indicating that Cl(-) permeation is important for the inhibition of Na(+) absorption. The results suggest the presence of a Ca(2+)-dependent ENaC-inhibiting mechanism involving CaCC in mouse endometrial epithelial cells. Thus, extracellular nucleotides may play an important role in the fine-tuning of the uterine fluid microenvironment by regulating both Cl(-) secretion and Na(+) absorption across the endometrium.  相似文献   

5.
The development of a culture of the normal mammalian jejunum motivated this work. Isolated crypt cells of the dog jejunum were induced to form primary cultures on Snapwell filters. Up to seven subcultures were studied under the electron microscope and in Ussing chambers. Epithelial markers were identified by RT-PCR, Western blot, and immunofluorescent staining. Confluent monolayers exhibit a dense apical brush border, basolateral membrane infoldings, desmosomes, and tight junctions expressing zonula occludens-1, occludin-1, and claudin-3 and -4. In OptiMEM medium fortified with epidermal growth factor, hydrocortisone, and insulin, monolayer transepithelial voltage was -6.8 mV (apical side), transepithelial resistance was 1,050 Omega.cm(2), and short-circuit current (I(sc)) was 8.1 microA/cm(2). Transcellular and paracellular resistances were estimated as 14.8 and 1.1 kOmega.cm(2), respectively. Serosal ouabain reduced voltage and current toward zero, as did apical amiloride. The presence of mRNA of alpha-epithelial Na(+) channel (ENaC) was confirmed. Na-d-glucose cotransport was identified with an antibody to Na(+)-glucose cotransporter (SGLT) 1. The unidirectional mucosa-to-serosa Na(+) flux (19 nmol.min(-1).cm(-2)) was two times as large as the reverse flux, and net transepithelial Na(+) flux was nearly double the amiloride-sensitive I(sc). In plain Ringer solution, the amiloride-sensitive I(sc) went toward zero. Under these conditions plus mucosal amiloride, serosal dibutyryl-cAMP elicited a Cl(-)-dependent I(sc) consistent with the stimulation of transepithelial Cl(-) secretion. In conclusion, primary cultures and subcultures of the normal mammalian jejunum form polarized epithelial monolayers with 1) the properties of a leaky epithelium, 2) claudins specific to the jejunal tight junction, 3) transepithelial Na(+) absorption mediated in part by SGLT1 and ENaC, and 4) electrogenic Cl(-) secretion activated by cAMP.  相似文献   

6.
Distal lung epithelial cells isolated from fetal rats were cultured (48 h) on permeable supports so that transepithelial ion transport could be quantified electrometrically. Unstimulated cells generated a short-circuit current (I(sc)) that was inhibited (~80%) by apical amiloride. The current is thus due, predominantly, to the absorption of Na(+) from the apical solution. Isoprenaline increased the amiloride-sensitive I(sc) about twofold. Experiments in which apical membrane Na(+) currents were monitored in basolaterally permeabilized cells showed that this was accompanied by a rise in apical Na(+) conductance (G(Na(+))). Isoprenaline also increased apical Cl- conductance (G(Cl-)) by activating an anion channel species sensitive to glibenclamide but unaffected by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). The isoprenaline-evoked changes in G(Na(+)) and G(Cl(minus sign)) could account for the changes in I(sc) observed in intact cells. Glibenclamide had no effect upon the isoprenaline-evoked stimulation of I(sc) or G(Na(+)) demonstrating that the rise in G(Cl-) is not essential to the stimulation of Na(+) transport.  相似文献   

7.
Transepithelial transport of Na(+) across the lung epithelium via amiloride-sensitive Na(+) channels (ENaC) regulates fluid volume in the lung lumen. Activators of AMP-activated protein kinase (AMPK), the adenosine monophosphate mimetic AICAR, and the biguanide metformin decreased amiloride-sensitive apical Na(+) conductance (G(Na+)) in human H441 airway epithelial cell monolayers. Cell-attached patch-clamp recordings identified two distinct constitutively active cation channels in the apical membrane that were likely to contribute to G(Na+): a 5-pS highly Na(+) selective ENaC-like channel (HSC) and an 18-pS nonselective cation channel (NSC). Substituting NaCl with NMDG-Cl in the patch pipette solution shifted the reversal potentials of HSC and NSC, respectively, from +23 mV to -38 mV and 0 mV to -35 mV. Amiloride at 1 microM inhibited HSC activity and 56% of short-circuit current (I(sc)), whereas 10 microM amiloride partially reduced NSC activity and inhibited a further 30% of I(sc). Neither conductance was associated with CNG channels as there was no effect of 10 microM pimoside on I(sc), HSC, or NSC activity, and 8-bromo-cGMP (0.3-0.1 mM) did not induce or increase HSC or NSC activity. Pretreatment of H441 monolayers with 2 mM AICAR inhibited HSC/NSC activity by 90%, and this effect was reversed by the AMPK inhibitor Compound C. All three ENaC proteins were identified in the apical membrane of H441 monolayers, but no change in their abundance was detected after treatment with AICAR. In conclusion, activation of AMPK with AICAR in H441 cell monolayers is associated with inhibition of two distinct amiloride-sensitive Na(+)-permeable channels by a mechanism that likely reduces channel open probability.  相似文献   

8.
Ion transport in the intestine of Gobius niger, a euryhaline teleost, was studied in both isotonic and hypotonic conditions. Isolated tissues, mounted in Ussing chambers and bilaterally perfused with isotonic Ringer solution, developed a serosa negative transepithelial voltage and a short circuit current indicating a net negative current in absorptive direction. Bilateral removal of Cl- and Na+ from the bathing solutions as well as the luminal removal of K+in the presence of Ba2+(10(-3) M) almost abolished both Vt and Isc. Similar results were obtained by adding bumetanide (10(-5)M) to the luminal bath while other inhibitors of Cl- transport mechanisms were ineffective. These observations suggest that salt absorption begins with a coupled entry of Na+, Cl-, and K+ across the apical membrane; a Ba2+inhibitable K+ conductance, demonstrated also by micropuncture experiments, recycles the ion into the lumen. Salt entry into the cell is driven by the operation of the basolateral Na+/K(+)-ATPase since serosal ouabain (10(-4)M) completely abolished both Vt and Isc; this pump also completes the Na(+) absorption. The inhibitory effect of both serosal bumetanide (10(-4)M) and SITS (5 x 10(-4)M) suggests that Cl- would leave the cell via the KCl cotransport, the Cl/HCO3- antiport and/or conductive pathways. Bilateral exposure of tissues to hypotonic media produced a reduction of both the transepithelial voltage and the short circuit current probably due to the activation of homeostatic ionic fluxes involved in cell volume regulation. The results of experiments with both isolated enterocytes and intestine exposed to hypotonic solution suggested that the recovery of cell volume, after the initial cell swelling, involves a parallel opening of K+ and Cl- channels to facilitate net solute and water effluxes from the cell. J. Exp. Zool. 301A:49-62, 2004.  相似文献   

9.
ADP greatly enhances the rate of Ca2+ uptake and retention in Ca2+ loaded mitochondria. Atractyloside, a specific inhibitor of the ADP/ATP translocator, completely inhibits the ADP effect, while bongkrekate, another specific inhibitor of the translocator enhances the effect of ADP. These results indicate that locking the ADP/ATP translocator in the M-state is sufficient to produce the ADP effect. Cyclosporin A, a specific inhibitor of the Ca2(+)-induced membrane permeabilization does not substitute for ADP, indicating that ADP directly affect the rate of electrogenic Ca2+ uptake. The effect of the translocator conformation on the rate of electrogenic Ca2+ uptake is independent of the concentration of Pi and is not caused by changes in membrane potential. However, locking the carrier in the M-state appears to increase the negative surface charge on the matrix face of the inner membrane. This may lead to an enhanced rate of Ca2+ dissociation from the electrogenic carrier at the matrix surface. The rate of Na(+)-independent Ca2+ efflux is only slightly inhibited by locking the carrier in the M-state, presumably due to the same mechanism. In the presence of ADP, Pi inhibits the Na(+)-independent efflux. In the presence of physiological concentrations of spermine, Pi and Mg2+, the rate of Ca2+ uptake, Ca2+ retention and Ca2+ set points depend sharply on ADP concentration at the physiological range of ADP. Thus, changes of cytosolic ADP concentration may lead to change in the rate of Ca2+ uptake by mitochondria and thus modulate the excitation-relaxation cycles of cytoplasmic free calcium.  相似文献   

10.
A cytoprotective role for protease-activated receptor-2 (PAR2) has been suggested in a number of systems including the airway, and to this end, we have studied the role that PARs play in the regulation of airway ion transport, using cultures of normal human bronchial epithelial cells. PAR2 activators, added to the basolateral membrane, caused a transient, Ca2+-dependent increase in short-circuit current (I(sc)), followed by a sustained inhibition of amiloride-sensitive I(sc). These phases corresponded with a transient increase in intracellular Ca2+ concentration and then a transient increase, followed by decrease, in basolateral K+ permeability. After PAR2 activation and the addition of amiloride, the forskolin-stimulated increase in I(sc) was also attenuated. By contrast, PAR2 activators added to the apical surface of the epithelia or PAR1 activators added to both the apical and basolateral surfaces were without effect. PAR2 may, therefore, play a role in the airway, regulating Na+ absorption and anion secretion, processes that are central to the control of airway surface liquid volume and composition.  相似文献   

11.
The effect of Ca2+, Cd2+, Ba2+, Mg2+ and pH on the renal epithelial Na(+)-channel was investigated by measuring the amiloride-sensitive 22Na+ fluxes into luminal membrane vesicles from pars recta of rabbit proximal tubule. It was found that intravesicular Ca2+ as well as extravesicular Ca2+ substantially lowered the channel-mediated flux. Amiloride sensitive Na+ uptake was nearly completely blocked by 10 microM Ca2+ at pH 7.4. The inhibitory effect of Ca2+ was dependent on pH. Thus, 10 microM Ca2+ produced 90% inhibition of 22Na+ uptake at pH 7.4, and only 40% inhibition at pH 7.0. The tracer fluxes measured in the absence of Ca2+ were pH independent over the range from 7.0 to 7.4. All the cations Ca2+, Cd2+, Ba2+ except Mg2+ inhibited the 22Na+ influx drastically when added extravesicularly in millimolar concentrations. The cations Cd2+, Ba2+ and Mg2+ in the same concentrations intravesicularly inhibited the 22Na+ influx only slightly. A millimolar concentration of Ca2+ intravesicularly blocked the amiloride-sensitive 22Na+ flux completely. The data indicate that Ca2+ inhibits Na+ influx specifically by binding to sites composed of one or several deprotonated groups on the channel proteins.  相似文献   

12.
Our previous studies with a line of Madin-Darby canine kidney (MDCK) cells (FL-MDCK) transfected with FLAG-labeled alpha, beta, and gamma subunits of epithelial Na(+) channel (ENaC) showed that, although most of the short-circuit current (I (sc)) was amiloride sensitive (AS-I (sc)), there was also an amiloride-insensitive component (NS-I (sc)) due to Cl(-) secretion (Morris and Schafer, J Gen Physiol 120:71-85, 2002). In the present studies, we observed a progressive increase in NS-I (sc) and a corresponding decrease in AS-I (sc) during experiments. There was a significant negative correlation between AS-I (sc) and NS-I (sc) both in the presence and absence of treatment with cyclic adenosine monophosphate (cAMP). NS-I (sc) could be attributed to both cystic fibrosis transmembrane conductance regulator (CFTR) and a 4, 4'-diisothiocyano-2, 2'-disulfonic acid stilbene (DIDS)-sensitive Ca(2+)-activated Cl(-) channel (CaCC). Continuous perfusion of both sides of the Ussing chamber with fresh rather than recirculated bathing solutions, or addition of hexokinase (6 U/ml), prevented the time-dependent changes and increased AS-I (sc) by 40-60%, with a proportional decrease in NS-I (sc). Addition of 100 muM adenosine triphosphate (ATP) in the presence of luminal amiloride produced a transient four-fold increase in NS-I (sc) that was followed by a sustained increase of 50-60% above the basal level. ATP release from the monolayers, measured by bioluminescence, was found to occur across the apical but not the basolateral membrane, and the apical release was tripled by cAMP treatment. These data show that constitutive apical ATP release, which occurs under both basal and cAMP-stimulated conditions, underlies the time-dependent rise in Cl(-) secretion and the proportional fall in ENaC-mediated Na(+) absorption in FL-MDCK cells. Thus, endogenous ATP release can introduce a significant confounding variable in experiments with this and similar epithelial cells, and it may underlie at least some of the observed interaction between Cl(-) secretion and Na(+) absorption.  相似文献   

13.
High potassium diets lead to an inverse regulation of sodium and magnesium absorption in ruminants, suggesting some form of cross talk. Previous Ussing chamber experiments have demonstrated a divalent sensitive Na(+) conductance in the apical membrane of ruminal epithelium. Using patch-clamped ruminal epithelial cells, we could observe a divalent sensitive, nonselective cation conductance (NSCC) with K(+) permeability > Cs(+) permeability > Na(+) permeability. Conductance increased and rectification decreased when either Mg(2+) or both Ca(2+) and Mg(2+) were removed from the internal or external solution or both. The conductance could be blocked by Ba(2+), but not by tetraethylammonium (TEA). Subsequently, we studied this conductance measured as short-circuit current (I(sc)) in Ussing chambers. Forskolin, IBMX, and theophylline are known to block both I(sc) and Na transport across ruminal epithelium in the presence of divalent cations. When the NSCC was stimulated by removing mucosal calcium, an initial decrease in I(sc) was followed by a subsequent increase. The cAMP-mediated increase in I(sc) was reduced by low serosal Na(+) and serosal addition of imipramine or serosal amiloride and depended on the availability of mucosal magnesium. Luminal amiloride had no effect. Flux studies showed that low serosal Na(+) reduced (28)Mg fluxes from mucosal to serosal. The data suggest that cAMP stimulates basolateral Na(+)/Mg(2+) exchange, reducing cytosolic Mg. This increases sodium uptake through a magnesium-sensitive NSCC in the apical membrane. Likewise, the reduction in magnesium uptake that follows ingestion of high potassium fodder may facilitate sodium absorption, as observed in studies of ruminal osmoregulation. Possibly, grass tetany (hypomagnesemia) is a side effect of this useful mechanism.  相似文献   

14.
We have previously shown that cardiogenic pulmonary edema fluid (EF) increases Na(+) and fluid transport by fetal distal lung epithelia (FDLE) (Rafii B, Gillie DJ, Sulowski C, Hannam V, Cheung T, Otulakowski G, Barker PM and O'Brodovich H. J Physiol 544: 537-548, 2002). We now report the effect of EF on Na(+) and fluid transport by the adult lung. We first studied primary cultures of adult type II (ATII) epithelium and found that overnight exposure to EF increased Na(+) transport, and this effect was mainly due to factors other than catecholamines. Plasma did not stimulate Na(+) transport in ATII. Purification of EF demonstrated that at least some agent(s) responsible for the amiloride-insensitive component resided within the globulin fraction. ATII exposed to globulins demonstrated a conversion of amiloride-sensitive short-circuit current (I(sc)) to amiloride-insensitive I(sc) with no increase in total I(sc). Patch-clamp studies showed that ATII exposed to EF for 18 h had increased the number of highly selective Na(+) channels in their apical membrane. In situ acute exposure to EF increased the open probability of Na(+)-permeant ion channels in ATII within rat lung slices. EF did increase, by amiloride-sensitive pathways, the alveolar fluid clearance from the lungs of adult rats. We conclude that cardiogenic EF increases Na(+) transport by adult lung epithelia in primary cell culture, in situ and in vivo.  相似文献   

15.
Active Na+ absorption across rumen epithelium comprises Na+/H+ exchange and a nonselective cation conductance (NSCC). Luminal chloride is able to stimulate Na+ absorption, which has been attributed to an interaction between Cl-/HCO3- and Na+/H+ exchangers. However, isolated rumen epithelial cells also express a Cl- conductance. We investigated whether Cl- has an additional effect on electrogenic Na+ absorption via NSCC. NSCC was estimated from short-circuit current (Isc) across epithelia of goat and sheep rumen in Ussing chambers. Epithelial surface pH (pHs) was measured with 5-N-hexadecanoyl-aminofluorescence. Membrane potentials were measured with microelelectrodes. Luminal, but not serosal, Cl- stimulated the Ca2+ and Mg2+ sensitive Isc. This effect was independent of the replacing anion (gluconate or acetate) and of the presence of bicarbonate. The mean pHs of rumen epithelium amounted to 7.47 +/- 0.03 in a low-Cl- solution. It was increased by 0.21 pH units when luminal Cl- was increased from 10 to 68 mM. Increasing mucosal pH from 7.5 to 8.0 also increased the Ca2+ and Mg2+ sensitive Isc and transepithelial conductance and reduced the fractional resistance of the apical membrane. Luminal Cl- depolarized the apical membrane of rumen epithelium. 5-Nitro-2-(3-phenylpropylamino)-benzoate reduced the divalent cation sensitive Isc, but only in low-Cl- solutions. The results show that luminal Cl- can increase the microclimate pH via apical Cl-/HCO3- or Cl-/OH- exchangers. Electrogenic Na+ absorption via NSCC increases with pH, explaining part of the Cl- effects on Na+ absorption. The data further show that the Cl- conductance of rumen epithelium must be located at the basolateral membrane.  相似文献   

16.
Recent studies on frog skin acini have challenged the question whether Cl(-) secretion or Na(+) absorption in the airways is driven by luminal K(+) channels in series to a basolateral K(+) conductance. We examined the possible role of luminal K(+) channels in electrolyte transport in mouse trachea in Ussing-chamber experiments. Tracheas of both normal and CFTR (-/-) mice showed a dominant amiloride-sensitive Na+ absorption under both, control conditions and after cAMP-dependent stimulation. The lumen-negative transepithelial voltage was enhanced after application of IBMX and forskolin and Cl(-) secretion was activated. Electrolyte secretion induced by IBMX and forskolin was inhibited by luminal glibenclamide and the blocker of basolateral Na(+2)Cl(-)K(+) cotransporter azosemide. Similarly, the compound 293B, a blocker of basolateral KCNQ1/KCNE3 K(+) channels effectively blocked Cl(-) secretion when applied to either the luminal or basolateral side of the epithelium. RT-PCR analysis suggested expression of additional K(+) channels in tracheal epithelial cells such as Slo1 and Kir6.2. However, we did not detect any functional evidence for expression of luminal K(+) channels in mouse airways, using luminal 293B, clotrimazole and Ba(2+) or different K(+) channel toxins such as charybdotoxin, apamin and a-dendrotoxin. Thus, the present study demonstrates Cl(-) secretion in mouse airways, which depends on basolateral Na(+2)Cl(-)K(+) cotransport and luminal CFTR and non-CFTR Cl(-) channels. Cl(-) secretion is maintained by the activity of basolateral K(+) channels, while no clear evidence was found for the presence of a luminal K(+) conductance.  相似文献   

17.
H+,K(+)-ATPase, Na+,K(+)-ATPase, and Ca(2+)-ATPase belong to the P-type ATPase group. Their molecular mechanisms of energy transduction have been thought to be similar until now. Ca(2+)-ATPase and Na+,K(+)-ATPase are phosphorylated from both ATP and acetyl phosphate (ACP) and dephosphorylated, resulting in active ion transport. However, we found that H+,K(+)-ATPase did not transport proton nor K+ when ACP was used as a substrate, resulting in uncoupling between energy and ion transport. ACP bound competitively to the ATP-binding site of H+,K(+)-ATPase. The hydrolysis of ACP by H+,K(+)-ATPase was stimulated by cytosolic K+, the half-maximal stimulating K+ concentration (K0.5) being 2.5 mM, whereas the hydrolysis of ATP was stimulated by luminal K+, the K0.5 being 0.2 mM. Furthermore, during the phosphorylation from ACP in the absence of K+, the fluorescence intensity of H+,K(+)-ATPase labeled with fluorescein isothiocyanate increased, but those of Na+,K(+)-ATPase and Ca(2+)-ATPase decreased. These results indicate that phosphorylated intermediates of H+,K(+)-ATPase formed from ACP are not rich in energy and that there is a striking difference(s) in the mechanism of energy transduction between H+,K(+)-ATPase and other cation-transporting ATPases.  相似文献   

18.
Xu J  Xu F  Tse FW  Tse A 《Journal of neurochemistry》2005,92(6):1419-1430
Summary During hypoxia, ATP was released from type I (glomus) cells in the carotid bodies. We studied the action of ATP on the intracellular Ca(2+) concentration ([Ca(2+)](i)) of type I cells dissociated from rat carotid bodies using a Ca(2+) imaging technique. ATP did not affect the resting [Ca(2+)](i) but strongly suppressed the hypoxia-induced [Ca(2+)](i) elevations in type I cells. The order of purinoreceptor agonist potency in inhibiting the hypoxia response was 2-methylthioATP > ATP > ADP > alpha, beta-methylene ATP > UTP, implicating the involvement of P2Y(1) receptors. Simultaneous measurements of membrane potential and [Ca(2+)](i) show that ATP inhibited the hypoxia-induced Ca(2+) signal by reversing the hypoxia-triggered depolarization. However, ATP did not oppose the hypoxia-mediated inhibition of the oxygen-sensitive TASK-like K(+) background current. Neither the inhibition of the large-conductance Ca(2+)-activated K(+) (maxi-K) channels nor the removal of extracellular Na(+) could affect the inhibitory action of ATP. Under normoxic condition, ATP caused hyperpolarization and increase in cell input resistance. These results suggest that the inhibitory action of ATP is mediated via the closure of background conductance(s) other than the TASK-like K(+), maxi-K or Na(+) channels. In summary, ATP exerts strong negative feedback regulation on hypoxia signaling in rat carotid type I cells.  相似文献   

19.
Leeches Hirudo medicinalis were exposed to either artificial pond water (APW; 1 mM NaCl) or to high-salinity conditions (HS; 200 mM NaCl) for several days. The aim of the study was to assess whether transepithelial ion conductances in their dorsal integuments were affected by this long-term acclimation. In voltage-clamp experiments using Ussing-type chambers, the transepithelial potential V(T) was clamped to 0 mV, and amiloride-sensitive currents (I(ami)) and total Na(+) transport (I(Na)) were determined. Apical Ca(2+)-free conditions strongly increased I(ami) to a similar magnitude in both differently acclimated integuments. Apical application of the lanthanide gadolinium <0.1 mM decreased the short-circuit current (I(sc)). In contrast, higher concentrations up to 10 mM Gd(3+) upregulated I(sc) by an additional 90% in APW integuments and by an additional 300% in HS integuments. This Gd(3+) effect was due to a doubling of I(Na) in APW and a more than sixfold increase of I(Na) in HS integuments. In summary, the macroscopic electrophysiological variables, including I(Na), were generally not affected by long-term exposure to high salinity. However, the presence of Gd(3+)-sensitive Na(+) conductances or regulating structures were greatly upregulated during HS acclimation.  相似文献   

20.
The modulatory effects of calcium ions on highly active Na+, K(+)-ATPase from calf brain and pig kidney tissues have been studied. The inhibitory action of Ca2+free on this enzyme depends on the level of ATP (but not AcP). The reduction of pH from 7.4 to 6.0 noticeably increases, but the elevation of pH to 8.0, in its turn, decreases the inhibition of ATP-hydrolyzing activity by calcium. With the increase of K+ concentration (in contrast to Na+) the sensibilization of Na+, K(+)-ATPase to Ca ions is observed. In the presence of potassium ions Mg2+free effectively modifies the inhibitory action of Ca2+free on this enzyme. Ca2+free (0.16-0.4 mM) decreases the sensitivity of Na+, K(+)-ATPase to action of the specific inhibitor ouabain in the presence of ATP. In the presence of AcP (phosphatase reaction) such a change of enzyme sensitivity to ouabain isn't observed. The influence of membranous effects of Ca2+ on the interaction of Na+, K(+)-ATPase with the essential ligands and cardiosteroids is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号