首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study was designed to determine whether patients with McArdle's disease, who do not increase their blood lactate levels during and after maximal exercise, have a slow "lactacid" component to their recovery O2 consumption (VO2) response after high-intensity exercise. VO2 was measured breath by breath during 6 min of rest before exercise, a progressive maximal cycle ergometer test, and 15 min of recovery in five McArdle's patients, six age-matched control subjects, and six maximal O2 consumption- (VO2 max) matched control subjects. The McArdle's patients' ventilatory threshold occurred at the same relative exercise intensity [71 +/- 7% (SD) VO2max] as in the control groups (60 +/- 13 and 70 +/- 10% VO2max) despite no increase and a 20% decrease in the McArdle's patients' arterialized blood lactate and H+ levels, respectively. The recovery VO2 responses of all three groups were better fit by a two-, than a one-, component exponential model, and the parameters of the slow component of the recovery VO2 response were the same in the three groups. The presence of the same slow component of the recovery VO2 response in the McArdle's patients and the control subjects, despite the lack of an increase in blood lactate or H+ levels during maximal exercise and recovery in the patients, provides evidence that this portion of the recovery VO2 response is not the result of a lactacid mechanism. In addition, it appears that the hyperventilation that accompanies high-intensity exercise may be the result of some mechanism other than acidosis or lung CO2 flux.  相似文献   

2.
A biofeedback model of hyperventilation during exercise was used to assess the independent effects of pH, arterial CO2 partial pressure (PaCO2), and minute ventilation on blood lactate during exercise. Eight normal subjects were studied with progressive upright bicycle exercise (2-min intervals, 25-W increments) under three experimental conditions in random order. Arterialized venous blood was drawn at each work load for measurement of blood lactate, pH, and PaCO2. Results were compared with those from reproducible control tests. Experimental conditions were 1) biofeedback hyperventilation (to increase pH by 0.08-0.10 at each work load); 2) hyperventilation following acetazolamide (which returned pH to control values despite ventilation and PaCO2 identical to condition 1); and 3) metabolic acidosis induced by acetazolamide (with spontaneous ventilation). The results showed an increase in blood lactate during hyperventilation. Blood lactate was similar to control with hyperventilation after acetazolamide, suggesting that the change was due to pH and not to PaCO2 or total ventilation. Exercise during metabolic acidosis (acetazolamide alone) was associated with blood lactate lower than control values. Respiratory alkalosis during exercise increases blood lactate. This is due to the increase in pH and not to the increase in ventilation or the decrease in PaCO2.  相似文献   

3.
Anaerobic thresholds of five male subjects were determined invasively (ATi), from a marked increase in plasma lactate above resting levels (delta La), and noninvasively (ATn), from a nonlinear increase in minute ventilation (VE) during incremental work (IW) leg cycling tests; work rate was increased 30 W every 2 min. Each subject also performed four constant-load work (CLW) tasks just above and just below their ATn and respiratory compensation threshold (RCT), i.e., the point expressed as O2 consumption (VO2) or work rate, at which VE increases disproportionally to CO2 output during IW. In four of the five subjects the ATn preceded the ATi during IW. Yet the ATn delineated the CLW in which marked lactate accumulation did or did not occur. During CLW just above the ATn in these same four subjects, VE/VO2 and fractional expired O2 (FEO2) peaked well before delta La plateaued. These findings suggest that exercise hyperventilation is not necessarily proportional to increases in plasma lactate.  相似文献   

4.
Changes in blood gases, ions, lactate, pH, hemoglobin, blood temperature, total body metabolism, and muscle metabolites were measured before and during exercise (except muscle), at fatigue, and during recovery in normal and acetazolamide-treated horses to test the hypothesis that an acetazolamide-induced acidosis would compromise the metabolism of the horse exercising at maximal O2 uptake. Acetazolamide-treated horses had a 13-mmol/l base deficit at rest, higher arterial Po2 at rest and during exercise, higher arterial and mixed venous Pco2 during exercise, and a 48-s reduction in run time. Arterial pH was lower during exercise but not in recovery after acetazolamide. Blood temperature responses were unaffected by acetazolamide administration. O2 uptake was similar during exercise and recovery after acetazolamide treatment, whereas CO2 production was lower during exercise. Muscle [glycogen] and pH were lower at rest, whereas heart rate, muscle pH and [lactate], and plasma [lactate] and [K+] were lower and plasma [Cl-] higher following exercise after acetazolamide treatment. These data demonstrate that acetazolamide treatment aggravates the CO2 retention and acidosis occurring in the horse during heavy exercise. This could negatively affect muscle metabolism and exercise capacity.  相似文献   

5.
To determine the relationship between hyperventilation and recovery of blood pH during recovery from a heavy exercise, short-term intense exercise (STIE) tests were performed after human subjects ingested 0.3 g.kg(-1) body mass of either NaHCO3 (Alk) or CaCO3 (Pla). Ventilation (VE)-CO2 output (VCO2) slopes during recovery following STIE were significantly lower in Alk than in Pla, indicating that hyperventilation is attenuated under the alkalotic condition. However, this reduction of the slope was the result of unchanged VE and a small increase in VCO2. A significant correlation between VE and blood pH was found during recovery in both conditions. While there was no difference between the VE-pH slopes in the two conditions, VE at the same pH was higher in Alk than in Pla. Furthermore, the values of pH during recovery in both conditions increased toward the preexercise levels of each condition. Thus, although VE-VCO2 slope was decreased under the alkalotic condition, this could not be explained by the ventilatory depression attributed to increase in blood pH. We speculate that hyperventilation after the end of STIE is determined by the VE-pH relationship that was set before STIE or the intensity of the exercise performed.  相似文献   

6.
Five healthy males took part in two separate studies. In one study subjects breathed air (control, C) and in the other 5% CO2 in 21% O2 (respiratory acidosis, RA). Measurements were made at rest, during exercise at 30 and 60% maximal O2 uptake (VO2 max), (20 min each) and in recovery. RA was associated with higher arterial CO2 partial pressure (PCO2) and bicarbonate and lower pH than C. The increase with exercise in plasma lactate (mmol . l-1) was less in RA than C from 1.0 +/- 0.15 (SE) (C = 1.1 +/- 0.17) at rest to 5.3 +/- 1.25 (C = 6.8 +/- 0.98) at 60% VO2 max (P less than 0.10). Plasma pyruvate, alanine, and glycerol concentrations increased with exercise; free fatty acids did not change. There were no significant differences between RA and C in any of these metabolites. Norepinephrine concentrations were similar at rest but increased to a greater extent during exercise in RA than C (P less than 0.02). Epinephrine levels were also higher in RA than C at 60% VO2 max (NS); the two subjects in whom lactate was not lower with RA showed the greatest increase in epinephrine. Exercise in RA was associated with higher heart rates (P less than 0.05), blood pressures (NS), and ventilation (P less than 0.01). In hypercapnia the metabolic effects of acidosis are modified by increased levels of circulating catecholamines.  相似文献   

7.
The objective of this study was to determine whether arterial PCO2 (PaCO2) decreases or remains unchanged from resting levels during mild to moderate steady-state exercise in the dog. To accomplish this, O2 consumption (VO2) arterial blood gases and acid-base status, arterial lactate concentration ([LA-]a), and rectal temperature (Tr) were measured in 27 chronically instrumented dogs at rest, during different levels of submaximal exercise, and during maximal exercise on a motor-driven treadmill. During mild exercise [35% of maximal O2 consumption (VO2 max)], PaCO2 decreased 5.3 +/- 0.4 Torr and resulted in a respiratory alkalosis (delta pHa = +0.029 +/- 0.005). Arterial PO2 (PaO2) increased 5.9 +/- 1.5 Torr and Tr increased 0.5 +/- 0.1 degree C. As the exercise levels progressed from mild to moderate exercise (64% of VO2 max) the magnitude of the hypocapnia and the resultant respiratory alkalosis remained unchanged as PaCO2 remained 5.9 +/- 0.7 Torr below and delta pHa remained 0.029 +/- 0.008 above resting values. When the exercise work rate was increased to elicit VO2 max (96 +/- 2 ml X kg-1 X min-1) the amount of hypocapnia again remained unchanged from submaximal exercise levels and PaCO2 remained 6.0 +/- 0.6 Torr below resting values; however, this response occurred despite continued increases in Tr (delta Tr = 1.7 +/- 0.1 degree C), significant increases in [LA-]a (delta [LA-]a = 2.5 +/- 0.4), and a resultant metabolic acidosis (delta pHa = -0.031 +/- 0.011). The dog, like other nonhuman vertebrates, responded to mild and moderate steady-state exercise with a significant hyperventilation and respiratory alkalosis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We studied muscle blood flow, muscle oxygen uptake (VO(2)), net muscle CO uptake, Mb saturation, and intracellular bioenergetics during incremental single leg knee-extensor exercise in five healthy young subjects in conditions of normoxia, hypoxia (H; 11% O(2)), normoxia + CO (CO(norm)), and 100% O(2) + CO (CO(hyper)). Maximum work rates and maximal oxygen uptake (VO(2 max)) were equally reduced by approximately 14% in H, CO(norm), and CO(hyper). The reduction in arterial oxygen content (Ca(O(2))) (approximately 20%) resulted in an elevated blood flow (Q) in the CO and H trials. Net muscle CO uptake was attenuated in the CO trials. Suprasystolic cuff measurements of the deoxy-Mb signal were not different in terms of the rate of signal rise or maximum signal attained with and without CO. At maximal exercise, calculated mean capillary PO(2) was most reduced in H and resulted in the lowest Mb-associated PO(2). Reductions in ATP, PCr, and pH during H, CO(norm), and CO(hyper) occurred earlier during progressive exercise than in normoxia. Thus the effects of reduced Ca(O(2)) due to mild CO poisoning are similar to H.  相似文献   

9.
The purpose of this investigation was to determine whether the onset of lactate acidosis is responsible for the increase in ventilatory equivalent (VE/VO2) during exercise of increasing intensity. Eight male subjects performed maximal incremental exercise tests on a cycle ergometer on two separate occasions. For the control (C) treatment, the initial work rates consisted of 4 min of unloaded pedaling (60 rpm) and 1 min of pedaling at a work rate of 30 W. Thereafter, the work rate was increased each minute by 22 W until volitional fatigue. Venous blood samples were taken before the onset of exercise and at the end of each work rate for determination of pH and lactate. Ventilatory parameters at each work rate were also monitored. Before the experimental treatment (E), the subjects performed two 3-min work bouts at high intensity (210-330 W) on the cycle ergometer in order to prematurely raise blood lactate levels and lower blood pH. The same incremental exercise test as C was then performed. The results indicated that the increase in VE/VO2 occurred at similar work rates and %VO2max although the venous H+ and lactate concentrations were significantly elevated during the E treatment. These results suggest that a decrease in the blood pH resulting from blood lactate accumulation is not responsible for the increase in VE/VO2 during incremental exercise.  相似文献   

10.
Exertional dyspnea limits exercise in some mitochondrial myopathy (MM) patients, but the clinical features of this syndrome are poorly defined, and its underlying mechanism is unknown. We evaluated ventilation and arterial blood gases during cycle exercise and recovery in five MM patients with exertional dyspnea and genetically defined mitochondrial defects, and in four control subjects (C). Patient ventilation was normal at rest. During exercise, MM patients had low Vo(2peak) (28 ± 9% of predicted) and exaggerated systemic O(2) delivery relative to O(2) utilization (i.e., a hyperkinetic circulation). High perceived breathing effort in patients was associated with exaggerated ventilation relative to metabolic rate with high VE/VO(2peak), (MM = 104 ± 18; C = 42 ± 8, P ≤ 0.001), and Ve/VCO(2peak)(,) (MM = 54 ± 9; C = 34 ± 7, P ≤ 0.01); a steeper slope of increase in ΔVE/ΔVCO(2) (MM = 50.0 ± 6.9; C = 32.2 ± 6.6, P ≤ 0.01); and elevated peak respiratory exchange ratio (RER), (MM = 1.95 ± 0.31, C = 1.25 ± 0.03, P ≤ 0.01). Arterial lactate was higher in MM patients, and evidence for ventilatory compensation to metabolic acidosis included lower Pa(CO(2)) and standard bicarbonate. However, during 5 min of recovery, despite a further fall in arterial pH and lactate elevation, ventilation in MM rapidly normalized. These data indicate that exertional dyspnea in MM is attributable to mitochondrial defects that severely impair muscle oxidative phosphorylation and result in a hyperkinetic circulation in exercise. Exaggerated exercise ventilation is indicated by markedly elevated VE/VO(2), VE/VCO(2), and RER. While lactic acidosis likely contributes to exercise hyperventilation, the fact that ventilation normalizes during recovery from exercise despite increasing metabolic acidosis strongly indicates that additional, exercise-specific mechanisms are responsible for this distinctive pattern of exercise ventilation.  相似文献   

11.
Effects of detraining on responses to submaximal exercise   总被引:6,自引:0,他引:6  
Seven endurance-trained subjects were studied 12, 21, 56, and 84 days after cessation of training. Heart rate, ventilation, respiratory exchange ratio, and blood lactate concentration during submaximal exercise of the same absolute intensity increased (P less than 0.05) progressively during the first 56 days of detraining, after which a stabilization occurred. These changes paralleled a 40% decline (P less than 0.001) in mitochondrial enzyme activity levels and a 21% increase in total lactate dehydrogenase (LDH) activity (P less than 0.05) in trained skeletal muscle. After 84 days of detraining, the experimental subjects' muscle mitochondrial enzyme levels were still 50% above, and LDH activity was 22% below, sedentary control levels. The blood lactate threshold of the detrained subjects occurred at higher absolute and relative (i.e., 75 +/- 2% vs. 62 +/- 3% of maximal O2 uptake) exercise intensities in the subjects after 84 days of detraining than in untrained controls (P less than 0.05). Thus it appears that a portion of the adaptation to prolonged and intense endurance training that is responsible for the higher lactate threshold in the trained state persists for a long time (greater than 85 days) after training is stopped.  相似文献   

12.
In order to examine the effect of acute respiratory acidosis induced by CO2 inhalation prior to maximal exercise on blood lactate and physical performance, double determinations were carried out for each subject on separate days; one day, after CO2 inhalation and other day, after inhalation of room air. It was observed that in the untrained subjects the CO2 inhalation prior to maximal treadmill exercise does not affect endurance time and maximum aerobic power, whereas blood lactate during recovery was lower in CO2 breathing than that in room air. In addition, no significant difference of 200m sprint time in the athletes was noticed between CO2 and room air while blood lactate after 200m sprint running was significantly lower in the CO2 than that in room air. From these results, it was suggested that the effect of CO2 inhalation prior to maximal exercise as applied here appeared to be mediate through metabolic rather than oxygen transport mechanism, but not related to physical performance.  相似文献   

13.
To test the hypothesis that the decrease in plasma pH contributes to the hyperventilation observed in humans in response to exercise at high workloads, five healthy male subjects performed a ramp exercise [maximal workload: 352 W (SD 35)] in a control situation and when arterialized plasma pH was maintained at the resting level (pH clamp) by intravenous infusion of sodium bicarbonate [129 mmol (SD 23), beginning at 59% maximal workload (SD 5)]. Bicarbonate infusion did not modify O(2) consumption (Vo(2)) but significantly (P < 0.05) increased arterial Pco(2), plasma bicarbonate concentration, and respiratory exchange ratio (P < 0.05). At the three highest workloads, pulmonary ventilation (Ve) and Ve/Vo(2) were approximately 5-10% lower (P < 0.05) when bicarbonate was infused than in the control situation, and hyperventilation was reduced by 15-30%. These data suggest that the decrease in plasma pH is one of the factors that contribute to the hyperventilation observed at high workloads.  相似文献   

14.
The influence of a pattern of exercise and dietary manipulation, intended to alter carbohydrate (CHO) availability, on pre-exercise acid-base status and plasma ammonia and blood lactate accumulation during incremental exercise was investigated. On three separate occasions, five healthy male subjects underwent a pre-determined incremental exercise test (IET) on an electrically braked cycle ergometer. Each IET involved subjects exercising for 5 min at 30%, 50%, 70% and 95% of their maximal oxygen uptake (VO2max) and workloads were separated by 5 min rest. The first IET took place after 3 days of normal dietary CHO intake. The second and third tests followed 3 days of low or high CHO intake, which was preceded by prolonged exercise to exhaustion in an attempt to deplete muscle and liver glycogen stores. Acid-base status and plasma ammonia and blood lactate levels were measured on arterialised venous blood samples immediately prior to and during the final 15 s of exercise at each workload and for 40 min following the completion of each IET. Three days of low CHO intake resulted in the development of a mild metabolic acidosis in all subjects. Plasma ammonia (NH3) accumulation on the low-CHO diet tended to be greater than normal at each exercise workload. Values returned towards resting levels during each recovery period. After the normal and high-CHO diets plasma NH3 levels did not markedly increase above resting values until after exercise at 95% VO2max. Plasma NH3 levels after the high-CHO diet were similar to those after the normal CHO diet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The acute effect of inhaling the smoke of three cigarettes was compared to the effect of inhalation of an amount of carbon monoxide (CO), giving the same CO-saturation of the arterial blood as smoking during rest and during maximal exercise on a Krogh cycle ergometer. Sixteen male subjects were tested in the morning (1) after about 8 h without smoking (control), (2) after inhalation of the smoke of three cigarettes (smoke), and (3) after CO-inhalation (CO). It was found that the average maximal rate of O2-uptake (VO2 max) decreased during both smoke and CO by about 7%. Endurance time at VO2 max decreased 20% during smoke but only 10% during CO. A significant decrease in maximal heart rate (HR), and an increase in HR at rest, was demonstrated only during smoke. The peak lactate concentration (HLa) following maximal exercise was significantly decreased after smoke. The results suggest that the decrease in VO2 max during smoke is due to the CO-saturation of the blood, and hence to a decrease in the oxygen capacity of the blood, while the decrease in endurance time during smoke is combined effect of the CO-saturation and an increased cost of breathing caused by the smoke particles. It is further suggested that nicotine, or possibly some other components of the smoke, have an enhancing effect on the heart at rest rest, while an inhibition is seen during maximal exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Disposal of blood [1-13C]lactate in humans during rest and exercise   总被引:1,自引:0,他引:1  
Lactate irreversible disposal (RiLa) and oxidation (RoxLa) rates were studied in six male subjects during rest (Re), easy exercise [EE, 140 min of cycling at 50% of maximum O2 consumption (VO2max)] and hard exercise (HE, 65 min at 75% VO2max). Twenty minutes into each condition, subjects received a Na+-L(+)-[1-13C]lactate intravenous bolus injection. Blood was sampled intermittently from the contralateral arm for metabolite levels, acid-base status, and enrichment of 13C in lactate. Expired air was monitored continuously for determination of respiratory parameters, and aliquots were collected for determination of 13C enrichment in CO2. Steady-rate values for O2 consumption (VO2) were 0.33 +/- 0.01, 2.11 +/- 0.03, and 3.10 +/- 0.03 l/min for Re, EE, and HE, respectively. Corresponding values of blood lactate levels were 0.84 +/- 0.01, 1.33 +/- 0.05, and 4.75 +/- 0.28 mM in the three conditions. Blood lactate disposal rates were significantly correlated to VO2 (r = 0.78), averaging 123.4 +/- 20.7, 245.5 +/- 40.3, and 316.2 +/- 53.7 mg X kg-1 X h-1 during Re, EE, and HE, respectively. Lactate oxidation rate was also linearly related to VO2 (r = 0.81), and the percentage of RiLa oxidized increased from 49.3% at rest to 87.0% during exercise. A curvilinear relationship was found between RiLa and blood lactate concentration. It was concluded that, in humans, 1) lactate disposal (turnover) rate is directly related to the metabolic rate, 2) oxidation is the major fate of lactate removal during exercise, and 3) blood lactate concentration is not an accurate indicator of lactate disposal and oxidation.  相似文献   

17.
The oxygen cost of exercise and chemical control of breathing were studied in a subject with Luft's syndrome, a disorder in which skeletal muscle mitochondria have a high "resting" O2 consumption which is imcreased only slightly by stimulation with excess phosphate acceptor, but a normal P/O ratio. The O2 consumption was more than three times normal (1.05 1/min) at rest but could be doubled when stimulated by maximal exercise. The O2 cost of exercise was similar to that of normal subjects. At rest, arterial blood PCO2 and ventilatory response to CO2 were normal, while ventilatory response to hypoxia was four times the predicted value. The data 1) confirm, in vivo, the normal respiratory efficiency of skeletal muscles in this disorder; 2) suggest that in vitro estimates of the extent to which mitochondrial respiration can be stimulated may not correlate with in vivo determinations; and 3) suggests that hypermetabolism per se can cause the ventilatory adjustments which are associated with exercise in normal subjects.  相似文献   

18.
The purposes of the present studies were to test the hypotheses that lower dosages of oral pyruvate ingestion would increase blood pyruvate concentration and that the ingestion of a commonly recommended dosage of pyruvate (7 g) for 7 days would enhance performance during intense aerobic exercise in well-trained individuals. Nine recreationally active subjects (8 women, 1 man) consumed 7, 15, and 25 g of pyruvate and were monitored for a 4-h period to determine whether blood metabolites were altered. Pyruvate consumption failed to significantly elevate blood pyruvate, and it had no effect on indexes of carbohydrate (blood glucose, lactate) or lipid metabolism (blood glycerol, plasma free fatty acids). As a follow-up, we administered 7 g/day of either placebo or pyruvate, for a 1-wk period to seven, well-trained male cyclists (maximal oxygen consumption, 62.3 +/- 3.0 ml. kg(-1). min(-1)) in a randomized, double-blind, crossover trial. Subjects cycled at 74-80% of their maximal oxygen consumption until exhaustion. There was no difference in performance times between the two trials (placebo, 91 +/- 9 min; pyruvate, 88 +/- 8 min). Measured blood parameters (insulin, peptide C, glucose, lactate, glycerol, free fatty acids) were also unaffected. Our results indicate that oral pyruvate supplementation does not increase blood pyruvate content and does not enhance performance during intense exercise in well-trained cyclists.  相似文献   

19.
We evaluated the volumetric responses of the right and left ventricles to upright exercise using two noninvasive methods, first-pass radionuclide angiocardiography and the CO2 rebreathing technique, in nine normal subjects. Right (RV) and left (LV) ventricular ejection fractions, heart rate, and cardiac index were determined at rest and during steady-state exercise on the bicycle ergometer at 50% of maximal O2 consumption. From these data, stroke volume index (SVI), end-diastolic volume index (EDVI), and end-systolic volume index (ESVI) were derived. SVI increased from 40 +/- 7 ml/m2 at rest to 59 +/- 13 ml/m2 with exercise (P less than 0.001). RVEDVI increased significantly from 82 +/- 16 ml/m2 at rest to 95 +/- 21 ml/m2 during exercise (P = 0.008), while there was no significant change in RVESVI with exercise. Changes in LVEDVI and LVESVI during upright exercise were similar to the right ventricle. The increase in systolic blood pressure during exercise, along with no change in LVESVI, indicated enhanced ventricular contractility. The normal augmentation in SVI during submaximal exercise was due to both the Frank-Starling mechanism and an increased contractile state. Application of these or similar techniques may be useful in evaluating ventricular performance in patients with cardiorespiratory dysfunction.  相似文献   

20.
To determine the acute action of cigarette smoking on cardiorespiratory function under stress, the immediate effects of cigarette smoking on the ventilatory, gas exchange, and cardiovascular responses to exercise were studied in nine healthy male subjects. Each subject performed an incremental exercise test to exhaustion on two separate days, one without smoking (control) and one after smoking 3 cigarettes/h for 5 h. The order of the two tests was randomized. Arterial blood gases and pH were measured during rest and all levels of exercise; CO blood levels confirmed the absorption of cigarette smoke. In addition, minute ventilation (VE), end-tidal PCO2 and PO2, O2 uptake (VO2), CO2 production, directly measured blood pressure, electrocardiogram, and heart rate (HR) were recorded every 30 s. The dead space-to-tidal volume ratio (VD/VT), maximal aerobic capacity (VO2max), and anaerobic threshold (AT) were determined from the gas exchange data. Cigarette smoking resulted in a significantly lower VO2max, AT, and VO2/HR (O2 pulse) and a significantly higher HR, pulse-pressure product, and pulse pressure (P less than 0.05) compared with the control. Additionally, a trend toward a higher VD/VT and arterial-end-tidal PCO2 difference was found during exercise after smoking. We conclude that cigarette smoking causes immediate detrimental effects on cardiovascular function during exercise, including tachycardia, increased pulse-pressure product, and impaired O2 delivery. The acute effects on respiratory function were less striking and primarily limited to abnormalities reflecting ventilation-perfusion mismatching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号