首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 754 毫秒
1.
2.
We obtain computational results for a new extended spatial neuron model in which the neuronal electrical depolarization from resting level satisfies a cable partial differential equation and the synaptic input current is also a function of space and time, obeying a first order linear partial differential equation driven by a two-parameter random process. The model is first described explicitly with the inclusion of all biophysical parameters. Simplified equations are obtained with dimensionless space and time variables. A standard parameter set is described, based mainly on values appropriate for cortical pyramidal cells. When the noise is small and the mean voltage crosses threshold, a formula is derived for the expected time to spike. A simulation algorithm, involving one-dimensional random processes is given and used to obtain moments and distributions of the interspike interval (ISI). The parameters used are those for a near balanced state and there is great sensitivity of the firing rate around the balance point. This sensitivity may be related to genetically induced pathological brain properties (Rett's syndrome). The simulation procedure is employed to find the ISI distribution for some simple patterns of synaptic input with various relative strengths for excitation and inhibition. With excitation only, the ISI distribution is unimodal of exponential type and with a large coefficient of variation. As inhibition near the soma grows, two striking effects emerge. The ISI distribution shifts first to bimodal and then to unimodal with an approximately Gaussian shape with a concentration at large intervals. At the same time the coefficient of variation of the ISI drops dramatically to less than 1/5 of its value without inhibition.  相似文献   

3.
The firing time of a cable model neuron in response to white noise current injection is investigated with various methods. The Fourier decomposition of the depolarization leads to partial differential equations for the moments of the firing time. These are solved by perturbation and numerical methods, and the results obtained are in excellent agreement with those obtained by Monte Carlo simulation. The convergence of the random Fourier series is found to be very slow for small times so that when the firing time is small it is more efficient to simulate the solution of the stochastic cable equation directly using the two different representations of the Green's function, one which converges rapidly for small times and the other which converges rapidly for large times. The shape of the interspike interval density is found to depend strongly on input position. The various shapes obtained for different input positions resemble those for real neurons. The coefficient of variation of the interspike interval decreases monotonically as the distance between the input and trigger zone increases. A diffusion approximation for a nerve cell receiving Poisson input is considered and input/output frequency relations obtained for different input sites. The cases of multiple trigger zones and multiple input sites are briefly discussed.  相似文献   

4.
5.
Henry C T 《Bio Systems》2005,80(1):25-36
We consider a standard Hodgkin-Huxley model neuron with a Gaussian white noise input current with drift parameter mu and variance parameter sigma(2). Partial differential equations of second order are obtained for the first two moments of the time taken to spike from (any) initial state, as functions of the initial values. The analytical theory for a 2-component (V,m) approximation is also considered. Let mu(c) (approximately 4.15) be the critical value of mu for firing when noise is absent. Large sample simulation results are obtained for mumu(c), for many values of sigma between 0 and 25. For the time to spike, the 2-component approximation is accurate for all sigma when mu=10, for sigma>7 when mu=5 and only when sigma>15 when mu=2. When mumu(c), most paths show similar behavior and the moments exhibit smoothly changing behavior as sigma increases. Thus there are a different number of regimes depending on the magnitude of mu relative to mu(c): one when mu is small and when mu is large; but three when mu is close to and above mu(c). Both for the Hodgkin-Huxley (HH) system and the 2-component approximation, and regardless of the value of mu, the CV tends to about 1.3 at the largest value (25) of sigma considered. We also discuss in detail the problem of determining the interspike interval and give an accurate method for estimating this random variable by decomposing the interval into stochastic and almost deterministic components.  相似文献   

6.
We examined the interactions of subthreshold membrane resonance and stochastic resonance using whole-cell patch clamp recordings in thalamocortical neurons of rat brain slices, as well as with a Hodgkin-Huxley-type mathematical model of thalamocortical neurons. The neurons exhibited the subthreshold resonance when stimulated with small amplitude sine wave currents of varying frequency, and stochastic resonance when noise was added to sine wave inputs. Stochastic resonance was manifest as a maximum in signal-to-noise ratio of output response to subthreshold periodic input combined with noise. Stochastic resonance in conjunction with subthreshold resonance resulted in action potential patterns that showed frequency selectivity for periodic inputs. Stochastic resonance was maximal near subthreshold resonance frequency and a high noise level was required for detection of high frequency signals. We speculate that combined membrane and stochastic resonances have physiological utility in coupling synaptic activity to preferred firing frequency and in network synchronization under noise.  相似文献   

7.
Theoretical and experimental evidence is presented for the presence in nervous tissue of neurons whose firing rate faithfully follow their input stimulus. Such neurons are shown to deliver their spikes with minimum dissipation per spike. This optimal performance is likely accomplished by use of local circuitry that adjusts conductances to match input currents so that the neuron operates near the threshold for firing. This results in an unusual mechanism for neuronal firing that uses background noise to achieve the desired firing rate. This framework takes place dynamically, and the present deliberations apply under time varying conditions. It is shown that an analytically explicit probability distribution function, which depends on one dimensionless parameter, can account for the interspike interval statistics under general time varying conditions. An innovative analysis based on the unsteady firing rate fits data to the appropriate probability distribution function.  相似文献   

8.
We present a method for the reconstruction of three stimulus-evoked time-varying synaptic input conductances from voltage recordings. Our approach is based on exploiting the stochastic nature of synaptic conductances and membrane voltage. Starting with the assumption that the variances of the conductances are known, we use a stochastic differential equation to model dynamics of membrane potential and derive equations for first and second moments that can be solved to find conductances. We successfully apply the new reconstruction method to simulated data. We also explore the robustness of the method as the assumptions of the underlying model are relaxed. We vary the noise levels, the reversal potentials, the number of stimulus repetitions, and the accuracy of conductance variance estimation to quantify the robustness of reconstruction. These studies pave the way for the application of the method to experimental data.  相似文献   

9.
Neural activity in the brain of parkinsonian patients is characterized by the intermittently synchronized oscillatory dynamics. This imperfect synchronization, observed in the beta frequency band, is believed to be related to the hypokinetic motor symptoms of the disorder. Our study explores potential mechanisms behind this intermittent synchrony. We study the response of a bursting pallidal neuron to different patterns of synaptic input from subthalamic nucleus (STN) neuron. We show how external globus pallidus (GPe) neuron is sensitive to the phase of the input from the STN cell and can exhibit intermittent phase-locking with the input in the beta band. The temporal properties of this intermittent phase-locking show similarities to the intermittent synchronization observed in experiments. We also study the synchronization of GPe cells to synaptic input from the STN cell with dependence on the dopamine-modulated parameters. Earlier studies showed how the strengthening of dopamine-modulated coupling may lead to transitions from non-synchronized to partially synchronized dynamics, typical in Parkinson''s disease. However, dopamine also affects the cellular properties of neurons. We show how the changes in firing patterns of STN neuron due to the lack of dopamine may lead to transition from a lower to a higher coherent state, roughly matching the synchrony levels observed in basal ganglia in normal and parkinsonian states. The intermittent nature of the neural beta band synchrony in Parkinson''s disease is achieved in the model due to the interplay of the timing of STN input to pallidum and pallidal neuronal dynamics, resulting in sensitivity of pallidal output to the phase of the arriving STN input. Thus the mechanism considered here (the change in firing pattern of subthalamic neurons through the dopamine-induced change of membrane properties) may be one of the potential mechanisms responsible for the generation of the intermittent synchronization observed in Parkinson''s disease.  相似文献   

10.
We present a reduction of a large-scale network model of visual cortex developed by McLaughlin, Shapley, Shelley, and Wielaard. The reduction is from many integrate-and-fire neurons to a spatially coarse-grained system for firing rates of neuronal subpopulations. It accounts explicitly for spatially varying architecture, ordered cortical maps (such as orientation preference) that vary regularly across the cortical layer, and disordered cortical maps (such as spatial phase preference or stochastic input conductances) that may vary widely from cortical neuron to cortical neuron. The result of the reduction is a set of nonlinear spatiotemporal integral equations for phase-averaged firing rates of neuronal subpopulations across the model cortex, derived asymptotically from the full model without the addition of any extra phenomological constants. This reduced system is used to study the response of the model to drifting grating stimuli—where it is shown to be useful for numerical investigations that reproduce, at far less computational cost, the salient features of the point-neuron network and for analytical investigations that unveil cortical mechanisms behind the responses observed in the simulations of the large-scale computational model. For example, the reduced equations clearly show (1) phase averaging as the source of the time-invariance of cortico-cortical conductances, (2) the mechanisms in the model for higher firing rates and better orientation selectivity of simple cells which are near pinwheel centers, (3) the effects of the length-scales of cortico-cortical coupling, and (4) the role of noise in improving the contrast invariance of orientation selectivity.  相似文献   

11.
Many perceptual and cognitive processes, like decision-making and bistable perception, involve multistable phenomena under the influence of noise. The role of noise in a multistable neurodynamical system can be formally treated within the Fokker–Planck framework. Nevertheless, because of the underlying nonlinearities, one usually considers numerical simulations of the stochastic differential equations describing the original system, which are time consuming. An alternative analytical approach involves the derivation of reduced deterministic differential equations for the moments of the distribution of the activity of the neuronal populations. The study of the reduced deterministic system avoids time consuming computations associated with the need to average over many trials. We apply this technique to describe multistable phenomena. We show that increasing the noise amplitude results in a shifting of the bifurcation structure of the system.  相似文献   

12.
Recordings from area V4 of monkeys have revealed that when the focus of attention is on a visual stimulus within the receptive field of a cortical neuron, two distinct changes can occur: The firing rate of the neuron can change and there can be an increase in the coherence between spikes and the local field potential (LFP) in the gamma-frequency range (30-50 Hz). The hypothesis explored here is that these observed effects of attention could be a consequence of changes in the synchrony of local interneuron networks. We performed computer simulations of a Hodgkin-Huxley type neuron driven by a constant depolarizing current, I, representing visual stimulation and a modulatory inhibitory input representing the effects of attention via local interneuron networks. We observed that the neuron's firing rate and the coherence of its output spike train with the synaptic inputs was modulated by the degree of synchrony of the inhibitory inputs. When inhibitory synchrony increased, the coherence of spiking model neurons with the synaptic input increased, but the firing rate either increased or remained the same. The mean number of synchronous inhibitory inputs was a key determinant of the shape of the firing rate versus current (f-I) curves. For a large number of inhibitory inputs (approximately 50), the f-I curve saturated for large I and an increase in input synchrony resulted in a shift of sensitivity-the model neuron responded to weaker inputs I. For a small number (approximately 10), the f-I curves were non-saturating and an increase in input synchrony led to an increase in the gain of the response-the firing rate in response to the same input was multiplied by an approximately constant factor. The firing rate modulation with inhibitory synchrony was highest when the input network oscillated in the gamma frequency range. Thus, the observed changes in firing rate and coherence of neurons in the visual cortex could be controlled by top-down inputs that regulated the coherence in the activity of a local inhibitory network discharging at gamma frequencies.  相似文献   

13.
What cellular and network properties allow reliable neuronal rhythm generation or firing that can be started and stopped by brief synaptic inputs? We investigate rhythmic activity in an electrically-coupled population of brainstem neurons driving swimming locomotion in young frog tadpoles, and how activity is switched on and off by brief sensory stimulation. We build a computational model of 30 electrically-coupled conditional pacemaker neurons on one side of the tadpole hindbrain and spinal cord. Based on experimental estimates for neuron properties, population sizes, synapse strengths and connections, we show that: long-lasting, mutual, glutamatergic excitation between the neurons allows the network to sustain rhythmic pacemaker firing at swimming frequencies following brief synaptic excitation; activity persists but rhythm breaks down without electrical coupling; NMDA voltage-dependency doubles the range of synaptic feedback strengths generating sustained rhythm. The network can be switched on and off at short latency by brief synaptic excitation and inhibition. We demonstrate that a population of generic Hodgkin-Huxley type neurons coupled by glutamatergic excitatory feedback can generate sustained asynchronous firing switched on and off synaptically. We conclude that networks of neurons with NMDAR mediated feedback excitation can generate self-sustained activity following brief synaptic excitation. The frequency of activity is limited by the kinetics of the neuron membrane channels and can be stopped by brief inhibitory input. Network activity can be rhythmic at lower frequencies if the neurons are electrically coupled. Our key finding is that excitatory synaptic feedback within a population of neurons can produce switchable, stable, sustained firing without synaptic inhibition.  相似文献   

14.
In the retina, the firing behaviors that ganglion cells exhibit when exposed to light stimuli are very important due to the significant roles they play in encoding the visual information. However, the detailed mechanisms, especially the intrinsic properties that generate and modulate these firing behaviors is not completely clear yet. In this study, 2 typical firing behaviors—i.e., tonic and phasic activities, which are widely observed in retinal ganglion cells (RGCs)—are investigated. A modified computational model was developed to explore the possible ionic mechanisms that underlie the generation of these 2 firing patterns. Computational results indicate that the generation of tonic and phasic activities may be attributed to the collective actions of 2 kinds of adaptation currents, i.e., an inactivating sodium current and a delayed-rectifier potassium current. The concentration of magnesium ions has crucial but differential effects in the modulation of tonic and phasic firings, when the model neuron is driven by N-methyl-D-aspartate (NMDA) -type synaptic input instead of constant current injections. The proposed model has robust features that account for the ionic mechanisms underlying the tonic and phasic firing behaviors, and it may also be used as a good candidate for modeling some other firing patterns in RGCs.  相似文献   

15.
In the retina, the firing behaviors that ganglion cells exhibit when exposed to light stimuli are very important due to the significant roles they play in encoding the visual information. However, the detailed mechanisms, especially the intrinsic properties that generate and modulate these firing behaviors is not completely clear yet. In this study, 2 typical firing behaviors—i.e., tonic and phasic activities, which are widely observed in retinal ganglion cells (RGCs)—are investigated. A modified computational model was developed to explore the possible ionic mechanisms that underlie the generation of these 2 firing patterns. Computational results indicate that the generation of tonic and phasic activities may be attributed to the collective actions of 2 kinds of adaptation currents, i.e., an inactivating sodium current and a delayed-rectifier potassium current. The concentration of magnesium ions has crucial but differential effects in the modulation of tonic and phasic firings, when the model neuron is driven by N-methyl-D-aspartate (NMDA) -type synaptic input instead of constant current injections. The proposed model has robust features that account for the ionic mechanisms underlying the tonic and phasic firing behaviors, and it may also be used as a good candidate for modeling some other firing patterns in RGCs.  相似文献   

16.
Recent experimental results imply that inhibitory postsynaptic potentials can play a functional role in realizing synchronization of neuronal firing in the brain. In order to examine the relation between inhibition and synchronous firing of neurons theoretically, we analyze possible effects of synchronization and sensitivity enhancement caused by inhibitory inputs to neurons with a biologically realistic model of the Hodgkin-Huxley equations. The result shows that, after an inhibitory spike, the firing probability of a single postsynaptic neuron exposed to random excitatory background activity oscillates with time. The oscillation of the firing probability can be related to synchronous firing of neurons receiving an inhibitory spike simultaneously. Further, we show that when an inhibitory spike input precedes an excitatory spike input, the presence of such preceding inhibition raises the firing probability peak of the neuron after the excitatory input. The result indicates that an inhibitory spike input can enhance the sensitivity of the postsynaptic neuron to the following excitatory spike input. Two neural network models based on these effects on postsynaptic neurons caused by inhibitory inputs are proposed to demonstrate possible mechanisms of detecting particular spatiotemporal spike patterns. Received: 15 April 1999 /Accepted in revised form: 25 November 1999  相似文献   

17.
The spike trains that transmit information between neurons are stochastic. We used the theory of random point processes and simulation methods to investigate the influence of temporal correlation of synaptic input current on firing statistics. The theory accounts for two sources for temporal correlation: synchrony between spikes in presynaptic input trains and the unitary synaptic current time course. Simulations show that slow temporal correlation of synaptic input leads to high variability in firing. In a leaky integrate-and-fire neuron model with spike afterhyperpolarization the theory accurately predicts the firing rate when the spike threshold is higher than two standard deviations of the membrane potential fluctuations. For lower thresholds the spike afterhyperpolarization reduces the firing rate below the theory's predicted level when the synaptic correlation decays rapidly. If the synaptic correlation decays slower than the spike afterhyperpolarization, spike bursts can occur during single broad peaks of input fluctuations, increasing the firing rate over the prediction. Spike bursts lead to a coefficient of variation for the interspike intervals that can exceed one, suggesting an explanation of high coefficient of variation for interspike intervals observed in vivo.  相似文献   

18.
In this work we develop approximate aggregation techniques in the context of slow-fast linear population models governed by stochastic differential equations and apply the results to the treatment of populations with spatial heterogeneity. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of ‘global’ variables, in such a way that the dynamics of the former can be approximated by that of the latter. In our model we contemplate a linear fast deterministic process together with a linear slow process in which the parameters are affected by additive noise, and give conditions for the solutions corresponding to positive initial conditions to remain positive for all times. By letting the fast process reach equilibrium we build a reduced system with a lesser number of variables, and provide results relating the asymptotic behaviour of the first- and second-order moments of the population vector for the original and the reduced system. The general technique is illustrated by analysing a multiregional stochastic system in which dispersal is deterministic and the rate growth of the populations in each patch is affected by additive noise.  相似文献   

19.
We describe a general diffusion model for analyzing the efficacy of individual synaptic inputs to threshold neurons. A formal expression is obtained for the system propagator which, when given an arbitrary initial state for the cell, yields the conditional probability distribution for the state at all later times. The propagator for a cell with a finite threshold is written as a series expansion, such that each term in the series depends only on the infinite threshold propagator, which in the diffusion limit reduces to a Gaussian form. This procedure admits a graphical representation in terms of an infinite sequence of diagrams. To connect the theory to experiment, we construct an analytical expression for the primary correlation kernel (PCK) which profiles the change in the instantaneous firing rate produced by a single postsynaptic potential (PSP). Explicit solutions are obtained in the diffusion limit to first order in perturbation theory. Our approximate expression resembles the PCK obtained by computer simulation, with the accuracy depending strongly on the mode of firing. The theory is most accurate when the synaptic input drives the membrane potential to a mean level more than one standard deviation below the firing threshold, making such cells highly sensitive to synchronous synaptic input.  相似文献   

20.
We study a white-noise driven integrate-and-fire (IF) neuron with a time-dependent threshold. We give analytical expressions for mean and variance of the interspike interval assuming that the modification of the threshold value is small. It is shown that the variability of the interval can become both smaller or larger than in the case of constant threshold depending on the decay rate of threshold. We also show that the relative variability is minimal for a certain finite decay rate of the threshold. Furthermore, for slow threshold decay the leaky IF model shows a minimum in the coefficient of variation whenever the firing rate of the neuron matches the decay rate of the threshold. This novel effect can be seen if the firing rate is changed by varying the noise intensity or the mean input current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号