首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-four Triticum aestivum×T. timopheevii hybrid lines developed on the basis of five varieties of common wheat and resistant to leaf rust were analyzed by the use of microsatellite markers specific for hexaploid wheat T. aestivum. Investigation of intervarietal polymorphism of the markers showed that the number of alleles per locus ranged from 1 to 4, depending on the marker (2.5 on average). InT. timopheevii, amplification fragments are produced by 80, 55, and 30% of primers specific to the A, B, and D common wheat genomes, respectively. Microsatellite analysis revealed two major areas of introgression of the T. timopheevii genome: chromosomes of homoeological groups 2 and 5. Translocations were detected in the 2A and 2B chromosomes simultaneously in 11 lines of 24. The length of the translocated fragment in the 2B chromosome was virtually identical in all hybrid lines and did not depend on the parental wheat variety. In 15 lines developed on the basis of the Saratovskaya-29, Irtyshanka, and Tselinnaya-20, changes occurred in the telomeric region of the long arm of the 5A chromosome. Analysis with markers specific to the D genome suggested that introgressions of the T. timopheevii genome occurred in chromosomes of the D genome. However, the location of these markers on T. timopheevii chromosomes is unknown. Our data suggest that the genes for leaf rust resistance transferred from T. timopheevii to T. aestivum are located on chromosomes of homoeological group 2.  相似文献   

2.
The S1, S2 and S3 genes of the induced sphaerococcoid mutation in common wheat (Triticum aestivum) were mapped using three different F2 populations consisting of 71–96 individual plants. Twenty-four microsatellite markers from homeologous group 3 of T. aestivum were used to map the S1, S2 and S3 genes on chromosomes 3D, 3B and 3A, respectively. The S1 locus was found to be closely linked to the centromeric marker Xgwm456 of the long arm (2.9 cM) and mapped not far (8.0 cM) from the Xgdm72 marker of the short arm of chromosome 3D. The S2 gene was tightly linked to 2 centromeric markers (Xgwm566, Xgwm845) of chromosome 3B. S3 was located between Xgwm2 (5.1 cM), the marker of the short arm, and Xgwm720 (6.6 cM), the marker of the long arm, both of chromosome 3A. Mapping the S1, S2 and S3 loci of the induced sphaerococcoid mutation near the centromeric regions supports the hypothesis that the sphaerococcum type may be due to gene duplication resulting from DNA recombination in the centromeric region. Received: 20 June 1999 / Accepted: 29 July 1999  相似文献   

3.
Storage proteins, prolamins, were studied in ten introgression lines of common wheat bred with involvement of Triticum timopheevii (Tt) Zhuk. and five commercial hexaploid wheat cultivars. The lines are resistant to leaf rust. A comparative analysis of the storage proteins in the Triticum aestivum L. (Ta) introgression lines and the parental forms allowed us to (1) detect the active genes of prolamins on the chromosomes homeologous groups 1 and 6 in the introgression lines of T. aestivum and T. timopheevii; (2) clarify their origin; (3) identify the chromosome attribution of the products; (4) estimate the degree of introgression and postulate the introgression mechanisms; and (5) predict the bread-making quality of these introgression lines.  相似文献   

4.
A total of 40 introgression lines of common wheat (2 n = 42) Triticum aestivum L × T. timopheevii Zhuk., resistant to leaf rust and partly to powdery mildew, were examined. Based on cytological analysis of meiosis in pollen mother cells (PMC), hybrid lines were subdivided into two groups characterized by either stable or unstable meiosis. In cytologically stable lines, chromosome configuration at the MI stage of meiosis was mostly bivalent (21II) with small proportion of defect cells (almost 10%), which at most contained two univalents (20II + 2I). Cytologically unstable group was comprised of the lines, containing high proportions of cells with abnormal chromosome pairing in meiotic PMC, as well as the cells with multivalents, and the lines containing aneuploid plants. Localization of the T. timopheevii fragments performed with the use of SSR markers showed that the lines with unstable meiosis were characterized by higher numbers of introgressions compared to stable lines. The influence of certain chromosomes of T. timopheevii on chromosome pairing stability was also demonstrated. In cytologically unstable lines, the increased frequency of 2A substitutions along with the high frequency of introgression of T. timopheevii genetic material into chromosome 7A was observed. Multivalents were scored in all cases of introgression in chromosome 7A. It was suggested that the reason for the genome instability in hybrid forms lied in insufficient compensating ability of certain T. timopheevii chromosomes and/or their parts, involved into recombination processes.  相似文献   

5.
In order to estimate synteny between At and A polyploid wheat genomes belonging to different evolutionary lines (Timopheevi and Emmer), saturation of chromosome maps of Triticum timopheevii At genome by molecular markers has been conducted. Totally, 179 EST-SSR and 48 genomic SSR-markers have been used with the following integration of 13 and 7 markers correspondingly into chromosome maps of At genome. ESTSSR showed higher transferability and lower polymorphism than genomic SSR markers. The chromosome maps designed were compared to maps of homoeologous chromosome group of the T. aestivum A genome. No disturbances of colinearity, i.e., of the order of markers within the chromosome segments on which they had been previously mapped, were observed. According to the quantity assessment of markers amplifying in homoeologous chromosomes, the maximum divergence was detected in two groups (4At/4A and 3At/3A) among the seven chromosomes examined in the A t and A genomes. Comparison of molecular genetic mapping results with the published results of studying meiosis of F1 hybrids and the frequency of chromosomes substitution in introgressive T. aestivum × T. timopheevii lines suggest that individual chromosomes of the At and A genomes evolve differently. Translocations were shown to introduce the major impact on the divergence of 4At/4A and 6At/6A chromosomes, while mutations of the primary DNA structure, on the divergence of homoeologous group 3 chromosomes. The level of reorganization of other chromosomes during the evolution in the At and A genomes was significantly lower.  相似文献   

6.
The karyotypes of 47 hybrid lines obtained from crosses of common wheat Triticum aestivum L. (cv. Rodina and line 353) with Triticum timopheevii(Zhuk.) Zhuk. (A t A t GG) and related species T. militinae Zhuk. et Migusch. (A t A t GG) and T. kiharae Dorof. et Migusch. (A t A t GGD sq D sq) were analyzed by C-banding. Most lines were resistant to yellow rust and powdery mildew. The introgression of alien genetic material to the common wheat genome was realized via substitutions of complete A +-,G-, and D-genome chromosomes, chromosome arms, or their fragments. The pattern of chromosome substitutions in resistant lines differed from that in introgressive hybrids selected for other traits. Substitutions of chromosomes 6G, 2At, 2G, and 5G were revealed in 31, 23, 18, and 13 lines, respectively. Substitutions of chromosomes 4G, 4At, and 6At were not observed. In 15 lines, a 5BS.5BL-5GL translocation was identified. High frequency of substitutions of chromosomes 2At, 2G, 5G, and 6G indicate that they may carry the resistance genes and that they are closely related to the respective homoeologous chromosomes of common wheat that determines their high compensation ability.  相似文献   

7.
Introgressive lines resulting from crossing common wheat Triticum aestivum with the tetraploid T. timopheevii are characterized by effective resistance to leaf rust caused by Puccinia triticina Eriks. Molecular analysis using 350 specific simple sequence repeat (SSR) markers determined localization of the T. timopheevii genome in chromosomes 1A, 2A, 2B, 5A, 5B, and 6B. A population of F2 offspring of crossing hybrid line 842-2 with common wheat cultivar Skala was obtained for mapping the loci controlling leaf rust resistance. Analysis of association of phenotypic and genotypic data by means of simple interval mapping (SIM) and composite interval mapping (CIM) has shown that the resistance of adult plants is determined by two loci in chromosomes 5B and 2A. The major locus QLr.icg-5B, transferred from T. timopheevii chromosome 5G mapped to the interval of microsatellite loci Xgwm408-Xgwm1257 controls 72% of the phenotypic variance of the trait. The other, minor locus QLr.icg-2A located to chromosome 2A at a distance of 10 cM from Xgwm312 accounts for 7% of the trait expression. Microsatellite markers located near these loci may be used for controlling the transfer of agronomically valuable loci when new lines and cultivars are created.  相似文献   

8.
Storage proteins (prolamines, puroindolines, and Waxy) were studied in common wheat introgression lines obtained with the use of the Saratovskaya 29 (S29) cultivar line and synthetic hexaploid wheat (Triticum timopheevii Zhuk. × T. tauschii) (Sintetik, Sin.) displaying complex resistance to fungal infections. Comparative analysis of storage proteins in the introgression lines of common wheat Triticum aestivum L. and in the parental forms revealed the only line (BC5) having a substitution at the Gli-B2 locus from Sintetik. Hybrid lines subjected to nine backcrosses with the recurrent parental form S29 and selections for resistance to pathogens can be considered as nearly isogenic for the selected trait and retaining the allelic composition of (1) prolamines responsible for the bread-making qualitiy, (2) puroindolines associated with grain texture, and (3) Waxy proteins responsible for nutritive qualities. These lines are valuable as donors of immunity in breeding programs without the loss of the quality of flour and grain as compared to the S29 line and are also important in searching for genes determining resistance to leaf and stem rust and to powdery mildew. The amphiploid has a number of characters (silent Glu-A1 locus and Ha genotype) that can negatively affect the quality of flour and grain and thus should be taken into account when choosing this donor.  相似文献   

9.
The genomic organization of Triticum timopheevii (2n=28, AtAtGG) was compared with hexaploid wheat T. aestivum (2n=42, AABBDD) by comparative mapping using microsatellites derived from bread wheat. Genetic maps for the two crosses T. timopheevii var. timopheevii × T. timopheevii var. typica and T. timopheevii K-38555×T. militinae were constructed. On the first population, 121 loci were mapped, and on the second population 103 loci. The transferability of the wheat markers to T. timopheevii was generally better for the A genome-specific markers (76–78% produced amplification products; 26 and 29% were polymorphic) than for B genome-specific markers (54% produced amplification products; 14 and 16% were polymorphic). Of the D genome-specific markers, one third produced amplification products in T. timopheevii, but only 5 and 2% were polymorphic in the corresponding mapping populations. The maps constructed confirmed the previously described translocation between chromosome arms 6AtS and 1GS and revealed at least two yet unknown rearrangements on chromosomes 4At and 6At. The presence of other translocations and rearrangements between T. timopheevii and T. aestivum was demonstrated by a variety of markers mapping to nonhomoeologous positions.  相似文献   

10.
The first microsatellite linkage map of Ae. speltoides Tausch (2n = 2x = 14, SS), which is a wild species with a genome closely related to the B and G genomes of polyploid wheats, was developed based on two F2 mapping populations using microsatellite (SSR) markers from Ae. speltoides, wheat genomic SSRs (g-SSRs) and EST-derived SSRs. A total of 144 different microsatellite loci were mapped in the Ae. speltoides genome. The transferability of the SSRs markers between the related S, B, and G genomes allowed possible integration of new markers into the T. timopheevii G genome chromosomal maps and map-based comparisons. Thirty-one new microsatellite loci assigned to the genetic framework of the T. timopheevii G genome maps were composed of wheat g-SSR (genomic SSR) markers. Most of the used Ae. speltoides SSRs were mapped onto chromosomes of the G genome supporting a close relationship between the G and S genomes. Comparative microsatellite mapping of the S, B, and G genomes demonstrated colinearity between the chromosomes within homoeologous groups, except for intergenomic T6AtS.1G, T4AL.5AL.7BS translocations. A translocation between chromosomes 2 and 6 that is present in the T. aestivum B genome was found in neither Ae. speltoides nor in T. timopheevii. Although the marker order was generally conserved among the B, S, and G genomes, the total length of the Ae. speltoides chromosomal maps and the genetic distances between homoeologous loci located in the proximal regions of the S genome chromosomes were reduced compared with the B, and G genome chromosomes.  相似文献   

11.
A set of common wheat introgression lines carrying one or two introgressions from Triticum timopheevii was produced by means of marker-assisted backcross selection. The starting material consisted of two BC1F20 (T. aestivum*2/T. timopheevii) lines with resistance to leaf rust, stem rust, powdery mildew, spot blotch, and loose smut and containing multiple 1At, 2At, 2G, 3AtL, 3GL, 4GL, 5AtL, 5GL, and 6G T. timopheevii chromosome fragments. The two lines were crossed with, and backcrossed three times to common wheat cultivar Saratovskaya 29. In total, 275 BC2F1 and BC3F2 plants were characterized by microsatellite markers and in situ hybridization. Molecular and cytological analyses revealed 38 plants with a single introgression from chromosomes 2G, 5GL, or 6G of T. timopheevii and 72 plants, each with two introgressions, among them three plants carrying a T. timopheevii translocation involving the D genome (2DS.2GL). It was observed that the lengths of fragments introgressed from the At genome were more than halved in the BC2 generation, while the lengths of 2G and 5GL introgressed fragments were only slightly reduced after the third backcross. The introgression lines were tested for resistance to the native Puccinia triticina population of the Western Siberian region of Russia. Lines with a single introgressed 5GL region carrying the major leaf rust resistance locus, QLr.icg-5B, were completely resistant. The presence of two minor resistance loci, QLr.icg-2A and QLr.icg-1A, suppressed disease development and reduced the number of urediniospores by up to 25 % but did not lead to a hypersensitive response. The introgression lines therefore constitute promising sources of new resistance to Puccinia triticina.  相似文献   

12.
Genotyping was performed for the leaf rust-resistant line 73/00i (Triticum aestivum × Aegilops speltoides). Fluorescence in situ hybridization (FISH) with probes Spelt1 and pSc119.2 in combination with microsatellite analysis were used to determine the locations and sizes of the Ae. speltoides genetic fragments integrated into the line genome. Translocations were identified in the long arms of chromosomes 5B and 6B and in the short arm of chromosome 1B. The Spelt1 and pSc119.2 molecular cytological markers made it possible to rapidly establish lines with single translocation in the long arms of chromosomes 5B and 6B. The line carrying the T5BS · 5BL-5SL translocation was highly resistant to leaf rust, and the lines carrying the T6BS · 6BL-6SL translocation displayed moderate resistance. The translocations differed in chromosomal location from known leaf resistance genes transferred into common wheat from Ae. speltoides. Hence, it was assumed that new genes were introduced into the common wheat genome from Ae. speltoides. The locus that determined high resistance to leaf rust and was transferred into the common wheat genome from the long arm of Ae. speltoides chromosome 5S by the T5BS · 5BL-5SL translocation was preliminarily designated as LrAsp5.  相似文献   

13.
Whether the two tetraploid wheat species, the well known Triticum turgidum L. (macaroni wheat, AABB genomes) and the obscure T. timopheevii Zhuk. (AtAtGG), have monophyletic or diphyletic origin from the same or different diploid species presents an interesting evolutionary problem. Moreover, T. timopheevii and its wild form T. araraticum are an important genetic resource for macaroni and bread-wheat improvement. To study these objectives, the substitution and genetic compensation abilities of individual T. timopheevii chromosomes for missing chromosomes of T. aestivum Chinese Spring (AABBDD) were analyzed. Chinese Spring aneuploids (nullisomic-tetrasomics) were crossed with a T. timopheevii x Aegilops tauschii amphiploid to isolate T. timopheevii chromosomes in a monosomic condition. The F1 hybrids were backcrossed one to four times to Chinese Spring aneuploids without selection for the T. timopheevii chromosome of interest. While spontaneous substitutions involving all At- and G-genome chromosomes were identified, the targeted T. timopheevii chromosome was not always recovered. Lines with spontaneous substitutions from T. timopheevii were chosen for further backcrossing. Six T. timopheevii chromosome substitutions were isolated: 6At (6A), 2G (2B), 3G (3B), 4G (4B), 5G (5B) and 6G (6B). The substitution lines had normal morphology and fertility. The 6At of T. timopheevii was involved in a translocation with chromosome 1G, resulting in the transfer of the group-1 gliadin locus to 6At. Chromosome 2G substituted for 2B at a frequency higher than expected and may carry putative homoeoalleles of gametocidal genes present on group-2 chromosomes of several alien species. Our data indicate a common origin for tetraploid wheat species, but from separate hybridization events because of the presence of a different spectrum of intergenomic translocations.  相似文献   

14.
The karyotypes of 47 hybrid lines obtained from crosses of common wheat Triticum aestivum L. (cv. Rodina and line 353) with Triticum timopheevii Zhuk, (AtAtGG) and related species T. militinae Zhuk. et Migusch. (AtAtGG) and T. kiharae Dorof. et Migusch. (AtAtGGDsqDsq) were analyzed by C-banding. Most lines were resistant to yellow rust and powdery mildew. The introgression of alien genetic material to the common wheat genome was realized via substitutions of complete At-, G-, and D-genome chromosomes, chromosome arms, or their fragments. The pattern of chromosome substitutions in resistant lines differed from that in introgressive hybrids selected for other traits. Substitutions of chromosomes 6G, 2At, 2G, and 5G were revealed in 31, 23, 18, and 13 lines, respectively. Substitutions of chromosomes 4G-, 4At, and 6At were not observed. In 15 lines, a 5BS. 5BL-5GL translocation was identified. High frequency of substitutions of chromosomes 2At, 2G, 5G, and 6G indicate that they may carry the resistance genes and that they are closely related to the respective homoeologous chromosomes of common wheat that determines their high compensation ability.  相似文献   

15.
Aegilops markgrafii contains resistance genes to powdery mildew, leaf rust and stripe rust, and also has high crude protein and lysine contents, which can be useful for wheat improvement. These important traits are localized on different chromosomes. Disomic Triticum aestivum-Ae. markgrafii addition lines and euploid introgression lines showing leaf-rust and powdery mildew resistance were screened with RAPDs to detect chromosome-specific markers which can accelerate the breeding process. RAPD markers for all six available disomic addition lines were obtained. The additional chromosomes B, C, D, E, F and G were identified by three, three, three, two, one and seven primers, respectively. All three chromosome-B-specific RAPD markers demonstrated the presence of alien chromatin in the leaf-rust-resistant 42-chromosome introgression lines as well as in the segregating progeny. The three chromosome-C-identifying primers also demonstrated the presence of that chromosome in powdery mildew-resistant euploid introgression lines. The substitution lines (5A)5C and (5D)5C with different genetic backgrounds for both parents, in comparison to the lines mentioned above, showed the chromosome C-specific band with only two of the three primers. The chromosome F-specific primer and a primer evident on all the Ae. markgrafii chromosomes analysed did not generate the expected fragments on the chromosome Fdel addition line, indicating that the markers are located on the deleted part of chromosome F. Received: 20 August 1996 / Accepted 17 January 1997  相似文献   

16.
Leaf rust and stripe rust are important foliar diseases of wheat worldwide. Leaf rust and stripe rust resistant introgression lines were developed by induced homoeologous chromosome pairing between wheat chromosome 5D and 5Mg of Aegilops geniculata (UgMg). Characterization of rust resistant BC2F5 and BC3F6 homozygous progenies using genomic in situ hybridization with Aegilops comosa (M) DNA as probe identified three different types of introgressions; two cytologically visible and one invisible (termed cryptic alien introgression). All three types of introgression lines showed similar and complete resistance to the most prevalent pathotypes of leaf rust and stripe rust in Kansas (USA) and Punjab (India). Diagnostic polymorphisms between the alien segment and recipient parent were identified using physically mapped RFLP probes. Molecular mapping revealed that cryptic alien introgression conferring resistance to leaf rust and stripe rust comprised less than 5% of the 5DS arm and was designated T5DL·5DS-5MgS(0.95). Genetic mapping with an F2 population of Wichita × T5DL·5DS-5MgS(0.95) demonstrated the monogenic and dominant inheritance of resistance to both diseases. Two diagnostic RFLP markers, previously mapped on chromosome arm 5DS, co-segregated with the rust resistance in the F2 population. The unique map location of the resistant introgression on chromosome T5DL·5DS-5MgS(0.95) suggested that the leaf rust and stripe rust resistance genes were new and were designated Lr57 and Yr40. This is the first documentation of a successful transfer and characterization of cryptic alien introgression from Ae. geniculata conferring resistance to both leaf rust and stripe rust in wheat.  相似文献   

17.
Male sterility of wheat-breeding line 337S (Triticum aestivum L.) is sensitive to both short day-length/low temperature and long day-length/high temperature. 337S was crossed with the common wheat variety, Huamai No. 8 and the F1 was highly fertile. The F2 population segregated in a 15:1 ratio for fertility/sterility in 243 individuals under long day-length/high-temperature. The two thermophotoperiod-responsive male sterile genes were mapped to chromosomes 5B and 2B using Simple Sequence Repeat (SSR) markers and bulked segregant analysis. Partial linkage maps around the sterility loci of chromosomes 2B and 5B were constructed using the 243 individuals in the F2 population. One gene (wptms1) for male sterility was flanked by the SSR markers Xgwm335 and Xgwm371 at a genetic distance in chromosome 5B of 4.1 and 24.4 cM, respectively. The second gene (wptms2) was mapped between markers Xgwm374 and Xgwm120 at a genetic distance of 6.6 and 20.9 cM, respectively. The closest linked markers Xgwm335 (wptms1) and Xgwm374 (wptms2) explained 53 and 38% of phenotypic variation for the fertility. The SSR markers provide a useful tool to transfer the male sterile genes into elite wheat germplasm.  相似文献   

18.
Analyses of RFLPs, isozymes, morphological markers and chromosome pairing were used to isolate 12 Triticum aestivum cv Chinese Spring (genomes A, B, and D)-T. peregrinum (genomes Sv and Uv) disomic chromosome addition lines. The evidence obtained indicates that each of the 12 lines contains an intact pair of T. peregrinum chromosomes. One monosomic addition line, believed to contain an intact 6Sv chromosome, was also isolated. A CS-7Uv chromosome addition line was not obtained. Syntenic relationships in common with the standard Triticeae arrangement were found for five of the seven Sv genome chromosomes. The exceptions were 4Sv and 7Sv. A reciprocal translocation exists between 4S1 and 7S1 in T. longissimum and evidence was obtained that the same translocation exists in T. peregrinum. In contrast, evidence for syntenic relationships in common with the standard Triticeae arrangements were found for only one Uv chromosome of T. peregrinum.; namely, chromosome 2Uv. All other Uv genome chromosomes are involved in at least one translocation, and the same translocations were found in the U genome of T. umbellulatum. Evidence was also obtained indicating that the centromeric regions of 4U and 4Uv are homoeologous to the centromeric regions of Triticeae homoeologous group-6 chromosomes, that the centromeric regions of 6U and 6Uv are homoeologous to the centromeric regions of group-4 chromosomes, and that 4U and 4Uv are more closely related overall to Triticeae homoeologous group-6 chromosomes than they are to group-4 chromosomes.  相似文献   

19.
Leaf rust, caused by the fungus Puccinia triticina Eriks,is one of the most serious diseases of wheat (Triticum aestivum AABBDD, 2n=6x=42) worldwide. Growing resistant cultivars is an efficient and economical method of reducing losses to leaf rust. Here we report a new leaf rust resistance gene, Lr39, transferred from Aegilops tauschii into common wheat. Lr39 conditions both seedling and adult plant resistance to the leaf rust pathogen. The inter- and intra-chromosomal mapping of the Lr39 gene showed that it is different from all previously described Lr genes. We used monosomic analysis for the inter-chromosomal mapping and wheat microsatellite markers for the intra-chromosomal mapping. The monosomic and ditelosomic analysis indicated that Lr39 is independent of the centromere on the short arm of chromosome 2D. Eight microsatellite markers for 2DS were used for linkage analysis on a population of 57 F2 plants derived from a cross of an Ae. tauschii-derived wheat, cv. Wichita line TA4186 (possessing Lr39), with Wichita monosomics for the D-genome chromosomes. The microsatellite marker analysis confirmed the location of the gene on 2DS. Three markers were polymorphic and linked to the gene. The closest marker Xgwm210 mapped 10.7 cM from Lr39. The location of Lr39 near the telomere of 2DS distinguishes it from the Lr2 and Lr22 loci, which are located on 2DS proximal to Xgwm210. Received: 19 April 2000 / Accepted: 15 May 2000  相似文献   

20.
Fusarium head blight (FHB) resistance was identified in the alien species Leymus racemosus, and wheat-Leymus introgression lines with FHB resistance were reported previously. Detailed molecular cytogenetic analysis of alien introgressions T01, T09, and T14 and the mapping of Fhb3, a new gene for FHB resistance, are reported here. The introgression line T09 had an unknown wheat-Leymus translocation chromosome. A total of 36 RFLP markers selected from the seven homoeologous groups of wheat were used to characterize T09 and determine the homoeologous relationship of the introgressed Leymus chromosome with wheat. Only short arm markers for group 7 detected Leymus-specific fragments in T09, whereas 7AS-specific RFLP fragments were missing. C-banding and genomic in situ hybridization results indicated that T09 has a compensating Robertsonian translocation T7AL·7Lr#1S involving the long arm of wheat chromosome 7A and the short arm of Leymus chromosome 7Lr#1 substituting for chromosome arm 7AS of wheat. Introgression lines T01 (2n = 44) and T14 (2n = 44) each had two pairs of independent translocation chromosomes. T01 had T4BS·4BL-7Lr#1S + T4BL-7Lr#1S·5Lr#1S. T14 had T6BS·6BL-7Lr#1S + T6BL·5Lr#1S. These translocations were recovered in the progeny of the irradiated line Lr#1 (T5Lr#1S·7Lr#1S). The three translocation lines, T01, T09, and T14, and the disomic addition 7Lr#1 were consistently resistant to FHB in greenhouse point-inoculation experiments, whereas the disomic addition 5Lr#1 was susceptible. The data indicated that at least one novel FHB resistance gene from Leymus, designated Fhb3, resides in the distal region of the short arm of chromosome 7Lr#1, because the resistant translocation lines share a common distal segment of 7Lr#1S. Three PCR-based markers, BE586744-STS, BE404728-STS, and BE586111-STS, specific for 7Lr#1S were developed to expedite marker-assisted selection in breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号