首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Endo-oligopeptidase A, highly purified from the cytosol fraction of bovine brain by immunoaffinity chromatography, has been characterised as a thiol endopeptidase. This enzyme, known to hydrolyse the Phe5-Ser6 bond of bradykinin and the Arg8-Arg9 bond of neurotensin has been shown to produce, by a single cleavage, [Leu]enkephalin or [Met]enkephalin from small enkephalin-containing peptides. Enkephalin formation could be inhibited in a concentration dependent manner by the alternative substrate bradykinin. The optimal substrate size was found to be 8-13 amino acids, with enkephalin the only product released from precursors in which this sequence is immediately followed by a pair of basic residues. However, the specificity constants (kcat/Km) obtained for endo-oligopeptidase A hydrolysis of bradykinin, neurotensin and dynorphin B are of the same order. Taken together, these results indicate that the substrate amino acid sequence is not the only factor determining the cleavage site of this enzyme. Finally, endo-oligopeptidase A and metalloendopeptidase EC 3.4.24.15 are two different enzymes. The latter is not able to liberate enkephalins from metorphamide and dynorphin.  相似文献   

2.
[3H]Dynorphin A(1-8) is readily metabolised by rat lumbosacral spinal cord tissue in vitro, affording a variety of products including a significant amount (20% recovered activity) of [3H][Leu5]enkephalin. In the presence of the peptidase inhibitors bestatin, captopril, thiorphan, and leucyl-leucine, [3H][Leu5]enkephalin was the major metabolic product, accounting for 60% of recovered activity. Production of [3H][Leu5]enkephalin was seen across all gross brain regions. The enzyme responsible for the cleavage has an optimal substrate length of 8-13 amino acids and is inhibited by N-[1-(RS)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate, a site-directed inhibitor of the metalloendopeptidase EC 3.4.24.15. However the enzymic breakdown also has properties in common with involvement of endo-oligopeptidase A. Possible consequences of the formation of [Leu5]-enkephalin from the smaller dynorphins are discussed.  相似文献   

3.
Limited proteolysis of the dynorphin precursor (prodynorphin) at dibasic and monobasic processing sites results in the generation of bioactive dynorphins. In the brain and neurointermediate lobe of the pituitary, prodynorphin is processed to produce alpha and beta neo endorphins, dynorphins (Dyn) A-17 and Dyn A-8, Dyn B-13, and leucine-enkephalin. The formation of Dyn A-8 from Dyn A-17 requires a monobasic cleavage between Ile and Arg. We have identified an enzymatic activity capable of processing at this monobasic site in the rat brain and neurointermediate lobe of the bovine pituitary; this enzyme is designated "dynorphin A-17 processing enzyme." In the rat brain and neurointermediate lobe, a majority of the Dyn A processing enzyme activity is membrane-associated and can be released by treatment with 1% Triton X-100. This enzyme has been purified to apparent homogeneity from the membrane extract of the neurointermediate lobe using preparative iso-electrofocussing in a granulated gel pH 3.5 to 10, FPLC using anion exchange chromatography, and non-denaturing electrophoresis. The Dyn A processing enzyme exhibits a pI of about 5.8 and a molecular mass of about 65 kDa under reducing conditions. The Dyn A processing enzyme is a metalloprotease and has a neutral pH optimum. It exhibits substantial sensitivity to metal chelating agents and thiol agents suggesting that this enzyme is a thiol-sensitive metalloprotease. Specific inhibitors of other metallopeptidases such as enkephalinase [EC 3.4.24.11], the enkephalin generating neutral endopeptidase [EC 3.4.24.15], or NRD convertase do not inhibit the Dyn A processing enzyme activity. In contrast, specific inhibitors of angiotensin converting enzyme inhibit the activity. The purified enzyme is able to process a number of neuropeptides at both monobasic and dibasic sites. These characteristics are consistent with a role for the Dyn A processing enzyme in the processing of Dyn A-17 and other neuropeptides in the brain.  相似文献   

4.
Endo-oligopeptidase A, EC 3.4.22.19, converts small enkephalin-containing peptides into the corresponding enkephalins in vitro. We investigated the presence of endooligopeptidase A in the retina and its possible colocalization with enkephalins in retinal neurons. The specific activity of endo-oligopeptidase. A found in pigeon retinae (30.3 +/- 7.3 mU/mg, mean +/- standard deviation) was four times higher than in rabbit retinae (7.0 +/- 1.1 mU/mg). The enzyme activity was not modified by EDTA, but it was enhanced by dithiothreitol and inhibited by zinc and 5,5'-dithiobis(2-nitrobenzoic acid). Immunohistochemical experiments with a purified antiserum against rabbit endo-oligopeptidase A revealed labeled neurons in both the inner nuclear layer and the ganglion cell layer of pigeon and rabbit retinae. Double-labeling immunofluorescence experiments demonstrated that about 90% of neurons containing endo-oligopeptidase A-like immunoreactivity also contained [Leu5]-enkephalin-like immunoreactivity. These colocalization results may represent an important step toward the demonstration of the possible involvement of endo-oligopeptidase A in enkephalin generation in vivo.  相似文献   

5.
Brain contains a membrane-bound form of endopeptidase-24.15, a metalloendopeptidase predominantly associated with the soluble protein fraction of brain homogenates. Subcellular fractionation of the enzyme in rat brain showed that 20-25% of the total activity is associated with membrane fractions including synaptosomes. Solubilization of the enzyme from synaptosomal membranes required the use of detergents or treatment with trypsin. The specific activity of the enzyme in synaptosomal membranes measured with tertiary-butoxycarbonyl-Phe-Ala-Ala-Phe-p-aminobenzoate as substrate was higher than that of endopeptidase-24.11 ("enkephalinase"), a membrane-bound zinc-metalloendopeptidase believed to function in brain neuropeptide metabolism. Purified synaptosomal membranes converted efficiently dynorphin1-8, alpha- and beta-neoendorphin into leucine enkephalin and methionine-enkephalin-Arg6-Gly7-Leu8 into methionine enkephalin in the presence of captopril, bestatin, and N-[1-(R,S)-carboxy-2-phenylethyl]-Phe-p-aminobenzoate, inhibitors of angiotensin converting enzyme (EC 3.4.15.1), aminopeptidase (EC 3.4.11.2), and membrane-bound metalloendopeptidase (EC 3.4.24.11), respectively. The conversion of enkephalin-containing peptides into enkephalins was virtually completely inhibited by N-[1-(R,S)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate, a specific active-site-directed inhibitor of endopeptidase-24.15, indicating that this enzyme was responsible for the observed interconversions. The data indicate that synaptosomal membranes contain enzymes that can potentially generate and degrade both leucine- and methionine-enkephalin.  相似文献   

6.
The effect of peptidase inhibitors on the degradation of [3H]-bradykinin by rat hypothalamic slices was studied using HPLC to separate and identify the products. The degradation appears to be mainly mediated by an enzyme which cleaves the peptide at the Phe5-Ser6 bond and is inhibited by 1,10-phenanthroline, dynorphin(1-13) and carboxyphenylethyl-Ala-Ala-Phe-p-aminobenzoate. This suggest the involvement of a membrane bound variant of the soluble metalloendopeptidase (EC3.4.24.15) isolated from rat brain which degrades neurotensin, angiotensin and other neuropeptides as well as bradykinin.  相似文献   

7.
We have developed a method that is based on two HPLC systems and permits the separation of endogenous opioid peptides in tissue extracts. The individual peptides are bioassayed on the mouse isolated vas deferens; naloxone (100 nM) ensures opioid specificity. In the myenteric plexus-longitudinal muscle preparation of the guinea-pig small intestine, the tissue content of prodynorphin-derived peptides is lower than those of proenkephalin-derived peptides. No beta-endorphin was detected. Of the prodynorphin fragments, alpha-neoendorphin, beta-neoendorphin, dynorphin A(1-8), and dynorphin B are present in equimolar concentrations (12-15 pmol/g) whereas the tissue content of dynorphin A is only 0.8 pmol/g. Processing of proenkephalin leads to at least six opioid peptides. The tissue contents of [Leu5]enkephalin, [Met5]enkephalyl-Arg-Gly-Leu, and [Met5]enkephalyl-Arg-Phe are 90-100 pmol/g and the content of [Met5]enkephalin is 405 pmol/g. BAM-18 and [Met5]enkephalyl-Arg-Arg-Val-NH2 are present in much lower concentrations, 24 and 5 pmol/g, respectively. Although present in low amounts, BAM-18 and [Met5]-enkephalyl-Arg-Arg-Val-NH2 have high affinity for the mu-opioid binding site and to a lesser extent for the kappa-site; this binding profile differs from that of the other proenkephalin fragments all of which have high affinities for the mu- and delta-sites.  相似文献   

8.
Oligopeptidases are tissue endopeptidases that do not attack proteins and are likely to be involved in the maturation and degradation of peptide hormones and neuropeptides. The rabbit brain endooligopeptidase A and the rat testes soluble metallopeptidase (EC 3.4.24.15) are thiol-activated oligopeptidases which are able to generate enkephalin from a number of opioid peptides and to inactivate bradykinin and neurotensin by hydrolyzing the same peptide bonds. A monospecific antibody raised against the purified rabbit brain endooligopeptidase A allowed the identification of a 2. 3 kb cDNA coding for a truncated enzyme of 512 amino acids, displaying the same enzymatic features as endooligopeptidase A. In spite of all efforts, employing several strategies, the full-length cDNA could not be cloned until now. The analysis of the deduced amino acid sequence showed no similarity to the rat testes metalloendopeptidase sequence, except for the presence of the typical metalloprotease consensus sequence [HEXXH]. The antibody raised against recombinant endooligopeptidase A specifically inhibited its own activity and reduced the thiol-activated oligopeptidase activity of rabbit brain cytosol to less than 30%. Analysis of the endooligopeptidase A tissue distribution indicated that this enzyme is mainly expressed in the CNS, whereas the soluble metallo EC 3.4.24.15 is mainly expressed in peripheral tissues.  相似文献   

9.
The subcellular and regional distribution of endo-oligopeptidase (EC 3.4.22.19), an enzyme capable of generating enkephalin by single cleavage from enkephalin-containing peptides, was determined by an enzymatic assay using metorphamide and by immunochemical techniques in the CNS of the rat. The rat CNS contains a membrane-associated form of endo-oligopeptidase, an enzyme predominantly associated with the soluble fraction of brain homogenates. Subcellular fractionation showed that approximately 17% of the total activity of the enzyme is associated with membrane fractions including synaptosomes. Synaptosomal membranes were prepared from neocortex, striatum, hypothalamus, medulla, spinal cord, and cerebellum. The amount of EC 3.4.22.19 activity solubilized by 3-[( 3-cholamidopropyl]dimethylammonio)-1-propanesulfonate from synaptosomal membranes was similar in neocortex, striatum, and hypothalamus, being three- to 10-fold greater than in spinal cord, cerebellum, and medulla. A polyclonal antibody exhibiting high affinity for endo-oligopeptidase was raised in rabbits against the purified rat brain enzyme and used to localize endo-oligopeptidase by Western blotting and by immunoperoxidase techniques. A strong band corresponding to the Mr of EC 3.4.22.19 was found in solubilized proteins obtained from synaptosomal membranes prepared from hypothalamus, neocortex, and striatum when subjected to Western blotting. The immunohistochemical localization of endo-oligopeptidase indicated that the immunoreactivity was confined to gray matter in regions known to be rich in peptide-containing neurons such as the striatum. In the cerebellum, a region poor in peptides, no staining could be detected. The nonuniform distribution of endo-oligopeptidase in rat brain suggests a role in neurotransmitter processing in the CNS.  相似文献   

10.
Following incubation of [3H]dynorphin A (1-8) and [3H]dynorphin A (1-9) with suspensions of guinea pig brain membranes, analysis of the supernatants by HPLC has shown that both peptides are degraded at 25 degrees C and at 0 degrees C. Bestatin and captopril reduce degradation at 0 degrees C but for a similar degree of protection at 25 degrees C arginine-containing dipeptides are also required. The effects of these peptidase inhibitors on the degradation profiles indicate that [3H]dynorphin A (1-8) has three main sites of cleavage: the Tyr1-Gly2, Arg6-Arg7, and Leu5-Arg6 bonds. With [3H]dynorphin A (1-9) as substrate the Arg7-Ile8 and Ile8-Arg9 bonds are also liable to cleavage. In binding assays, in contrast to the effects of peptidase inhibitors on the degradation of unbound [3H]dynorphin A (1-8) and [3H]dynorphin A (1-9), bestatin and captopril have little effect on the binding characteristics of the tritiated dynorphin A fragments at the kappa-site at 0 degrees C. However, at 25 degrees C binding is low in the absence of peptidase inhibitors. When binding at mu- and delta-sites is prevented, the maximal binding capacities of [3H]dynorphin A (1-8), [3H]dynorphin A (1-9), and [3H](-)-bremazocine at the kappa-site are similar; [3H]dynorphin A (1-9) has 5-10 times higher affinity for the kappa-site than [3H]dynorphin A (1-8). Comparison of the effects of peptidase inhibitors on unbound dynorphin A fragments with their effects in binding assays suggests that the bound peptides are protected from the action of peptidases.  相似文献   

11.
Selective binding of [3H]bremazocine and [3H]-ethylketocyclazocine to kappa-opioid receptor sites in frog (Rana esculenta) brain membranes is irreversibly inactivated by the sulfhydryl group alkylating agent N-ethylmaleimide (NEM). Pretreatment of the membranes with kappa-selective compounds [ethylketocyclazocine (EKC), dynorphin (1-13), or U-50,488H] but not with [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DAGO; mu specific ligand) or [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DADLE; delta specific ligand) strongly protects the binding of the radioligands against NEM inactivation. These results provide more evidence for the existence of kappa-opioid receptors in frog brain. The relatively high concentrations of NEM that are needed to decrease the specific binding of [3H]bremazocine together with the observation of an almost complete protection of its binding sites by NaCl suggest that bremazocine may act as an opioid antagonist in frog brain.  相似文献   

12.
P W Schiller  B Eggimann  T M Nguyen 《Life sciences》1982,31(16-17):1777-1780
Analogs of dynorphin-(1-13) with modifications in the enkephalin segment were compared with correspondingly modified analogs of [Leu5]enkephalin in the guinea pig ileum (GPI) and mouse vas deferens (MVD) assay as well as in mu- and delta-receptor selective binding assays. The obtained results indicate that a) the enkephalin binding domain of the dynorphin (kappa) receptor has structural requirements which are distinct from those of the enkephalin binding site at the mu-receptor and b) the introduction of an identical conformational constraint in [Leu5]enkephalin and in the enkephalin segment of dynorphin-(1-13) produces a superpotent agonist in both cases. Fluorescence energy transfer measurements with the active [4-tryptophan]analogs of dynorphin-(1-13) and [Leu5]enkephalin and with dynorphin-(1-17) demonstrated a more extended conformation of the N-terminal tetrapeptide segment in [Trp4]dynorphin-(1-13) than in [Trp4, Leu5]enkephalin as well as the absence of an interaction between the N- and C-terminal segments of dynorphin-(1-17).  相似文献   

13.
Tissues of the reproductive tract have been shown to contain mRNAs coding for pro-opiomelanocortin (POMC), pro-enkephalin and pro-dynorphin. However, the amounts of immunoreactive opioid peptides in these tissues are low, and in the case of the enkephalins and dynorphin, the molecular species responsible for the immunoreactivities have not been characterized. The chromatographic properties of dynorphin and enkephalin immunoreactivities in extracts of guinea pig and rat testis have therefore been determined. Dynorphin A and dynorphin B immunoreactivity was heterogeneous, with a significant amount attributable to high-molecular-weight forms. About 20% of the dynorphin A immunoreactivity, and about 40% of the dynorphin B immunoreactivity, in guinea pig testis extracts behaved as authentic dynorphin A or B, respectively during fractionation by ion exchange, gel filtration and high-performance liquid chromatography. Both high- and low-molecular-weight forms of [Leu5]enkephalin immunoreactivity were also present, with roughly 50-70% of the immunoreactivity attributable to low-molecular-weight forms. In extracts of guinea pig testis only a small part of this immunoreactivity eluted as authentic [Leu5]enkephalin during high-performance liquid chromatography. In rat testis most of the low-molecular-weight [Leu5]enkephalin immunoreactivity behaved as the authentic peptide. These results confirm that opioid peptides are produced in guinea pig and rat testis, and demonstrate that immunoreactive forms of the peptides similar to those found in brain and pituitary are present in the tissue.  相似文献   

14.
Brain Endo-Oligopeptidase A, a Putative Enkephalin Converting Enzyme   总被引:6,自引:4,他引:2  
Endo-oligopeptidase A, highly purified from the cytosol fraction of bovine brain by immunoaffinity chromatography, has been characterized as a thiol endopeptidase. This enzyme, known to hydrolyze the Phe5-Ser6 bond of bradykinin and the Arg8-Arg9 bond of neurotensin, has been shown to produce, by a single cleavage, Leu5-enkephalin or Met5-enkephalin from small enkephalin-containing peptides. Enkephalin formation could be inhibited in a concentration-dependent manner by the alternative substrate bradykinin. The optimal substrate size was found to be eight to 13 amino acids, with enkephalin the only product released from precursors in which this sequence is immediately followed by a pair of basic residues. However, the specificity constants (kcat/Km) obtained for endo-oligopeptidase A hydrolysis of bradykinin, neurotensin, and dynorphin B are of the same order, a result indicating that the substrate amino acid sequence is not the only factor determining the cleavage site of this enzyme.  相似文献   

15.
Leucine- and methionine-enkephalins inhibit the Na+-dependent transport of proline into plasma membrane vesicles derived from synaptosomes. Glycine transport is weakly inhibited by enkephalins whereas there is no inhibition of transport of glutamic acid, aspartic acid, or gamma-aminobutyric acid. The inhibition of proline uptake is observed with des-tyrosyl-enkephalins but not with morphine, dynorphin(1-13), or beta-endorphins. Furthermore, enkephalin-induced inhibition of proline transport is not antagonized by naloxone. [Leu]enkephalinamide and modified [Leu]enkephalins with greater selectivity for the delta-subclass of enkephalin binding sites are less effective than [Leu]enkephalin in the inhibition of proline transport. Specific binding of [3H]Leu-enkephalin to the plasma membrane vesicles is demonstrated, and des-Tyr-[Leu]enkephalin competes with Leu-enkephalin for [Leu]enkephalin binding sites. The similarity in the concentrations of des-Tyr-[Leu]enkephalin required to compete for specific [Leu]enkephalin binding and to inhibit proline transport suggests that a specific subclass of enkephalin binding sites, distinguished by their recognition of both the enkephalins and their des-tyrosyl derivatives, may be associated with the synaptic proline transport system.  相似文献   

16.
A ligand containing an SNpys group, i.e. 3-nitro-2-pyridinesulfenyl linked to a mercapto (or thiol) group, can bind covalently to a free mercapto group to form a disulfide bond via the thiol-disulfide exchange reaction. This SNpys chemistry has been successfully applied to the discriminative affinity labeling of mu and delta opioid receptors with SNpys-containing enkephalins [Yasunaga, T. et al. (1996) J. Biochem. 120, 459-465]. In order to explore the mercapto groups conserved at or near the ligand binding sites of three opioid receptor subtypes, we synthesized two Cys(Npys)-containing analogs of dynorphin A, namely, [D-Ala2, Cys(Npys)8]dynorphin A-(1-9) amide (1) and [D-Ala2, Cys(Npys)12]dynorphin A-(1-13) amide (2). When rat (mu and delta) or guinea pig (kappa) brain membranes were incubated with these Cys(Npys)-containing dynorphin A analogs and then assayed for inhibition of the binding of DAGO (mu), deltorphin II (delta), and U-69593 (kappa), the number of receptors decreased sharply, depending upon the concentrations of these Cys(Npys)-containing dynorphin A analogs. It was found that dynorphin A analogs 1 and 2 effectively label mu receptors (EC50 = 27-33 nM), but also label delta receptors fairly well (160-180 nM). However, for kappa receptors they showed drastically different potencies as to affinity labeling; i.e., EC50 = 210 nM for analog 1, but 10,000 nM for analog 2. Analog 2 labeled kappa receptors about 50 times more weakly than analog 1. These results suggested that dynorphin A analog 1 labels the Cys residues conserved in mu, delta, and kappa receptors, whereas analog 2 only labels the Cys residues conserved in mu and delta receptors.  相似文献   

17.
C G Knight  A J Barrett 《FEBS letters》1991,294(3):183-186
Some novel N-[1(RS)-carboxy-3-phenylpropyl]tripeptide p-aminobenzoates have been synthesised as inhibitors of thimet oligopeptidase (EC 3.4.24.15). These compounds are considered to bind as substrate analogues with the Cpp group in S1 and the peptide portion in the S' sites. The most potent inhibitor is Cpp-Ala-Pro-Phe-pAb, which has a Ki = 7 nM. Substitution of Gly for Ala at P1' leads to weaker binding which can be ascribed to increased rotational freedom. Good substrates often have Pro at P2' and Pro is favoured over Ala at this position in the inhibitors, too. When P2' is Pro, Phe is preferred over Tyr and Trp in P3'. The p-aminobenzoate group makes an important contribution to the binding, probably by forming a salt bridge, and removal of the C-terminal negative charge results in much less potent inhibitors.  相似文献   

18.
Three peptide neuromodulators that are found in high concentration in the substantia nigra: dynorphin A 1-8, met5-enkephalin-arg6-gly7-leu8 and substance P, were measured by specific radioimmunoassays in nigral tissue from normals and schizophrenics postmortem. Substance P and dynorphin were unchanged between the two groups. However, the proenkephalin-derived peptide was significantly elevated in the schizophrenic group. The immunoreactivity was identified as authentic met5-enkephalin-arg6-gly7-leu8 by high pressure liquid chromatography. The data suggest that a different set of regulatory controls exists for nigral enkephalin peptides as compared to dynorphin and substance P, and that the former system may be disordered in schizophrenia.  相似文献   

19.
The ability of opioids to influence rectal temperature after injection into the periaqueductal grey region (PAG) of rat brain was investigated. Both morphine and beta-endorphin caused a dose-dependent increase in rectal temperature of up to 2 degrees C. By using selective ligands of the subclasses of opiate receptor such as [D-Ala2,D-Leu5]enkephalin for delta-receptors and ethylketocyclazocine, dynorphin(1-17) and dynorphin(1-8) for kappa-receptors, it was possible to show that neither the delta- nor the kappa-opiate receptor was involved in the hyperthermic response. However, [D-Ala2,MePhe4,Gly-ol5]enkephalin (DAGO), a mu-receptor ligand, did produce a dose-dependent hyperthermia. The ability of naltrexone, an opiate receptor antagonist, to reverse the hyperthermia induced by beta-endorphin and DAGO suggests that the opioid-stimulated increase in body temperature via the PAG is mediated through the mu-opiate receptor. Since the application of opioids to the PAG produces a hyperthermic response, it is possible that this brain site may have a role in the peptidergic control of body temperature.  相似文献   

20.
Since both aminopeptidases and angiotensin I-converting enzyme are reported to degrade circulating enkephalins, we have examined the degradation of low-molecular-weight opioid peptides by a vascular plasma membrane-enriched fraction previously shown to contain both angiotensin I-converting enzyme (EC 3.4.15.1) and aminopeptidase M (EC 3.4.11.2). Except for an enkephalin analog resistant to amino-terminal hydrolysis, [D-Ala2]enkephalin, the purified vascular plasma membrane preferentially degraded low-molecular-weight opioids by hydrolysis of the N-terminal Tyr-1--Gly-2 bond. Enkephalin degradation was optimal at pH 7.0 and was inhibited by the aminopeptidase inhibitors amastatin (I50 = 0.08 microM), bestatin (9.0 microM) and puromycin (80 microM). Maximal rates of hydrolysis, calculated per mg plasma membrane protein, were highest for the shorter peptides (18.3, 15.6 and 16.6 nmol/min per mg for Met5-enkephalin, Leu5-enkephalin and Leu5-enkephalin-Arg6, respectively) and decreased with increasing peptide length (0.7 nmol/min per mg for dynorphin (1-13)). No significant hydrolysis of beta- and gamma-endorphin was detected. Km values decreased significantly with increasing peptide length (Km = 72.9 +/- 2.7, 43.6 +/- 4.7 and 21.4 +/- 0.9 microM for Met5-enkephalin, Leu5-enkephalin-Arg6 and Met5-enkephalin-Arg6-Phe7, respectively). However, no further decreases were seen with even larger sequences, i.e., dynorphin(1-13). Other peptides hydrolyzed by the plasma membrane aminopeptidase (angiotensin III, kallidin and hepta(5-11)-substance P) inhibited enkephalin degradation in a competitive manner. Thus, localization, specificity and kinetic data are consistent with identification of aminopeptidase M as a vascular enzyme with the capacity to differentially metabolize low-molecular-weight opioid peptides within the microenvironment of vascular cell surface receptors. Such differential metabolism may play a role in modulating the vascular effects of peripheral opioids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号