首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.

Key message

Avoidance mechanisms and intrinsic resistance are complementary strategies to improve winter frost tolerance and yield potential in field pea.

Abstract

The development of the winter pea crop represents a major challenge to expand plant protein production in temperate areas. Breeding winter cultivars requires the combination of freezing tolerance as well as high seed productivity and quality. In this context, we investigated the genetic determinism of winter frost tolerance and assessed its genetic relationship with yield and developmental traits. Using a newly identified source of frost resistance, we developed a population of recombinant inbred lines and evaluated it in six environments in Dijon and Clermont-Ferrand between 2005 and 2010. We developed a genetic map comprising 679 markers distributed over seven linkage groups and covering 947.1 cM. One hundred sixty-one quantitative trait loci (QTL) explaining 9–71 % of the phenotypic variation were detected across the six environments for all traits measured. Two clusters of QTL mapped on the linkage groups III and one cluster on LGVI reveal the genetic links between phenology, morphology, yield-related traits and frost tolerance in winter pea. QTL clusters on LGIII highlighted major developmental gene loci (Hr and Le) and the QTL cluster on LGVI explained up to 71 % of the winter frost damage variation. This suggests that a specific architecture and flowering ideotype defines frost tolerance in winter pea. However, two consistent frost tolerance QTL on LGV were independent of phenology and morphology traits, showing that different protective mechanisms are involved in frost tolerance. Finally, these results suggest that frost tolerance can be bred independently to seed productivity and quality.  相似文献   

2.
Omega-3 fatty acids are essential fatty acids for human health. Therefore, increasing both percentage of omega-3 and a better fatty acid profile in fish fillets is one of the breeding goals in aquaculture. However, it is difficult to increase the omega-3 content in fish fillets, as the phenotypic selection of these traits is not easily feasible. To facilitate the genetic improvement of the Asian seabass for optimal fatty acid profiles, a genome-wide scan for quantitative trait loci (QTL) affecting fatty acid level in the flesh of the Asian seabass was performed on an F2 family containing 314 offspring. All family members were genotyped using 123 informative microsatellites and 22 SNPs. High percentages of n-3 polyunsaturated fatty acids (PUFA), especially C22:6 (DHA 16.48?±?3.09 %) and C20:5 (EPA 7.19?±?0.86 %) were detected in the flesh. One significant and 54 suggestive QTL for different fatty acids and a water content trait were detected on the whole genome. QTL for C18:0b was located on linkage groups (LG) 5. QTL for total n-3 PUFA content in flesh were mapped onto LG6 and LG23 with the phenotypic variance explained ranging from 3.8 to 6.3 %. Four QTL for C22:6 were detected on LG6, LG23, and LG24, explaining 3.9 to 4.9 % of the phenotypic variance, respectively. Mapping of QTL for contents of different fatty acids is the first step towards improving the omega-3 content in the fillets of fish by using marker-assisted selection and is important for understanding the biology of fatty acid deposition.  相似文献   

3.
Pea weevil, Bruchus pisorum, is one of the limiting factors for field pea (Pisum sativum) cultivation in the world with pesticide application the only available method for its control. Resistance to pea weevil has been found in an accession of Pisum fulvum but transfer of this resistance to cultivated pea (P. sativum) is limited due to a lack of easy-to-use techniques for screening interspecific breeding populations. To address this problem, an interspecific population was created from a cross between cultivated field pea and P. fulvum (resistance source). Quantitative trait locus (QTL) mapping was performed to discover the regions associated with resistance to cotyledon, pod wall/seed coat and pod wall resistance. Three major QTLs, located on linkage groups LG2, LG4 and LG5 were found for cotyledon resistance explaining approximately 80 % of the phenotypic variation. Two major QTLs were found for pod wall/seed coat resistance on LG2 and LG5 explaining approximately 70 % of the phenotypic variation. Co-linearity of QTLs for cotyledon and pod wall/seed coat resistance suggested that the mechanism of resistance for these two traits might act through the same pathways. Only one QTL was found for pod wall resistance on LG7 explaining approximately 9 % of the phenotypic variation. This is the first report on the development of QTL markers to probe Pisum germplasm for pea weevil resistance genes. These flanking markers will be useful in accelerating the process of screening when breeding for pea weevil resistance.  相似文献   

4.
Spring radiation frost is a major abiotic stress in southern Australia, reducing yield potential and grain quality of barley by damaging sensitive reproductive organs in the latter stages of development. Field-based screening methods were developed, and genetic variation for reproductive frost tolerance was identified. Mapping populations that were segregating for reproductive frost tolerance were screened and significant QTL identified. QTL on chromosome 2HL were identified for frost-induced floret sterility in two different populations at the same genomic location. This QTL was not associated with previously reported developmental or stress-response loci. QTL on chromosome 5HL were identified for frost-induced floret sterility and frost-induced grain damage in all three of the populations studied. The locations of QTL were coincident with previously reported vegetative frost tolerance loci close to the vrn-H1 locus. This locus on chromosome 5HL has now been associated with response to cold stress at both vegetative and reproductive developmental stages in barley. This study will allow reproductive frost tolerance to be seriously pursued as a breeding objective by facilitating a change from difficult phenotypic selection to high-throughput genotypic selection.  相似文献   

5.
The thermotolerance effect of heat hardening (also called short-term acclimation), knockdown resistance to high temperature (KRHT) with and without heat hardening and chill-coma recovery (CCR) are important phenotypes of thermal adaptation in insects and other organisms. Drosophila melanogaster from Denmark and Australia were previously selected for low and high KRHT, respectively. These flies were crossed to construct recombinant inbred lines (RIL). KRHT was higher in heat-hardened than in nonhardened RIL. We quantify the heat-hardening effect (HHE) as the ratio in KRHT between heat-hardened and nonhardened RIL. Composite interval mapping revealed a more complex genetic architecture for KRHT without heat-hardening than for KRHT in heat-hardened insects. Five quantitative trait loci (QTL) were found for KRHT, but only two of them were significant after heat hardening. KRHT and CCR showed trade-off associations for QTL both in the middle of chromosome 2 and the right arm of chromosome 3, which should be the result of either pleiotropy or linkage. The major QTL on chromosome 2 explained 18% and 27-33% of the phenotypic variance in CCR and KRHT in nonhardened flies, respectively, but its KRHT effects decreased by heat hardening. We discuss candidate loci for each QTL. One HHE-QTL was found in the region of small heat-shock protein genes. However, HHE-QTL explained only a small fraction of the phenotypic variance. Most heat-resistance QTL did not colocalize with CCR-QTL. Large-effect QTL for CCR and KRHT without hardening (basal thermotolerance) were consistent across continents, with apparent transgressive segregation for CCR. HHE (inducible thermotolerance) was not regulated by large-effect QTL.  相似文献   

6.
An understanding of the genetic determinism of frost tolerance is a prerequisite for the development of frost tolerant cultivars for cold northern areas. In legumes, it is not known to which extent vernalization requirement or photoperiod responsiveness are necessary for the development of frost tolerance. In pea (Pisum sativum L.) however, the flowering locus Hr is suspected to influence winter frost tolerance by delaying floral initiation until after the main winter freezing periods have passed. The objective of this study was to dissect the genetic determinism of frost tolerance in pea by QTL analysis and to assess the genetic linkage between winter frost tolerance and the Hr locus. A population of 164 recombinant inbred lines (RILs), derived from the cross Champagne x Terese was evaluated both in the greenhouse and in field conditions to characterize the photoperiod response from which the allele at the Hr locus was inferred. In addition, the population was also assessed for winter frost tolerance in 11 field conditions. Six QTL were detected, among which three were consistent among the different experimental conditions, confirming an oligogenic determinism of frost tolerance in pea. The Hr locus was found to be the peak marker for the highest explanatory QTL of this study. This result supports the hypothesis of the prominent part played by the photoperiod responsiveness in the determinism of frost tolerance for this species. The consistency of three QTL makes these positions interesting targets for marker-assisted selection. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Freezing is a major environmental limitation to crop productivity for a number of species including legumes. We investigated the genetic determinism of freezing tolerance in the model legume Medicago truncatula Gaertn (M. truncatula). After having observed a large variation for freezing tolerance among 15 M. truncatula accessions, the progeny of a F6 recombinant inbred line population, derived from a cross between two accessions, was acclimated to low above-freezing temperatures and assessed for: (a) number of leaves (NOL), leaf area (LA), chlorophyll content index (CCI), shoot and root dry weights (SDW and RDW) at the end of the acclimation period and (b) visual freezing damage (FD) during the freezing treatment and 2 weeks after regrowth and foliar electrolyte leakage (EL) 2 weeks after regrowth. Consistent QTL positions with additive effects for FD were found on LG1, LG4 and LG6, the latter being the most explanatory (R 2 ≈ 40 %). QTL for NOL, QTL for EL, NOL and RDW, and QTL for EL and CCI colocalized with FD QTL on LG1, LG4 and LG6, respectively. Favorable alleles for these additive effects were brought by the same parent suggesting that this accession contributes to superior freezing tolerance by affecting plants’ capacity to maintain growth at low above-freezing temperatures. No epistatic effects were found between FD QTL, but for each of the studied traits, 3–6 epistatic effects were detected between loci not detected directly as QTL. These results open the way to the assessment of syntenic relationships between QTL for frost tolerance in M. truncatula and cultivated legume species.  相似文献   

8.
Quantitative traits, seed size, yield and days to flowering were studied in a chickpea intraspecific recombinant inbred line (RIL) population (F6:7) derived from a Kabuli × Desi cross. The population was evaluated in two locations over 2 years. Days to flowering was also evaluated in the greenhouse under short-day conditions. Seed size was the most heritable trait (0.90), followed by days to flowering (0.36) and yield (0.14). Negative and significant correlation was found between yield and seed size in the second year where environmental homogeneity was tested by analysing the controls included in each assay. During the first year, the environment was not considered homogeneous for yield in either location. Quantitative trait loci (QTLs) for the three characters were detected in linkage group (LG) 4. In relation to seed size, two QTLs were located in LG4 (QTLSW1) and LG8 (QTLSW2). QTLSW1 accounted 20.3% of the total phenotypic variation and QTLSW2 explained 10.1%. A QTL for yield (QTLYD) was located in LG4 explaining around 13% of variation. QTLYD might be pleiotropic with QTLSW1. For days to flowering, a QTL (QTLDF1) was located in LG4 for all environments analysed explaining around 20% of variation. QTLDF1 was closely linked to QTLSW1 and QTLYD in LG4.  相似文献   

9.
Partial resistance to Phytophthora sojae in soybean is controlled by multiple quantitative trait loci (QTL). With traditional QTL mapping approaches, power to detect such QTL, frequently of small effect, can be limited by population size. Joint linkage QTL analysis of nested recombinant inbred line (RIL) populations provides improved power to detect QTL through increased population size, recombination, and allelic diversity. However, uniform development and phenotyping of multiple RIL populations can prove difficult. In this study, the effectiveness of joint linkage QTL analysis was evaluated on combinations of two to six nested RIL populations differing in inbreeding generation, phenotypic assay method, and/or marker set used in genotyping. In comparison to linkage analysis in a single population, identification of QTL by joint linkage analysis was only minimally affected by different phenotypic methods used among populations once phenotypic data were standardized. In contrast, genotyping of populations with only partially overlapping sets of markers had a marked negative effect on QTL detection by joint linkage analysis. In total, 16 genetic regions with QTL for partial resistance against P. sojae were identified, including four novel QTL on chromosomes 4, 9, 12, and 16, as well as significant genotype-by-isolate interactions. Resistance alleles from PI 427106 or PI 427105B contributed to a major QTL on chromosome 18, explaining 10–45 % of the phenotypic variance. This case study provides guidance on the application of joint linkage QTL analysis of data collected from populations with heterogeneous assay conditions and a genetic framework for partial resistance to P. sojae.  相似文献   

10.
Quantitative trait loci influencing fruit traits were identified by restriction fragment length polymorphism (RFLP) analysis in a population of recombinant inbred lines (RIL) derived from a cross of the cultivated tomato, Lycopersicon esculentum with a related wild species Lycopersicon cheesmanii. One hundred thirty-two polymorphic RFLP loci spaced throughout the tomato genome were scored for 97 F8 RIL families. Fruit weight and soluble solids were measured in replicated trials during 1991 and 1992. Seed weight was measured in 1992. Significant (P<0.01 level) quantitative trait locus (QTL) associations of marker loci were identified for each trait. A total of 73 significant marker locus-trait associations were detected for the three traits measured. Fifty-three of these associations were for fruit weight and soluble solids, many of which involved marker loci signficantly associated with both traits. QTL with large effects on all three traits were detected on chromosome 6. Greater homozygosity at many loci in the RIL population as compared to F2 populations and greater genomic coverage resulted in increased precision in the estimation of QTL effects, and large proportions of the total phenotypic variance were explained by marker class variation at significant marker loci for many traits. The RIL population was effective in detecting and discriminating among QTL for these traits previously identified in other investigations despite skewed segregation ratios at many marker loci. Large additive effects were measured at significant marker loci. Lower fruit weight, higher soluble solids, and lower seed weight were generally associated with RFLP alleles from theL. cheesmanii parent.  相似文献   

11.
Amino acids are both constituents of proteins, providing the essential nutrition for humans and animals, and signalling molecules regulating the growth and development of plants. Most cultivars of maize are deficient in essential amino acids such as lysine and tryptophan. Here, we measured the levels of 17 different total amino acids, and created 48 derived traits in mature kernels from a maize diversity inbred collection and three recombinant inbred line (RIL) populations. By GWAS, 247 and 281 significant loci were identified in two different environments, 5.1 and 4.4 loci for each trait, explaining 7.44% and 7.90% phenotypic variation for each locus in average, respectively. By linkage mapping, 89, 150 and 165 QTLs were identified in B73/By804, Kui3/B77 and Zong3/Yu87‐1 RIL populations, 2.0, 2.7 and 2.8 QTLs for each trait, explaining 13.6%, 16.4% and 21.4% phenotypic variation for each QTL in average, respectively. It implies that the genetic architecture of amino acids is relative simple and controlled by limited loci. About 43.2% of the loci identified by GWAS were verified by expression QTL, and 17 loci overlapped with mapped QTLs in the three RIL populations. GRMZM2G015534, GRMZM2G143008 and one QTL were further validated using molecular approaches. The amino acid biosynthetic and catabolic pathways were reconstructed on the basis of candidate genes proposed in this study. Our results provide insights into the genetic basis of amino acid biosynthesis in maize kernels and may facilitate marker‐based breeding for quality protein maize.  相似文献   

12.
Low temperature stress is common for rice grown in temperate regions and at high elevations in the tropics. The most senstive stage to this stress is booting, about 11 days before heading. Japonica cultivars are known to be more tolerant than indicas. We constructed a genetic map using 191 recombinant inbred lines derived from a cross between a temperate japonica, M-202, and a tropical indica, IR50, in order to locate quantitative trait loci (QTLs) conferring cold tolerance. The map with a total length of 1,276.8 cM and an average density of one marker every 7.1 cM was developed from 181 loci produced by 175 microsatellite markers. Cold tolerance was measured as the degree of spikelet sterility of treated plants at a 12 degrees C temperature for 5 days in the growth chamber. QTLs on chromosomes 1, 2, 3, 5, 6, 7, 9 and 12 were identified to confer cold tolerance at the booting stage. The QTL contribution to the phenotypic variation ranged from 11 to 17%. The two QTLs with the highest contribution to variation, designated qCTB2a and qCTB3, were derived from the tolerant parent, M-202, each explaining approximately 17% of the phenotypic variance. Two of the eight QTLs for cold tolerance were contributed by IR50.  相似文献   

13.
Disease resistance‐related traits have received increasing importance in aquaculture breeding programs worldwide. Currently, genomic information offers new possibilities in breeding to address the improvement of this kind of traits. The turbot is one of the most promising European aquaculture species, and Philasterides dicentrarchi is a scuticociliate parasite causing fatal disease in farmed turbot. An appealing approach to fight against disease is to achieve a more robust broodstock, which could prevent or diminish the devastating effects of scuticociliatosis on farmed individuals. In the present study, a genome scan for quantitative trait loci (QTL) affecting resistance and survival time to P. dicentrarchi in four turbot families was carried out. The objectives were to identify QTL using different statistical approaches [linear regression (LR) and maximum likelihood (ML)] and to locate significantly associated markers for their application in genetic breeding strategies. Several genomic regions controlling resistance and survival time to P. dicentrarchi were detected. When analyzing each family separately, significant QTL for resistance were identified by the LR method in two linkage groups (LG1 and LG9) and for survival time in LG1, while the ML methodology identified QTL for resistance in LG9 and LG23 and for survival time in LG6 and LG23. The analysis of the total data set identified an additional significant QTL for resistance and survival time in LG3 with the LR method. Significant association between disease resistance‐related traits and genotypes was detected for several markers, a single one explaining up to 22% of the phenotypic variance. Obtained results will be essential to identify candidate genes for resistance and to apply them in marker‐assisted selection programs to improve turbot production.  相似文献   

14.
Bacterial wilt caused by Xanthomonas translucens pv. graminis (Xtg) is a major disease of economically important forage crops such as ryegrasses and fescues. Targeted breeding based on seedling inoculation has resulted in cultivars with considerable levels of resistance. However, the mechanisms of inheritance of resistance are poorly understood and further breeding progress is difficult to obtain. This study aimed to assess the relevance of the seedling screening in the glasshouse for adult plant resistance in the field and to investigate genetic control of resistance to bacterial wilt in Italian ryegrass (Lolium multiflorum Lam.). A mapping population consisting of 306 F1 individuals was established and resistance to bacterial wilt was assessed in glasshouse and field experiments. Highly correlated data (r = 0.67–0.77, P < 0.01) between trial locations demonstrated the suitability of glasshouse screens for phenotypic selection. Analysis of quantitative trait loci (QTL) based on a high density genetic linkage map consisting of 368 amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers revealed a single major QTL on linkage group (LG) 4 explaining 67% of the total phenotypic variance (Vp). In addition, a minor QTL was observed on LG 5. Field experiments confirmed the major QTL on LG 4 to explain 43% (in 2004) to 84% (in 2005) of Vp and also revealed additional minor QTLs on LG 1, LG 4 and LG 6. The identified QTLs and the closely linked markers represent important targets for marker-assisted selection of Italian ryegrass.  相似文献   

15.
Cowpea is an important crop for subsistence farmers in arid regions of Africa, Asia, and South America. Efforts to develop cultivars with improved productivity under drought conditions are constrained by lack of molecular markers associated with drought tolerance. Here, we report the mapping of 12 quantitative trait loci (QTL) associated with seedling drought tolerance and maturity in a cowpea recombinant inbred (RIL) population. One hundred and twenty-seven F8 RILs developed from a cross between IT93K503-1 and CB46 were screened with 62 EcoR1 and Mse1 primer combinations to generate 306 amplified fragment length polymorphisms for use in genetic linkage mapping. The same population was phenotyped for maintenance of stem greenness (stg) and recovery dry weight (rdw) after drought stress in six greenhouse experiments. In field experiments conducted over 3 years, visual ratings and dry weights were used to phenotype drought stress-induced premature senescence in the RIL population. Kruskall–Wallis and multiple-QTL model mapping analysis were used to identify QTL associated with drought response phenotypes. Observed QTL were highly reproducible between stg and rdw under greenhouse conditions. Field studies confirmed all ten drought-response QTL observed under greenhouse conditions. Regions harboring drought-related QTL were observed on linkage groups 1, 2, 3, 5, 6, 7, 9, and 10 accounting for between 4.7 and 24.2% of the phenotypic variance (R 2). Further, two QTL for maturity (R 2 = 14.4–28.9% and R 2 = 11.7–25.2%) mapped on linkage groups 7 and 8 separately from drought-related QTL. These results provide a platform for identification of genetic determinants of seedling drought tolerance in cowpea. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Fusarium head blight (FHB) of wheat causes not only significant reduction in grain yield and end-use quality, but also the contamination of the grain with mycotoxins that are detrimental to human and animal health after consumption of infected grain. Growing resistant varieties is an effective approach to minimize the FHB damage. The Chinese wheat landrace Haiyanzhong (HYZ) shows a high level of resistance to FHB. To identify quantitative trait loci (QTL) that contribute to FHB resistance in HYZ, 136 recombinant inbred lines (RIL) were developed from a cross of HYZ and Wheaton, a hard spring wheat cultivar from the USA. The RIL and their parents were evaluated for percentage of scabbed spikelets (PSS) in both greenhouse and field environments. Five QTL were detected for FHB resistance in HYZ with one major QTL on 7DL. The 7DL QTL peaked at SSR marker Xwmc121, which is flanked by the SSR markers Xcfd46 and Xwmc702. This QTL explained 20.4?C22.6% of the phenotypic variance in individual greenhouse experiments and 15.9% in a field experiment. Four other minor QTL on 6BS (two QTL), 5AS and 1AS each explained less than 10% of the phenotypic variance in individual experiments. HYZ carried the favorable alleles associated with FHB resistance at the QTL on 7DL, 6BS and 5AS, and the unfavorable allele at the QTL on 1AS. The major QTL on 7D can be used to improve the FHB resistance in wheat breeding programs and add diversity to the FHB resistance gene pool.  相似文献   

17.
Low temperatures in summer bring about drastic reduction in seed yield of soybean [Glycine max (L.) Merr.]. To identify quantitative trait loci (QTL) associated with chilling tolerance during the reproductive growth in soybean, a recombinant inbred line (RIL) population consisting of 104 F6-derived lines was created from a cross between two cultivars, chilling-tolerant Hayahikari and chilling-sensitive Toyomusume. The RIL were genotyped with 181 molecular and phenotypic markers and were scored with regard to chilling tolerance, which was evaluated by comparison of seed-yielding abilities in two artificial climatic environments at chilling and usual temperatures. Three QTL were detected for chilling tolerance in seed-yielding ability. Two of them, qCTTSW1 and qCTTSW2, were mapped near QTL for flowering time, and the latter had an epistatic interaction with a marker locus located near another QTL for flowering time, where no significant QTL for chilling tolerance was detected. The analysis of an F2 population derived from the cross between Hayahikari and an RIL of the Hayahikari genotype at all QTL for flowering time confirmed the effect of the third QTL, qCTTSW3, on chilling tolerance and suggested that qCTTSW1 was basically independent of the QTL for flowering time. The findings and QTL found in this study may provide useful information for marker-assisted selection (MAS) and further genetic studies on soybean chilling tolerance.  相似文献   

18.
Drought is the major constraint to chickpea productivity worldwide. Utilizing early flowering genotypes and larger seed size have been suggested as strategies for breeding in drought zones. Therefore, this study aimed to identify potential markers linked to days-to-flowering, 100-seed weight, and plant height in a chickpea intraspecific F2:3 population derived from the cross ILC3279 × ICCV2. A closely linked marker (TA117) on linkage group LG3 was identified for the days-to-flowering trait, explaining 33% of the variation. In relation to plant height, a quantitative trait loci (QTL) was located in LG3, close to the Ts5 marker, that explained 29% of phenotypic variation. A QTL for 100-seed weight located in LG4, close to TA176, explained 51% of variation. The identification of a locus linked both to high 100-seed weight and days-to-flowering may account for the correlation observed between these traits in this and other breeding attempts.  相似文献   

19.
20.
In Laminaria japonica Aresch breeding practice, two quantitative traits, frond length (FL) and frond width (FW), are the most important phenotypic selection index. In order to increase the breeding efficiency by integrating phenotypic selection and marker-assisted selection, the first set of QTL controlling the two traits were determined in F2 family using amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) markers. Two prominent L. japonicas inbred lines, one with “broad and thin blade” characteristics and another with “long and narrow blade” characteristics, were applied in the hybridization to yield the F2 mapping population with 92 individuals. A total of 287 AFLP markers and 11 SSR markers were used to construct a L. japonica genetic map. The yielded map was consisted of 28 linkage groups (LG) named LG1 to LG28, spanning 1,811.1 cM with an average interval of 6.7 cM and covering the 82.8% of the estimated genome 2,186.7 cM. While three genome-wide significant QTL were detected on LG1 (two QTL) and LG4 for “FL,” explaining in total 42.36% of the phenotypic variance, two QTL were identified on LG3 and LG5 for the trait “FW,” accounting for the total of 36.39% of the phenotypic variance. The gene action of these QTL was additive and partially dominant. The yielded linkage map and the detected QTL can provide a tool for further genetic analysis of two traits and be potential for maker-assisted selection in L. japonica breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号