首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 921 毫秒
1.
为了解喷施多效唑对高粱(Sorghum bicolor)生长发育和生理的影响,在高粱品种‘农大红1号’拔节期喷施多效唑水溶液,对高粱的生长发育和生理指标进行了研究。结果表明,喷施不同浓度的多效唑后,高粱株高均比对照降低,基部节间长度缩短,茎粗增加,且穗粒重也提高。同时,高粱叶片的叶绿素含量和净光合速率提高,且抗氧化酶活性提高并降低了丙二醛含量。因此喷施多效唑可提高高粱的抗倒伏性,延缓叶片衰老,提高产量。在大田生产中,以拔节期喷施450~600 mg/L多效唑的效果较好。  相似文献   

2.
本试验探讨了不同浓度多效唑(PP333)对琯溪蜜抽枝梢生长和越冬期叶片淀粉、可溶性糖含量、束缚水/自由水比值的影响.结果表明,多效唑处理能提高越冬期叶片可溶性糖含量,增大束缚水/自由水比值,降低淀粉含量;多效唑处理使新梢长度、节间长度明显受抑制,新梢粗度增加,且随着使用浓度的增大作用增强.  相似文献   

3.
花生叶片衰老过程中,多胺代谢酶精氨酸脱羧酶(ADC)、鸟氨酸脱羧酶(ODC)和多胺氧化酶(PAO)活性逐渐下降,而腐胺(Put)含量迅速上升,精胺(SPm)、亚精胶(Spd)含量下降,致使衰老期间Put/(Spd+Spm)迅速上升。  相似文献   

4.
多效唑对紫穗槐生长及生理特性的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
采用盆栽试验的方法研究了土施不同浓度多效唑(1、5、10、15、20 mg/L)对紫穗槐(Amorpha fruticosa Linn.)生长及生理特性的影响,以探明多效唑对紫穗槐的作用机制和最佳处理方式。结果显示:随着多效唑处理浓度(1~20 mg/L)的增加,紫穗槐幼苗株高、单叶面积和主根长呈下降趋势,基径、叶片长宽比、根鲜重和根冠比呈上升趋势;多效唑各处理均使紫穗槐幼苗叶片的相对含水量、叶绿素、可溶性糖和可溶性蛋白含量显著升高,POD活性显著增加,MDA含量和相对电导率显著下降。采用隶属函数法对各项生长、生理指标进行综合评价,结果发现20 mg/L多效唑处理下紫穗槐幼苗的抗性最强。说明多效唑可通过调节紫穗槐幼苗的生物量分配、水分状况、细胞渗透性和抗氧化性等,有效改善其生长、生理特性及提高抗逆性。本研究结果为多效唑在边坡植被建成和恢复中的应用提供了理论依据。  相似文献   

5.
以忍冬品种‘九丰一号’(Lonicera japonica‘Jiufeng 1’)为实验材料,采用叶面喷施方法研究了不同质量浓度多效唑和缩节胺对现蕾前(抽枝生长初期)枝叶生长和叶片叶绿素含量以及花蕾性状和花蕾中绿原酸和总黄酮含量的影响。结果显示:分别喷施100、400、700和1 000 mg·L-1多效唑和50、100、150和200 mg·L-1缩节胺后,多数处理组的开花枝条数、着花节数和叶绿素含量较对照CK1(水)有不同程度提高,但叶面积差异不明显。随处理时间延长,各处理组枝条节间长度总体上呈逐渐增加的趋势,其中多数处理组枝条节间长度增长缓慢。各处理的花蕾长度、百蕾鲜质量和干质量总体上小于CK1,而花蕾折干率、总黄酮含量和绿原酸含量显著或不显著高于CK1。此外,在喷施多效唑和缩节胺的同时喷施质量体积分数1.0%尿素和质量体积分数0.1%硼砂,忍冬的叶面积、着花节数、花蕾长度、折干率、百蕾鲜质量和干质量总体上有所提高,而绿原酸含量降低,但各指标的差异总体较小。研究结果表明:喷施适量多效唑和缩节胺可调控忍冬枝条生长,并能提高花蕾中总黄酮和绿原酸含量。  相似文献   

6.
该试验以绿化卷材为基质材料,对沙场、渣场和混凝土屋面3种立地条件下生长的黄荆进行不同浓度(0、100、200、300、400mg·L~(-1))多效唑处理,研究根施多效唑对黄荆生长和生理特征的影响以及不同立地环境的应用差异。结果显示:(1)随多效唑浓度升高,3种立地类型黄荆株高和生物量呈降低趋势,冠幅、基径、叶面积、根幅、主根长和主根径呈减小趋势,叶片长宽比和根冠比表现出增大的趋势;多效唑处理使黄荆叶片相对含水量、叶绿素含量、可溶性糖和可溶性蛋白含量增加,使丙二醛含量下降。(2)不同立地条件下黄荆对多效唑处理的表现具有一定差异,隶属函数法综合评价显示,对沙场、渣场和屋面3种立地类型的黄荆生长调控效果最佳的多效唑浓度分别为400mg·L~(-1)、300mg·L~(-1)、100mg·L~(-1)。(3)当多效唑浓度在渣场和屋面分别为400、300mg·L~(-1)时,黄荆叶片开始受到伤害,对多效唑的耐受阈值表现为沙场渣场屋面。研究认为,多效唑可有效调控黄荆的形态和生物量分配,增强细胞渗透调节和抗氧化损伤能力,从而提高黄荆的抗逆性和环境适应性,但在应用时应考虑不同立地背景的差异,因地制宜地选择使用浓度和用量,使其更好地应用于人工植被恢复与建设。  相似文献   

7.
多效唑对水仙生长发育的影响   总被引:1,自引:0,他引:1  
陈健辉  王厚麟 《广西植物》2010,30(2):161-165
为提高水仙的观赏价值,探讨复合多效唑对水仙生长发育的影响,用不同的多效唑溶液对水仙鳞茎进行处理。结果表明:多效唑能抑制水仙的营养生长,使植株矮化粗壮,叶片碧绿、挺拔,不易倒伏,根白、短而壮;复合多效唑配方使平均叶长减少37.7%,花期延长2d,花朵直径增加18.3%,延缓黄化叶片的出现,减慢叶肉薄壁细胞及其中叶绿体的解体,在后期维管束的结构相对完整,有效提高观赏价值。  相似文献   

8.
研究了不同质量浓度(0~50 mg·L-1)多效唑对碗莲(Nelumbo nucifera Gaertn.)品种'火花'('Huohua')生长的影响及多效唑处理过程中叶片部分生理指标的变化,并进行了隶属函数值分析和相关性分析.结果表明:质量浓度10~50 mg·L-1多效唑处理抑制碗莲品种'火花'生长.随着多效唑质量浓度提高,立叶数、立叶长、立叶宽、立叶高、花径、花高和开花总数总体上呈逐渐降低的趋势,且总体上与对照组(质量浓度0 mg·L-1多效唑)差异显著.随着处理时间延长,质量浓度10~50 mg·L-1多效唑处理组叶片中丙二醛(MDA)含量、过氧化物酶(POD)活性和多酚氧化酶(PPO)活性的变化趋势各异;质量浓度10~50 mg·L-1多效唑处理组叶片中可溶性蛋白质含量和超氧化物歧化酶(SOD)活性,以及质量浓度10、20和30 mg·L-1多效唑处理组叶片中过氧化氢酶(CAT)活性总体上呈先升高后降低的变化趋势,而质量浓度40和50 mg·L-1多效唑处理组叶片中CAT活性则呈逐渐降低的变化趋势.相关性分析结果表明:碗莲品种'火花'生长指标的隶属函数值间以及叶片中可溶性蛋白质含量和POD活性的隶属函数值与生长指标的隶属函数值间的相关性总体在0.05或0.01水平上显著.研究结果显示:质量浓度10、20和30 mg·L-1多效唑处理可有效控制碗莲品种'火花'生长,提高其观赏性;且其生长指标以及叶片中可溶性蛋白质含量和POD活性可以作为判断碗莲品种'火花'矮化效果的可靠、简易指标.  相似文献   

9.
多胺与植物衰老关系研究进展   总被引:35,自引:0,他引:35  
多胺作为生理活性物质与植物衰老关系密切。本文综述了近十年来多胺对衰老的调控作用,从调节细胞膜的理化性质,生物大分子合成作用以及多胺与乙烯的关系等方面阐述了多胺延缓衰老的机制,比较了多胺和影响衰老的植物激素在信号转导过程中的作用。  相似文献   

10.
王晓云  邹琦 《植物学报》2002,19(1):11-20
多胺作为生理活性物质与植物衰老关系密切。本文综述了近十多年来多胺对衰老的调控作用,从调节细胞膜的理化性质、生物大分子合成作用以及多胺与乙烯的关系等方面阐述了多胺延缓衰老的机制,比较了多胺和影响衰老的植物激素在信号转导过程中的作用。  相似文献   

11.
Ethylene biosynthesis and polyamine content were determined in [(2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol] (paclobutrazol) pre-treated and non-treated water-stressed apple seedling leaves. Paclobutrazol reduced water loss, and decreased endogenous putrescine spermidine content. Gibberellic acid (GA) counteracted the inhibitory effect of paclobutrazol on polyamine content. Paclobutrazol also prevented accumulation of water stress-induced 1-aminocyclopropane-1-carboxylic acid (ACC), 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC), ethylene production and polyamines in apple leaves. α-Difluoromethylarginine (DFMA), but not α-difluoromethylornithine (DFMO), inhibited the rise of putrescine and spermidine in stressed leaves. S-Adenosylmethionine (SAM) was maintained at a steady state level even when ethylene and the polyamines were actively synthesized in stressed apple seedling leaves. The conversion of ACC to ethylene did not appear to be affected by paclobutrazol treatment.  相似文献   

12.
The [(2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1- yl)-pentan-3-ol] (paclobutrazol, PP333) measured in apple seedlings (`York Imperial' Malus domestica Borkh) was confirmed by gas chromatography-mass spectrometry. Data showed that paclobutrazol was taken up through roots and transported primarily in the xylem through the stems and accumulated in leaves. No detectable basipetal movement of paclobutrazol in apple seedlings was found.  相似文献   

13.
The stress protective effects of triazoles including paclobutrazol, a plant growth regulator, and two fungicides, propiconazole and tetraconazole, are compared. Wheat (Triticum aestivum L. cv Katepwa) seeds were imbibed for 18 h in distilled water (Ck) or in aqueous solutions of each triazole (50 mg L-1). Seeds were then air dried, planted in sectioned plastic flats and grown in a greenhouse. After 10 days, one set of seedlings were allowed to continue growing under optimal conditions while additional sets were exposed to various stresses including high temperatures, drought and spray with the herbicide paraquat. Compared to wheat leaves from plants grown under optimal conditions, heat stress decreased shoot fresh weight, fluorescence values and chlorophyll levels. It also increased ion leakage. All symptoms of damage were alleviated by the triazoles, with paclobutrazol being the most potent. Similar trends were found under acute drought conditions, where seedlings treated with paclobutrazol had the highest percent survival and the most shoot regrowth upon rewatering. Paclobutrazol was also the best triazole in protecting wheat leaves from damage caused by paraquat, a free radical generator. It is concluded that while all the triazoles have the potential to be stress protectants, paclobutrazol was consistently the most effective.  相似文献   

14.
The effects of polyamines (putrescine, spermidine and spermine) on glutathione reductase (glutathione: NADP+ oxidoreductase, EC 1.8.1.7; GR) activity of spinach leaves (Spinacia oleracea L. cv. Gladiator) were investigated under in vivo and in vitro conditions. Spinach was grown in sand culture under controlled conditions for 30 d. In in vivo assays 30-day-old plants were sprayed with polyamines once, and leaves were harvested 1, 5, 10 and 15 d after treatment. The three polyamines decreased the GR activity to different degrees, depending on time after application, type of compound and their concentration. In order to study whether or not polyamines can exert a direct effect on GR, the enzyme was partially purified from spinach leaves and incubated with polyamines in the reaction medium. Under these in vitro conditions, GR was inhibited by polyamines in a polyamine type- and concentration-dependent manner. Interestingly, spermine exerted the most intense inhibitory effect in both in vivo and in vitro experiments. It is proposed that the early decrease of glutathione reductase activity in leaves treated with polyamines can be due to a direct interaction of these compounds with the enzyme.  相似文献   

15.
The effects of paclobutrazol on the leaf membrane lipid composition of seedlings of cucumber ( Cucumis sativus L. cv. Victory) subjected to chilling temperatures were assessed. At a non-injurious temperature (12.5°C), there was no difference in the polar lipid fatty acid composition or in the glycolipid, phospholipid or free sterol content of leaves from treated vs untreated seedlings, regardless of whether paclobutrazol was administered 1 or 7 days prior to analysis. In the latter case (7 days pretreatment), there were clear effects of the bioregulator on plant growth and morphology as well as on leaf chlorophyll content. At an injurious chilling temperature (5°C), desaturation of leaf polar lipid fatty acids was markedly reduced in both treated and untreated seedlings. Chilling at 5°C resulted in losses of fresh weight and membrane lipids in leaves of both groups of plants. These losses were either reversible or irreversible, depending upon the duration of chilling and of pretreatment with paclobutrazol. Seedlings pretreated with 10 μg ml−1 paclobutrazol generally sustained less chilling injury than untreated controls, as judged by the extent of wilting, necrosis and desiccation. This correlated with reduced losses of leaf fresh Weight and membrane lipids.  相似文献   

16.
Morphological and biochemical changes in plant cells are known as important events for adaptation to stress. In this study, in Ctenanthe setosa leaves to which polyamines were applied during drought stress, changes in the activity of peroxidase, reducing sugar, proline and soluble protein levels were investigated. The three common polyamines, putrescine, spermidine and spermine were exogenously treated through the leaves. The polyamines were sprayed onto the leaves at 5 x 10(-5) M. In the leaves to which polyamines were applied the peroxidase activity decreased, soluble protein increased. Also, it was determined that putrescine and spermidine caused an increase in the amount of proline and in reducing sugar. However, increase was not observed in the leaves to which spermine was applied. In addition, we observed an increase in the activity of peroxidase, proline and reducing sugar levels, and a decrease in soluble protein level in the control ones and the leaves to which polyamines were applied during drought stress. As a result, the effect of polyamine on leaf rolling may be explained through the contribution to osmotic adjustment of the increase in proline, reducing sugar and soluble protein contents.  相似文献   

17.
Some physiological and biochemical changes in apple seedlings ( Malus domestica Borkh cv. 'York Imperial') caused by an inhibitor of gibberellin biosynthesis, paclobutrazol [(2RS, 3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl) pentan-3-ol], were determined. Paclobutrazol shifted assimilate partitioning from leaves to roots, increased carbohydrates in all parts of apple seedlings, increased chlorophyll content on a leaf area basis, increased soluble protein in leaves, increased mineral element concentration in leaf tissue and increased root respiration. Foliar application of gibberellic acid (GA3) counteracted the effects induced by paclobutrazol.  相似文献   

18.
Cucumber ( Cucumis sativus L. cv. Victory) seedlings were exposed to chilling at 5°C and endogenous levels of polyamines and 1-aminocyclopropane-1-carboxylic acid (ACC) were measured after chilling and after warming at 20°C. The level of spermidine was higher in the chilled seedlings than in the non-chilled seedlings. Treatment with a plant bioregulator, (2RS,3RS)-1-(4-cholorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3-ol (paclobutrazol), reduced the chilling injury and the levels of spermidine in the chilled seedlings. The levels of ACC and production of ethylene showed sharp increases after warming following exposure to chilling. These increases were suppressed by the application of aminooxyacetic acid (AOA). However, AOA treatment did not reduce chilling injury or affect the levels of polyamines in the tissue. These data indicate that the increase in ACC and ethylene is a response of the tissue to the chilling exposure and is not a cause of the injury. The data also suggest that the syntheses of polyamines and ethylene are not competitive with each other even under chilling stress conditions.  相似文献   

19.
The effect of polyamines and related metabolites on several parameters of leaf senescence was followed in detached radish ( Raphanus sativus L. var. radicular cv. "Giant Butter") leaves floated on test solutions in darkness. Leaf senescence was accompanied by a marked loss of chlorophyll, which started at 24–48 h of incubation. The polyamines, spermine and spermidine, and the diamines, putrescine and cadaverine, were highly effective in arresting chlorophyll loss over a period of at least 96 h. l -arginine, and especially l -ornithine, were less active. Polyaminens prevented the marked chlorophyll loss in dark-incubated leaves, but did not compensate for the moderate chlorophyll loss when the leaves were aged in light. Polyamines were also highly effective in retarding earlier events of leaf senescence, prior to chlorophyll loss: both protein degradation and ribonuclease activity were inhibited by spermidine. Chlorophyll and protein loss in dark-or light-incubated suspensions of either "intact" or disrupted chloroplasts was not affected by polyamines. – It is concluded that polyamines are highly effective in preventing chlorophyll loss from detached leaves, possibly by controlling early senescence-linked events which occur in darkness rather than by direct inhibition of chlorophyll degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号