首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen evolution reaction (HER) is a key reaction in water splitting, and developing efficient and robust non‐noble electrocatalysts for HER is still a great challenge for large‐scale hydrogen production. Herein, a vertically aligned core–shell structure grown on Ti foil with CoP nanoarray as a core and N,P‐doped carbon (NPC) as a shell (CoP/NPC/TF) is first reported as an efficient electrocatalyst for HER. Results indicate that CoP/NPC/TF only demands the overpotentials of 91 and 80 mV to drive the current density of 10 mA cm?2 in acidic and alkaline solutions. The electrochemical measurements and theoretical calculations show that the synergy of CoP nanorod core and porous NPC shell enhances HER performance significantly, because the introduction of porous NPC shell not only offers more active sites but also improves the electrical conductivity and durability of the sample in acidic and alkaline solutions. Density functional theory calculation further reveals that all the C atoms between N and P atoms in CoP/NPC are the most efficient active sites, which greatly improve the HER performance. The identification of active species in this work provides an effective strategy to design and synthesize the low‐cost, high‐efficient, and robust CoP‐based electrocatalysts.  相似文献   

2.
It is urgently required to develop highly efficient and stable bifunctional non‐noble metal electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) for water splitting. In this study, a facile electrospinning followed by a post‐carbonization treatment to synthesize nitrogen‐doped carbon nanofibers (NCNFs) integrated with Ni and Mo2C nanoparticles (Ni/Mo2C‐NCNFs) as water splitting electrocatalysts is developed. Owing to the strong hydrogen binding energy on Mo2C and high electrical conductivity of Ni, synergetic effect between Ni and Mo2C nanoparticles significantly promote both HER and OER activities. The optimized hybrid (Ni/Mo2C(1:2)‐NCNFs) delivers low overpotentials of 143 mV for HER and 288 mV for OER at a current density of 10 mA cm?2. An alkaline electrolyzer with Ni/Mo2C(1:2)‐NCNFs as catalysts for both anode and cathode exhibits a current density of 10 mA cm?2 at a voltage of 1.64 V, which is only 0.07 V larger than the benchmark of Pt/C‐RuO2 electrodes. In addition, an outstanding long‐term durability during 100 h testing without obvious degradation is achieved, which is superior to most of the noble‐metal‐free electrocatalysts reported to date. This work provides a simple and effective approach for the preparation of low‐cost and high‐performance bifunctional electrocatalysts for efficient overall water splitting.  相似文献   

3.
One promising approach to hydrogen energy utilization from full water splitting relies on the successful development of earth‐abundant, efficient, and stable electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, homologous Co–Ni‐based nanotube/nanosheet structures with tunable Co/Ni ratios, including hydroxides and nitrides, are grown on conductive substrates by a cation‐exchanging method to grow hydroxides, followed by anion exchanging to obtain corresponding nitrides. These hydroxide OER catalysts and nitride HER catalysts exhibit low overpotentials, small Tafel slopes, and high current densities, which are attributed to their large electrochemically reactive surface, 1D morphologies for charge conduction, and octahedral coordination states of metal ions for efficient catalytic activities. The homologous Co–Ni‐based nanotube hydroxides and nitrides suggest promising electrocatalysts for full water splitting with high efficiency, good stability, convenient fabrication, and low cost.  相似文献   

4.
The advent of noble metal aerogels (NMAs), that feature the high catalytic activity of noble metals and unique structural attributes of aerogels, has stimulated research on a new class of outstanding electrocatalysts. However, limited by the available compositions, the explored electrocatalytic reactions on NMAs are highly restricted and certain important electrochemical processes have not been investigated. Here, an effective gelation approach is demonstrated by using a strong salting‐out agent (i.e., NH4F), thereby expanding the composition of NMAs to various multimetallic systems and providing a platform to investigate composition‐dependent electrocatalytic performance of NMAs. Combining structural features of aerogels and optimized chemical compositions, the Au–Pt and Au–Rh aerogel catalysts manifest remarkable pH‐universal (pH = 0–14) performance surpassing commercial Pt/C and many other nanoparticle (NP)‐based catalysts in the electrocatalytic oxygen reduction reaction, hydrogen evolution reaction, and water splitting, displaying enormous potential for the electrochemical hydrogen production, fuel cells, etc.  相似文献   

5.
The exploitation of cheap and efficient electrocatalysts is the key to make energy‐related electrocatalytic techniques commercially viable. In recent years, transition metal phosphides (TMPs) electrocatalysts have gained a great deal of attention owing to their multifunctional active sites, tunable structure, and composition, as well as unique physicochemical properties. This review summarizes the up‐to‐date progress on TMPs in energy‐related electrocatalysis from diversified synthetic methods, ingenious‐modulated strategies, and novel applications. In order to set forth theory–structure–performance relationships upon TMPs, the corresponding reaction mechanisms, electrocatalytsts' structure/composition designs and desired electrochemical performance are jointly discussed, along with demonstrating their practical electrocatalytic applications in overall water splitting, metal–air batteries, lithium–sulfur batteries, etc. In the end, some underpinning issues and research orientations of TMPs toward efficient energy‐related electrocatalysis are briefly proposed.  相似文献   

6.
Despite the exciting achievements made in synthesis of monofunctional electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), or hydrogen evolution reaction (HER), it is challenging to develop trifunctional electrocatalysts for both ORR/OER/HER. Herein, N, O‐codoped graphene nanorings‐integrated boxes (denoted NOGB) are crafted via high‐temperature pyrolysis and following acid etching of hybrid precursors containing polymers and Prussian blue analogue cubes. The electrochemical results signified that the resulting NOGB‐800 (800 refers to pyrolysis temperature) is highly active for trifunctional electrocatalysis of ORR/OER/HER. This can be reasonably attributed to the advanced nanostructures (i.e., the hierarchically porous nanostructures on the hollow nanorings) and unique chemical compositions (i.e., N, O‐codoped graphene). More attractively, the rechargeable Zn–air battery based on NOGB‐800 displays maximum power density of 111.9 mW cm?2 with small charge–discharge potential of 0.72 V and excellent stability of 30 h, comparable with the Pt/C+Ir/C counterpart. The NOGB‐800 could also be utilized as bifunctional electrocatalysts for overall water splitting to yield current density of 10 mA cm?2 at a voltage of 1.65 V, surpassing most reported electrocatalysts. Therefore, the NOGB‐800 is a promising candidate instead of precious metal–based electrocatalysts for the efficient Zn–air battery and water splitting.  相似文献   

7.
The combination of precious metals with non‐noble metals is an effective way to develop highly efficient, stable, and low cost electrocatalysts for overall water splitting. Herein, RhCu nanotubes (NTs) with rich structural defects are successfully synthesized by a mixed‐solvent strategy, which display superior activity and excellent stability for both the hydrogen evolution reaction (HER) and oxygen evolution reaction in all pH values. In particular, it only needs 8, 12, and 57 mV to deliver the current density of 10 mA cm?2 for HER in alkaline, acidic, and neutral conditions, respectively. Experiments combined with density functional theory (DFT) calculations reveal that the exposure of a suitable composition of a highly active Rh3Cu1 alloy phase through acid etching is the key to improve electrocatalytic performance, since it weakens the adsorption free energy of atomic oxygen and hydrogen, as well as facilitating the dissociation of water molecules. In addition, the structural defects can also boost the catalytic performance because the adsorption of reactants can be largely enhanced. The results provide a simple method to prepare alloy NTs as highly efficient electrocatalysts for overall water splitting in all pH values.  相似文献   

8.
The sustainable and scalable production of hydrogen through hydrogen evolution reaction (HER) and oxygen through oxygen evolution reaction (OER) in water splitting demands efficient and robust electrocatalysts. Currently, state‐of‐the‐art electrocatalysts of Pt and IrO2/RuO2 exhibit the benchmark catalytic activity toward HER and OER, respectively. However, expanding their practical application is hindered by their exorbitant price and scarcity. Therefore, the development of alternative effective electrocatalysts for water splitting is crucial. In the last few decades, substantial effort has been devoted to the development of alternative HER/OER and water splitting catalysts based on various transition metals (including Fe, Co, Ni, Mo, and atomic Pt) which show promising catalytic activities and durability. In this review, after a brief introduction and basic mechanism of HER/OER, the authors systematically discuss the recent progress in design, synthesis, and application of single atom and cluster‐based HER/OER and water splitting catalysts. Moreover, the crucial factors that can tune the activity of catalysts toward HER/OER and water splitting such as morphology, crystal defects, hybridization of metals with nonmetals, heteroatom doping, alloying, and formation of metals inside graphitic layered materials are discussed. Finally, the existing challenges and future perspectives for improving the performance of electrocatalysts for water splitting are addressed.  相似文献   

9.
Carbon‐based heteroatom‐coordinated single‐atom catalysts (SACs) are promising candidates for energy‐related electrocatalysts because of their low‐cost, tunable catalytic activity/selectivity, and relatively homogeneous morphologies. Unique interactions between single metal sites and their surrounding coordination environments play a significant role in modulating the electronic structure of the metal centers, leading to unusual scaling relationships, new reaction mechanisms, and improved catalytic performance. This review summarizes recent advancements in engineering of the local coordination environment of SACs for improved electrocatalytic performance for several crucial energy‐convention electrochemical reactions: oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, CO2 reduction reaction, and nitrogen reduction reaction. Various engineering strategies including heteroatom‐doping, changing the location of SACs on their support, introducing external ligands, and constructing dual metal sites are comprehensively discussed. The controllable synthetic methods and the activity enhancement mechanism of state‐of‐the‐art SACs are also highlighted. Recent achievements in the electronic modification of SACs will provide an understanding of the structure–activity relationship for the rational design of advanced electrocatalysts.  相似文献   

10.
Realizing solar‐to‐hydrogen (STH) efficiencies close to 20% using low‐cost semiconductors remains a major step toward accomplishing the practical viability of photoelectrochemical (PEC) hydrogen generation technologies. Dual‐absorber tandem cells combining inexpensive semiconductors are a promising strategy to achieve high STH efficiencies at a reasonable cost. Here, a perovskite photovoltaic biased silicon (Si) photoelectrode is demonstrated for highly efficient stand‐alone solar water splitting. A p+nn+ ‐Si/Ti/Pt photocathode is shown to present a remarkable photon‐to‐current efficiency of 14.1% under biased condition and stability over three days under continuous illumination. Upon pairing with a semitransparent mixed perovskite solar cell of an appropriate bandgap with state‐of‐the‐art performance, an unprecedented 17.6% STH efficiency is achieved for self‐driven solar water splitting. Modeling and analysis of the dual‐absorber PEC system reveal that further work into replacing the noble‐metal catalyst materials with earth‐abundant elements and improvement of perovskite fill factor will pave the way for the realization of a low‐cost high‐efficiency PEC system.  相似文献   

11.
Technology for producing highly pure hydrogen (99.999%) by water electrolysis is a field of importance in terms of the planets' current energy scenario. A much needed transition from a carbon economy to a hydrogen economy further adds importance to the field of hydrogen generation from water for a sustainable future. To avoid energy losses in the production process, the use of highly acidic (Proton Exchange Membrane (PEM) water electrolyzer) and alkaline (alkaline water electrolyzer) electrolytes is conventional practice in this field. Unfortunately, there are several other issues associated with the use of acidic and alkaline electrolytes such as the requirement of specific ion exchanging membranes with good stability, acid or alkali stable catalysts and corrosive environment withstanding cell stacks, etc. To overcome these issues, researchers have shown interest in the field of electrochemical water splitting in neutral and near‐neutral conditions. In this review, the chronological development of 3d transition‐metal‐based electrocatalysts for neutral and near‐neutral water splitting is extensively discussed with emphases on screening methodologies, mechanisms, structure‐activity correlations, and detailed catalyst specific evolution. In addition, catalysts reported so far, are also benchmarked based on their performance separately for different electrolytes used.  相似文献   

12.
The development of highly efficient and durable electrocatalysts is crucial for overall water splitting. Herein, the in situ scaffolding formation of 3D Prussian blue analogues (PBAs) on a variety of 2D or 1D metal hydroxides/oxides to fabricate hierarchical nanostructures is first demonstrated. Typically, cobalt hydroxide or oxide nanoarrays are used as the precursor and structural oriented template for the subsequent growth of 3D PBA nanocubes. The mechanism study reveals that the interfacial scaffolding process can be reversibly controlled via the in situ ion exchange process with adjusting coordination ions. Thus, the facile, versatile strategy can extend to successfully fabricate a variety of hierarchical PBA‐based nanostructures including on cobalt fluoride hydroxide, copper hydroxide, monometal or bimetal nickel–cobalt hydroxides, cobalt oxide, and manganese oxide nanosheets with structural tailor‐ability and chemical diversity. More interestingly, the metal nitride derivatives obtained via controlled calcination process exhibit good electrocatalytic activity for water splitting with low overpotentials, and remarkable durability for 1200 h, thanks to the superior intrinsic activity of bimetal nature and the scrupulous hierarchical structure. This versatile strategy provides a paradigm for rational design of PBA‐based functional nanomaterials, which is highly promising in energy conversion, storage, and electrocatalytic fields.  相似文献   

13.
Microbial fuel cell (MFC) can generate electricity from organic substances based on anodic electrochemically active microorganisms and cathodic oxygen reduction reaction (ORR), thus exhibiting promising potential for harvesting electric energy from organic wastewater. The ORR performance is crucial to both power production efficiency and overall cost of MFC. A new type of metal‐organic‐framework‐derived electrocatalysts containing cobalt and nitrogen‐doped carbon (CoNC) is developed, which is effective to enhance activity, selectivity, and stability toward four‐electron ORR in pH‐neutral electrolyte. When glucose is used as the substrate, the maximum power density of 1665 mW m?2 is achieved for the optimized CoNC pyrolyzed at 900 °C, which is 39.8% higher than that of 1191 mW m?2 for commercial Pt/C catalyst in the single‐chamber MFC. The improved performance of CoNC catalyst can be attributed to large surface area, microporous nature, and the involvement of nitrogen‐coordinated cobalt species. These properties enable the efficient ORR by increasing the active sites and enhancing mass transfer of oxygen and protons at “water‐flooding” three‐phase boundary where ORR occurs. This work provides a proof‐of‐concept demonstration of a noble‐metal‐free high‐efficiency and cost‐effective ORR electrocatalyst for effective recovery of electricity from biomass materials and organic wastewater in MFC.  相似文献   

14.
Water splitting is a promising technology for sustainable conversion of hydrogen energy. The rational design of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional electrocatalysts with superior activity and stability in the same electrolyte is the key to promoting their large‐scale applications. Herein, an ultralow Ru (1.08 wt%) transition metal phosphide on nickel foam (Ru–MnFeP/NF) derived from Prussian blue analogue, that effectively drivies both the OER and the HER in 1 m KOH, is reported. To reach 20 mA cm?2 for OER and 10 mA cm?2 for HER, the Ru–MnFeP/NF electrode only requires overpotentials of 191 and 35 mV, respectively. Such high electrocatalytic activity exceeds most transition metal phosphides for the OER and the HER, and even reaches Pt‐like HER electrocatalytic levels. Accordingly, it significantly accelerates full water splitting at 10 mA cm?2 with 1.470 V, which outperforms that of the integrated RuO2 and Pt/C couple electrode (1.560 V). In addition, the extremely long operational stability (50 h) and the successful demonstration of a solar‐to‐hydrogen generation system through full water splitting provide more flexibility for large‐scale applications of Ru–MnFeP/NF catalysts.  相似文献   

15.
The oxygen evolution reaction (OER), as an important process involved in water splitting and rechargeable metal–air batteries, has drawn increasing attention in the context of clean energy generation and efficient energy storage. This review concerns the progress and new discoveries in the field of Ni/Fe‐based micro/nanostructures toward electrochemical and photo‐electrochemical (PEC) water oxidation during last few years. First, toward the design and construction of new electrocatalysis, different types of current Ni/Fe‐based compounds for OER are summarized. The mechanism studies of the active phases and positions of Ni/Fe‐based micro/nanostructures are further introduced to understand the properties of catalytic active sites, which could facilitate further improving the performance of Ni/Fe‐based OER electrocatalysts. Second, splitting water using sunlight with low overpotential is another important target in making solar‐to‐hydrogen micro/nanodevices, and thus attention is then focused on the development of several important Ni/Fe‐based PEC catalysts. Third, the recent theoretical calculations on the OER mechanism during water splitting and insights into electronic structures are analyzed; finally, the future trends and perspectives are also discussed briefly.  相似文献   

16.
The oxygen evolution reaction (OER) is a bottleneck process for water splitting and finding highly efficient, durable, low‐cost, and earth‐abundant electrocatalysts is still a major challenge. Here a sulfur‐treated Fe‐based metal–organic‐framework is reported as a promising electrocatalyst for the OER, which shows a low overpotential of 218 mV at the current density of 10 mA cm?2 and exhibits a very low Tafel slope of 36.2 mV dec?1 at room temperature. It can work on high current densities of 500 and 1000 mA cm?2 at low overpotentials of 298 and 330 mV, respectively, by keeping 97% of its initial activity after 100 h. Notably, it can achieve 1000 mA cm?2 at 296 mV with a good stability at 50 °C, fully fitting the requirements for large‐scale industrial water electrolysis. The high catalytic performance can be attributed to the thermocatalytic processes of H+ capture by –SO3 groups from *OH or *OOH species, which cascades to the electrocatalytic pathway and then significantly reduces the OER overpotentials.  相似文献   

17.
The development of highly efficient and low‐cost electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is paramount for water splitting associated with the storage of clean and renewable energy. Here, this study reports its findings in the development of a nanostructured perovskite oxide as OER/HER bifunctional electrocatalyst for overall water splitting. Prepared by a facile electrospinning method, SrNb0.1Co0.7Fe0.2O3–δ perovskite nanorods (SNCF‐NRs) display excellent OER and HER activity and stability in an alkaline solution, benefiting from the catalytic nature of perovskites and unique structural features. More importantly, the SNCF‐NR delivers a current density of 10 mA cm?2 at a cell voltage of merely ≈1.68 V while maintaining remarkable durability when used as both anodic and cathodic catalysts in an alkaline water electrolyzer. The performance of this bifunctional perovskite material is among the best ever reported for overall water splitting, offering a cost‐effective alternative to noble metal based electrocatalysts.  相似文献   

18.
Breakthroughs toward effective water‐splitting electrocatalysts for mass hydrogen production will necessitate material design strategies based on unexplored material chemistries. Herein, Ni‐metalloid (B, Si, P, As, Te) alloys are reported as an emergent class of highly promising electrocatalysts for the oxygen evolution reaction (OER) and insight is offered into the origin of activity enhancement on the premise of the surface electronic structure, the OER activation energy, influence of the guest metalloid elements on the lattice structure of the host metal (Ni), and surface‐oxidized metalloid oxoanions. The metalloids modify the lattice structure of Ni, causing changes in the nearest Ni–Ni interatomic distance (dNi–Ni). The activation energy Ea scales with dNi–Ni indicating an apparent dependence of the OER activity on lattice properties. During the OER, surface Ni atoms are oxidized to nickel oxyhydroxide, which is the active state of the catalyst, meanwhile, the surface metalloids are oxidized to the corresponding oxoanions that affect the interfacial electrode/electrolyte properties and hence the adsorption/desorption interaction energies of the reacting species.  相似文献   

19.
Solar‐assisted photoelectrochemical (PEC) water splitting to produce hydrogen energy is considered the most promising solution for clean, green, and renewable sources of energy. For scaled production of hydrogen and oxygen, highly active, robust, and cost‐effective PEC electrodes are required. However, most of the available semiconductors as a PEC electrodes have poor light absorption, material degradation, charge separation, and transportability, which result in very low efficiency for photo‐water splitting. Generally, a promising photoelectrode is obtained when the surface of the semiconductor is modified/decorated with a suitable co‐catalyst because it increases the light absorbance spectrum and prevents electron–hole recombination during photoelectrode reactions. In this regard, numerous p‐ and d‐block elements, single atoms, and graphene‐based PEC electrodes have been widely used as semiconductor/co‐catalyst junctions to boost the performances of PEC overall water splitting. This review enumerates the recent progress and applications of p‐ and d‐block elements, single atoms, and graphene‐based PEC electrodes for water splitting. The focus is placed on fundamental mechanism, efficiency, cells design, and various aspects that contribute to the large‐scale prototype device. Finally, future perspectives, summary, challenges, and outlook for improving the activity of PEC photoelectrodes toward whole‐cell water splitting are addressed.  相似文献   

20.
Searching for highly efficient and cost‐effective electrocatalysts toward the hydrogen evolution reaction (HER) in alkaline electrolyte is highly desirable for the development of alkaline water splitting, but still remains a significant challenge. Herein, the rational design of Cr‐doped Co4N nanorod arrays grown on carbon cloth (Cr–Co4N/CC) that can efficiently catalyze the HER in alkaline media is reported. It displays outstanding performance, with the exceptionally small overpotential of 21 mV to obtain the current density of 10 mA cm?2 and good stability in 1.0 m KOH, which is even better than the commercial Pt/C electrocatalyst, and much lower than most of the reported transition metal nitride‐based and other non‐noble metal‐based electrocatalysts toward the alkaline HER. Density functional theory (DFT) calculations and experimental results reveal that the Cr atoms not only act as oxophilic sites for boosting water adsorption and dissociation, but also modulate the electronic structure of Co4N to endow optimized hydrogen binding abilities on Co atoms, thereby leading to accelerating both the alkaline Volmer and Heyrovsky reaction kinetics. In addition, this strategy can be extended to other metals (such as Mo, Mn, and Fe) doped Co4N electrocatalysts, thus may open up a new avenue for the rational design of highly efficient transition metal nitride‐based HER catalysts and beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号