首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Solid polymer electrolytes as one of the promising solid‐state electrolytes have received extensive attention due to their excellent flexibility. However, the issues of lithium (Li) dendrite growth still hinder their practical applications in solid‐state batteries (SSBs). Herein, composite electrolytes from “ceramic‐in‐polymer” (CIP) to “polymer‐in‐ceramic” (PIC) with different sizes of garnet particles are investigated for their effectiveness in dendrite suppression. While the CIP electrolyte with 20 vol% 200 nm Li6.4La3Zr1.4Ta0.6O12 (LLZTO) particles (CIP‐200 nm) exhibits the highest ionic conductivity of 1.6 × 10?4 S cm?1 at 30 °C and excellent flexibility, the PIC electrolyte with 80 vol% 5 µm LLZTO (PIC‐5 µm) shows the highest tensile strength of 12.7 MPa. A sandwich‐type composite electrolyte (SCE) with hierarchical garnet particles (a PIC‐5 µm interlayer sandwiched between two CIP‐200 nm thin layers) is constructed to simultaneously achieve dendrite suppression and excellent interfacial contact with Li metal. The SCE enables highly stable Li plating/stripping cycling for over 400 h at 0.2 mA cm?2 at 30 °C. The LiFePO4/SCE/Li cells also demonstrate excellent cycle performance at room temperature. Fabricating sandwich‐type composite electrolytes with hierarchical filler designs can be an effective strategy to achieve dendrite‐free SSBs with high performance and high safety at room temperature.  相似文献   

2.
Solid‐state electrolytes are widely anticipated to enable the revival of high energy density and safe metallic Li batteries, however, their lower ionic conductivity at room temperature, stiff interfacial contact, and severe polarization during cycling continue to pose challenges in practical applications. Herein, a dual‐composite concept is applied to the design of a bilayer heterostructure solid electrolyte composed of Li+ conductive garnet nanowires (Li6.75La3Zr1.75Nb0.25O12)/polyvinylidene fluoride‐co‐hexafluoropropylene (PVDF‐HFP) as a tough matrix and modified metal organic framework particles/polyethylene oxide/PVDF‐HFP as an interfacial gel. The integral ionic conductivity of the solid electrolyte reaches 2.0 × 10?4 S cm?1 at room temperature. In addition, a chemically/electrochemically stable interface is rapidly formed, and Li dendrites are well restrained by a robust inorganic shield and matrix. As a result, steady Li plating/stripping for more than 1700 h at 0.25 mA cm?2 is achieved. Solid‐state batteries using this bilayer heterostructure solid electrolyte deliver promising battery performance (efficient capacity output and cycling stability) at ambient temperature (25 °C). Moreover, the pouch cells exhibit considerable flexibility in service and unexpected endurance under a series of extreme abuse tests including hitting with a nail, burning, immersion under water, and freezing in liquid nitrogen.  相似文献   

3.
All‐solid‐state Li‐ion batteries based on Li7La3Zr2O12 (LLZO) garnet structures require novel electrode assembly strategies to guarantee a proper Li+ transfer at the electrode–electrolyte interfaces. Here, first stable cell performances are reported for Li‐garnet, c‐Li6.25Al0.25La3Zr2O12, all‐solid‐state batteries running safely with a full ceramics setup, exemplified with the anode material Li4Ti5O12. Novel strategies to design an enhanced Li+ transfer at the electrode–electrolyte interface using an interface‐engineered all‐solid‐state battery cell based on a porous garnet electrolyte interface structure, in which the electrode material is intimately embedded, are presented. The results presented here show for the first time that all‐solid‐state Li‐ion batteries with LLZO electrolytes can be reversibly charge–discharge cycled also in the low potential ranges (≈1.5 V) for combinations with a ceramic anode material. Through a model experiment, the interface between the electrode and electrolyte constituents is systematically modified revealing that the interface engineering helps to improve delivered capacities and cycling properties of the all‐solid‐state Li‐ion batteries based on garnet‐type cubic LLZO structures.  相似文献   

4.
The integration of highly conductive solid‐state electrolytes (SSEs) into solid‐state cells is still a challenge mainly due to the high impedance existing at the electrolyte/electrode interface. Although solid‐state garnet‐based batteries have been successfully assembled with the assistance of an intermediate layer between the garnet and the Li metal anode, the slow discharging/charging rates of the batteries inhibits practical applications, which require much higher power densities. Here, a crystalline sulfonated‐covalent organic framework (COF) thin layer is grown on the garnet surface via a simple solution process. It not only significantly improves the lithiophilicity of garnet electrolytes via the lithiation of the COF layer with molten Li, but also creates effective Li+ diffusion “highways” between the garnet and the Li metal anode. As a result, the interfacial impedance of symmetric solid‐state Li cells is significantly decreased and the cells can be operated at high current densities up to 3 mA cm?2, which is difficult to achieve with current interfacial modification technologies for SSEs. The solid‐state Li‐ion batteries using LiFePO4 cathodes, Li anodes, and COF‐modified garnet electrolytes thus exhibit a significantly improved rate capability.  相似文献   

5.
All‐solid‐state batteries are promising candidates for the next‐generation safer batteries. However, a number of obstacles have limited the practical application of all‐solid‐state Li batteries (ASSLBs), such as moderate ionic conductivity at room temperature. Here, unlike most of the previous approaches, superior performances of ASSLBs are achieved by greatly reducing the thickness of the solid‐state electrolyte (SSE), where ionic conductivity is no longer a limiting factor. The ultrathin SSE (7.5 µm) is developed by integrating the low‐cost polyethylene separator with polyethylene oxide (PEO)/Li‐salt (PPL). The ultrathin PPL shortens Li+ diffusion time and distance within the electrolyte, and provides sufficient Li+ conductance for batteries to operate at room temperature. The robust yet flexible polyethylene offers mechanical support for the soft PEO/Li‐salt, effectively preventing short‐circuits even under mechanical deformation. Various ASSLBs with PPL electrolyte show superior electrochemical performance. An initial capacity of 135 mAh g?1 at room temperature and the high‐rate capacity up to 10 C at 60 °C can be achieved in LiFePO4/PPL/Li batteries. The high‐energy‐density sulfur cathode and MoS2 anode employing PPL electrolyte also realize remarkable performance. Moreover, the ASSLB can be assembled by a facile process, which can be easily scaled up to mass production.  相似文献   

6.
Solid electrolytes have been considered as a promising approach for Li dendrite prevention because of their high mechanical strength and high Li transference number. However, recent reports indicate that Li dendrites also form in Li2S‐P2S5 based sulfide electrolytes at current densities much lower than that in the conventional liquid electrolytes. The methods of suppressing dendrite formation in sulfide electrolytes have rarely been reported because the mechanism for the “unexpected” dendrite formation is unclear, limiting the successful utilization of high‐energy Li anode with these electrolytes. Herein, the authors demonstrate that the Li dendrite formation in Li2S‐P2S5 glass can be effectively suppressed by tuning the composition of the solid electrolyte interphase (SEI) at the Li/electrolyte interface through incorporating LiI into the electrolyte. This approach introduces high ionic conductivity but electronic insulation of LiI in the SEI, and more importantly, improves the mobility of Li atoms, promoting the Li depositon at the interface and thus suppresses dendrite growth. It is shown that the critical current density is improved significantly after incorporating LiI into Li2S‐P2S5 glass, reaching 3.90 mA cm?2 at 100 °C after adding 30 mol% LiI. Stable cycling of the Li‐Li cells for 200 h is also achieved at 1.50 mA cm?2 at 100 °C.  相似文献   

7.
For mass production of all‐solid‐state lithium‐ion batteries (ASLBs) employing highly Li+ conductive and mechanically sinterable sulfide solid electrolytes (SEs), the wet‐slurry process is imperative. Unfortunately, the poor chemical stability of sulfide SEs severely restrict available candidates for solvents and in turn polymeric binders. Moreover, the binders interrupt Li+‐ionic contacts at interfaces, resulting in the below par electrochemical performance. In this work, a new scalable slurry fabrication protocol for sheet‐type ASLB electrodes made of Li+‐conductive polymeric binders is reported. The use of intermediate‐polarity solvent (e.g., dibromomethane) for the slurry allows for accommodating Li6PS5Cl and solvate‐ionic‐liquid‐based polymeric binders (NBR‐Li(G3)TFSI, NBR: nitrile?butadiene rubber, G3: triethylene glycol dimethyl ether, LiTFSI: lithium bis(trifluoromethanesulfonyl)imide) together without suffering from undesirable side reactions or phase separation. The LiNi0.6Co0.2Mn0.2O2 and Li4Ti5O12 electrodes employing NBR‐Li(G3)TFSI show high capacities of 174 and 160 mA h g?1 at 30 °C, respectively, which are far superior to those using conventional NBR (144 and 76 mA h g?1). Moreover, high areal capacity of 7.4 mA h cm?2 is highlighted for the LiNi0.7Co0.15Mn0.15O2 electrodes with ultrahigh mass loading of 45 mg cm?2. The facilitated Li+‐ionic contacts at interfaces paved by NBR‐Li(G3)TFSI are evidenced by the complementary analysis from electrochemical and 7Li nuclear magnetic resonance measurements.  相似文献   

8.
Stable and seamless interfaces among solid components in all‐solid‐state batteries (ASSBs) are crucial for high ionic conductivity and high rate performance. This can be achieved by the combination of functional inorganic material and flexible polymer solid electrolyte. In this work, a flexible all‐solid‐state composite electrolyte is synthesized based on oxygen‐vacancy‐rich Ca‐doped CeO2 (Ca–CeO2) nanotube, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and poly(ethylene oxide) (PEO), namely Ca–CeO2/LiTFSI/PEO. Ca–CeO2 nanotubes play a key role in enhancing the ionic conductivity and mechanical strength while the PEO offers flexibility and assures the stable seamless contact between the solid electrolyte and the electrodes in ASSBs. The as‐prepared electrolyte exhibits high ionic conductivity of 1.3 × 10?4 S cm?1 at 60 °C, a high lithium ion transference number of 0.453, and high‐voltage stability. More importantly, various electrochemical characterizations and density functional theory (DFT) calculations reveal that Ca–CeO2 helps dissociate LiTFSI, produce free Li ions, and therefore enhance ionic conductivity. The ASSBs based on the as‐prepared Ca–CeO2/LiTFSI/PEO composite electrolyte deliver high‐rate capability and high‐voltage stability.  相似文献   

9.
A combination of high ionic conductivity and facile processing suggest that sulfide‐based materials are promising solid electrolytes that have the potential to enable Li metal batteries. Although the Li2S‐P2S5 (LPS) family of compounds exhibit desirable characteristics, it is known that Li metal preferentially propagates through microstructural defects, such as particle boundaries and/or pores. Herein, it is demonstrated that a near theoretical density (98% relative density) LPS 75‐25 glassy electrolyte exhibiting high ionic conductivity can be achieved by optimizing the molding pressure and temperature. The optimal molding pressure reduces porosity and particle boundaries while preserving the preferred amorphous structure. Moreover, molecular rearrangements and favorable Li coordination environments for conduction are attained. Consequently, the Young's Modulus approximately doubles (30 GPa) and the ionic conductivity increases by a factor of five (1.1 mS cm?1) compared to conventional room temperature molding conditions. It is believed that this study can provide mechanistic insight into processing‐structure‐property relationships that can be used as a guide to tune microstructural defects/properties that have been identified to have an effect on the maximum charging current that a solid electrolyte can withstand during cycling without short‐circuiting.  相似文献   

10.
Herein, a composite polymer electrolyte with a viscoelastic and nonflammable interface is designed to handle the contact issue and preclude Li dendrite formation. The composite polymer electrolyte (cellulose acetate/polyethylene glycol/Li1.4Al0.4Ti1.6P3O12) exhibits a wide electrochemical window of 5 V (vs Li+/Li), a high Li+ transference number of 0.61, and an excellent ionic conductivity of above 10?4 S cm?1 at 60 °C. In particular, the intimate contact, low interfacial impedance, and fast ion‐transport process between the electrodes and solid electrolytes can be simultaneously achieved by the viscoelastic and nonflammable layer. Benefiting from this novel design, solid lithium metal batteries with either LiFePO4 or LiCoO2 as cathode exhibit superior cyclability and rate capability, such as a discharge capacity of 157 mA h g?1 after 100 cycles at C/2 and 97 mA h g?1 at 5C for LiFePO4 cathode. Moreover, the smooth and uniform Li surface after long‐term cycling confirms the successful suppression of dendrite formation. The viscoelastic and nonflammable interface modification of solid electrolytes provides a promising and general strategy to handle the interfacial issues and improves the operative safety of solid lithium metal batteries.  相似文献   

11.
A NaSICON‐type Li+‐ion conductive membrane with a formula of Li1+ x Y x Zr2? x (PO4)3 (LYZP) (x = 0–0.15) has been explored as a solid‐electrolyte/separator to suppress polysulfide‐crossover in lithium‐sulfur (Li‐S) batteries. The LYZP membrane with a reasonable Li+‐ion conductivity shows both favorable chemical compatibility with the lithium polysulfide species and exhibits good electrochemical stability under the operating conditions of the Li‐S batteries. Through an integration of the LYZP solid electrolyte with the liquid electrolyte, the hybrid Li‐S batteries show greatly enhanced cyclability in contrast to the conventional Li‐S batteries with the porous polymer (e.g., Celgard) separator. At a rate of C/5, the hybrid Li ||LYZP|| Li2S6 batteries developed in this study (with a Li‐metal anode, a liquid/LYZP hybrid electrolyte, and a dissolved lithium polysulfide cathode) delivers an initial discharge capacity of ≈1000 mA h g?1 (based on the active sulfur material) and retains ≈90% of the initial capacity after 150 cycles with a low capacity fade‐rate of <0.07% per cycle.  相似文献   

12.
High ionic conductivity of up to 6.4 × 10?3 S cm?1 near room temperature (40 °C) in lithium amide‐borohydrides is reported, comparable to values of liquid organic electrolytes commonly employed in lithium‐ion batteries. Density functional theory is applied coupled with X‐ray diffraction, calorimetry, and nuclear magnetic resonance experiments to shed light on the conduction mechanism. A Li4Ti5O12 half‐cell battery incorporating the lithium amide‐borohydride electrolyte exhibits good rate performance up to 3.5 mA cm?2 (5 C) and stable cycling over 400 cycles at 1 C at 40 °C, indicating high bulk and interfacial stability. The results demonstrate the potential of lithium amide‐borohydrides as solid‐state electrolytes for high‐power lithium‐ion batteries.  相似文献   

13.
All‐solid‐state batteries with an alkali metal anode have the potential to achieve high energy density. However, the onset of dendrite formation limits the maximum plating current density across the solid electrolyte and prevents fast charging. It is shown that the maximum plating current density is related to the interfacial resistance between the solid electrolyte and the metal anode. Due to their high ionic conductivity, low electronic conductivity, and stability against sodium metal, Na‐β″‐alumina ceramics are excellent candidates as electrolytes for room‐temperature all‐solid‐state batteries. Here, it is demonstrated that a heat treatment of Na‐β″‐alumina ceramics in argon atmosphere enables an interfacial resistance <10 Ω cm2 and current densities up to 12 mA cm?2 at room temperature. The current density obtained for Na‐β″‐alumina is ten times higher than that measured on a garnet‐type Li7La3Zr2O12 electrolyte under equivalent conditions. X‐ray photoelectron spectroscopy shows that eliminating hydroxyl groups and carbon contaminations at the interface between Na‐β″‐alumina and sodium metal is key to reach such values. By comparing the temperature‐dependent stripping/plating behavior of Na‐β″‐alumina and Li7La3Zr2O12, the role of the alkali metal in governing interface kinetics is discussed. This study provides new insights into dendrite formation and paves the way for fast‐charging all‐solid‐state batteries.  相似文献   

14.
A practical, low‐cost synthesis of hollow mesoporous organic polymer (HMOP) spheres is reported. The electrochemical properties of Li+/Na+‐electrolyte membranes with these spheres substituting for oxide filler particles in poly(ethylene oxide) (PEO)‐filler composite are explored. The electrolyte membranes are mechanically robust, thermally stable to over 250 °C, and block dendrites from a metallic‐lithium/sodium anode. The Li+/Na+ transfer impedance across the lithium/sodium–electrolyte interface is initially acceptable at 65 °C and scavenging of impurities by the porous‐spheres filler lowers this impedance relative to that with Al2O3. All‐solid‐state Li/LiFePO4 and Na/NaTi2(PO4)3 cells give stable discharge capacity of ≈130 and 80 mAh g?1, respectively, at 0.5 C and 65 °C for 100 cycles.  相似文献   

15.
Perovskite‐type solid‐state electrolytes exhibit great potential for the development of all‐solid‐state lithium batteries due to their high Li‐ion conductivity (approaching 10?3 S cm?1), wide potential window, and excellent thermal/chemical stability. However, the large solid–solid interfacial resistance between perovskite electrolytes and electrode materials is still a great challenge that hinders the development of high‐performance all‐solid‐state lithium batteries. In this work, a perovskite‐type Li0.34La0.51TiO3 (LLTO) membrane with vertically aligned microchannels is constructed by a phase‐inversion method. The 3D vertically aligned microchannel framework membrane enables more effective Li‐ion transport between the cathode and solid‐state electrolyte than a planar LLTO membrane. A significant decrease in the perovskite/cathode interfacial resistance, from 853 to 133 Ω cm2, is observed. It is also demonstrated that full cells utilizing LLTO with vertically aligned microchannels as the electrolyte exhibit a high specific capacity and improved rate performance.  相似文献   

16.
A symmetric solid‐state battery based on organic porous electrodes is fabricated using scalable spray‐printing. The active electrode material is based on a textile dye (disperse blue 134 anthraquinone) and is capable of forming divalent cations and anions in oxidation and reduction processes. The resulting molecule can be used in both negative and positive electrode reactions. After spray printing an inter‐connected pore honeycomb electrode, a solid‐state electrolyte (σLi: × 10?4 S cm?1) based on a polymeric ionic liquid is spray‐printed as a second layer and infiltrated through the porous electrodes. A symmetric all‐organic battery is then formed with the addition of another identical set of electrode and electrolyte layers. Both density functional theory calculations and charge‐discharge profiles show that the potentials for the negative and positive electrode reactions are amongst the lowest (≈2.0 V vs Li) and the highest (≈3.5 V vs Li), respectively, for quinone‐type molecules. Over the C‐rate range 0.2 to 5 C, the battery has a discharge cell voltage of more than 1 V even up to 250 charge‐discharge cycles and capacities are in the range 50–80 mA h g?1 at 0.5 C.  相似文献   

17.
Garnet‐type solid‐state electrolytes (SSEs) have been widely studied as a promising candidate for Li metal batteries. Despite the common belief that inorganic SSEs can prevent dendrite propagation, garnet SSEs suffer from relatively low critical current density (CCD) at which the SSEs are abruptly short‐circuited by Li dendrites. In this study, the short‐circuiting mechanism of garnet Li7La2.75Ca0.25Zr1.75Nb0.25O12 (LLCZN) is investigated. It is found that instead of propagating uniaxially from one electrode to other in a dendritic form, metallic lithium is formed within the SSE. This can be attributed to the fact that electrons combine with Li ions at the grain boundary, which exhibits relatively high electronic conductivity, and then reduce Li+ to Li0 to cause short circuits. In order to reduce the electronic conductivity at the grain boundary, a thin layer of LiAlO2 is coated on the grain surface of LLCZN, which results in an improved CCD value. It is also found that under higher external voltages, the electronic conductivity of SSE becomes more significant, which is believed to be the origin of CCD. These findings not only shed light on the short‐circuiting mechanism of garnet‐type SSEs but also offer a novel perspective and useful guidance on their designs and modifications.  相似文献   

18.
Li metal, which has a high theoretical specific capacity and low redox potential, is considered to the most promising anode material for next‐generation Li ion‐based batteries. However, it also exhibits a disadvantageous solid electrolyte interphase (SEI) layer problem that needs to be resolved. Herein, an advanced separator composed of reduced graphene oxide fiber attached to aramid paper (rGOF‐A) is introduced. When rGOF‐A is applied, F? anions, generated from the decomposition of the LiPF6 electrolyte during the SEI layer formation process form semi‐ionic C? F bonds along the surface of rGOF. As Li+ ions are plated, the “F‐doped” rGO surface induces the formation of LiF, which is known as a component of a chemically stable SEI, therefore it helps the Li metal anode to operate stably at a high current of 20 mA cm?2 with a high capacity of 20 mAh cm?2. The proposed rGOF‐A separator successfully achieves a stable SEI layer that could resolve the interfacial issues of the Li metal anode.  相似文献   

19.
Li2S is one of the most promising cathode materials for Li‐ion batteries because of its high theoretical capacity and compatibility with Li‐metal‐free anode materials. However, the poor conductivity and electrochemical reactivity lead to low initial capacity and severe capacity decay. In this communication, a nitrogen and phosphorus codoped carbon (N,P–C) framework derived from phytic acid doped polyaniline hydrogel is designed to support Li2S nanoparticles as a binder‐free cathode for Li–S battery. The porous 3D architecture of N and P codoped carbon provides continuous electron pathways and hierarchically porous channels for Li ion transport. Phosphorus doping can also suppress the shuttle effect through strong interaction between sulfur and the carbon framework, resulting in high Coulombic efficiency. Meanwhile, P doping in the carbon framework plays an important role in improving the reaction kinetics, as it may help catalyze the redox reactions of sulfur species to reduce electrochemical polarization, and enhance the ionic conductivity of Li2S. As a result, the Li2S/N,P–C composite electrode delivers a stable capacity of 700 mA h g?1 with average Coulombic efficiency of 99.4% over 100 cycles at 0.1C and an areal capacity as high as 2 mA h cm?2 at 0.5C.  相似文献   

20.
Solid‐state electrolytes are a promising candidate for the next‐generation lithium‐ion battery, as they have the advantages of eliminating the leakage hazard of liquid solvent and elevating stability. However, inherent limitations such as the low ionic conductivity of solid polymer electrolytes and the high brittleness of inorganic ceramic electrolytes severally impede their practical application. Here, an inexpensive, facile, and scalable strategy to fabricate a hybrid Li7La3Zr2O12 (LLZO) and poly(ethylene oxide)‐based electrolyte by exploiting bacterial cellulose as a template is reported. The well‐organized LLZO network significantly enhances the ionic conductivity by extending long transport pathways for Li ions, exhibiting an elevated conductivity of 1.12 × 10?4 S cm?1. In addition, the hybrid electrolyte presents a structural flexibility, with minor impedance increase after bending. The facile and applicable approach establishes new principles for the strategy of designing scalable and flexible hybrid polymer electrolytes that can be utilized for high‐energy‐density batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号