首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We report the cloning of a Heterodera glycines cDNA that has 72% identity at the amino acid level to a pectate lyase from Globodera rostochiensis. In situ hybridizations showed that the corresponding gene (Hg-pel-1) is expressed in the subventral esophageal gland cells of second-stage juveniles. The deduced amino acid sequence of the H. glycines cDNA shows homology to class III pectate lyases of bacterial and fungal origin.  相似文献   

2.
Sequence comparison of the heterocyst-type ferredoxin (FdxH) from Anabaena 7120 and type-I ferredoxins (PetF) from the same organism and other cyanobacteria revealed a group of positively charged residues characteristic for FdxH. Molecular modeling showed that these basic amino acids are clustered on the surface of FdxH. The corresponding domain of PetF contained acidic or nonpolar residues instead. To identify amino acids that are important for interaction with nitrogenase, we generated site-directed mutations in the fdxH gene and assayed the in vitro activity of the resulting recombinant proteins isolated from Escherichia coli. In addition to the point mutants, two chimeric proteins, FdxH : PetF and PetF : FdxH, were constructed containing the 58 N-terminal amino acids of one ferredoxin fused to the 40 C-terminal amino acids of the other. Exchange of lysines 10 and 11 of FdxH for the corresponding residues of PetF (glutamate 10 and alanine 11) resulted in a ferredoxin with greatly decreased affinity to nitrogenase. This indicates an important function of these basic amino acids in interaction with dinitrogenase reductase (NifH) from Anabaena. In addition we checked the reactivity of the recombinant ferredoxins with ferredoxin-NADP+ oxidoreductase (FNR) and photosystem I. The experiments with both the chimeric and point mutated ferredoxins showed that the C-terminal part of this protein determines its activity in NADP+ photoreduction.  相似文献   

3.
Sequence analysis of short fragments resulting from trypsin digestion of the thermolabile shrimp alkaline phosphatase (SAP) from Northern shrimp Pandalus borealis formed the basis for amplification of its encoding cDNA. The predicted protein sequence was recognized as containing the consensus alkaline phosphatase motif comprising the active site of this protein family. Protein sequence homology searches identified several eukaryote alkaline phosphatases with which the 475-amino acid SAP polypeptide revealed shares 45% amino acid sequence identity. Residues for potential metal binding seem to be conserved in these proteins. The predicted 54-kDa molecular mass of SAP is smaller than previously reported, but is consistent with our recent SDS-PAGE analysis of the native protein. Compared to its homologs, the shrimp enzyme has a surplus of negatively charged amino acids, while the relative number of prolines is lower and the frequency of aromatic residues is higher than in mesophilic counterparts.  相似文献   

4.
Fructose-bisphosphate aldolase (EC 4.1.2.13) is a key enzyme in glycolysis. We have characterized full-length coding sequences for aldolase genes from the cyst nematodes Heterodera glycines and Globodera rostochiensis, the first for any plant-parasitic nematode. Nucleotide homology is high (83% identity), and the respective sequences encode 40 kDa proteins with 89% amino acid identity. Genomic sequences contain six introns located at identical positions in both genes. Intron 4 in the H. glycines gene is >500 bp. Partial genomic sequences determined for seven other cyst nematode species reveal that the large fourth intron is characteristic of Heterodera but not Globodera aldolase genes. Total aldolase-like specific activity in homogenates from H. glycines was 2-fold lower than in either Caenorhabditis elegans or Panagrellus redivivus (P = 0.001). Activity in H. glycines samples was higher in juvenile stages than in adults (P = 0.003). Heterodera glycines aldolase has Km = 41 µM and is inhibited by treatment with carboxypeptidase A or sodium borohydride.  相似文献   

5.
SPOR domains are about 75 amino acids long and probably bind septal peptidoglycan during cell division. We mutagenized 33 amino acids with surface-exposed side chains in the SPOR domain from an Escherichia coli cell division protein named FtsN. The mutant SPOR domains were fused to Tat-targeted green fluorescent protein (TTGFP) and tested for septal localization in live E. coli cells. Lesions at the following 5 residues reduced septal localization by a factor of 3 or more: Q251, S254, W283, R285, and I313. All of these residues map to a β-sheet in the published solution structure of FtsNSPOR. Three of the mutant proteins (Q251E, S254E, and R285A mutants) were purified and found to be defective in binding to peptidoglycan sacculi in a cosedimentation assay. These results match closely with results from a previous study of the SPOR domain from DamX, even though these two SPOR domains share <20% amino acid identity. Taken together, these findings support the proposal that SPOR domains localize by binding to septal peptidoglycan and imply that the binding site is associated with the β-sheet. We also show that FtsNSPOR contains a disulfide bond between β-sheet residues C252 and C312. The disulfide bond contributes to protein stability, cell division, and peptidoglycan binding.  相似文献   

6.
The erbB gene of an avian erythroblastosis virus, AEV-H, was determined to be 1812 nucleotides long and was predicted to code for a protein of 67,638 daltons. Unexpectedly, a sequence of 285 amino acids in the middle of the protein showed a significant homology (38%) with the sequence in the carboxy terminus of p60src. The nucleotide sequence of a mutant of AEV-H, td-130, which induces sarcomas but not erythroblastosis in chicken, was also analyzed. A deletion of 169 nucleotides was identified in the 3′ half of the erbB gene, indicating that the gene codes for a truncated protein with the predicted molecular weight of 46,667. These findings suggest that the homologous domain of erbB protein with its N-terminal portion is sufficient for the transformation of fibroblasts and that one-third of the carboxy-terminal domain has a key role for the transformation of erythroid cells.  相似文献   

7.
This paper presents an in silico characterization of the chitin binding protein CBP50 from B. thuringiensis serovar konkukian S4 through homology modeling and molecular docking. The CBP50 has shown a modular structure containing an N-terminal CBM33 domain, two consecutive fibronectin-III (Fn-III) like domains and a C-terminal CBM5 domain. The protein presented a unique modular structure which could not be modeled using ordinary procedures. So, domain wise modeling using MODELLER and docking analyses using Autodock Vina were performed. The best conformation for each domain was selected using standard procedure. It was revealed that four amino acid residues Glu-71, Ser-74, Glu-76 and Gln-90 from N-terminal domain are involved in protein-substrate interaction. Similarly, amino acid residues Trp-20, Asn-21, Ser-23 and Val-30 of Fn-III like domains and Glu-15, Ala-17, Ser-18 and Leu-35 of C-terminal domain were involved in substrate binding. Site-directed mutagenesis of these proposed amino acid residues in future will elucidate the key amino acids involved in chitin binding activity of CBP50 protein.  相似文献   

8.
Summary The genome of Tetrahymena pyriformis has been shown to contain a ubiquitin multigene family consisting of several polyubiquitin genes and at least one ubiquitin fusion gene. We report here the isolation and characterization of one genomic clone (pTUl1), that encodes a ubiquitin extension protein. A comparison of the predicted amino acid sequence of the ubiquitin extension protein gene of T. pyriformis with those from other organisms indicated a high degree of homology. However, the Tetrahymena ubiquitin extension protein contains 53 and not 52 amino acids. This feature is different from all ubiquitin 52-amino-acid extension protein genes thus far sequenced. Furthermore, we found an array of four cysteine residues similar to those found in nucleic acid binding proteins. Also, the C-terminal sequence possesses a conserved motif which may represent a nuclear translocation signal. The ubiquitin 53-amino-acid extension protein gene encodes the smallest class of ubiquitin mRNAs in T. pyriformis.  相似文献   

9.
Sec translocase catalyzes membrane protein insertion and translocation. We have introduced stretches of charged amino acid residues into the preprotein proOmpA and have analyzed their effect on in vitro protein translocation into Escherichia coli inner membrane vesicles. Both negatively and positively charged amino acid residues inhibit translocation of proOmpA, yielding a partially translocated polypeptide chain that blocks the translocation site and no longer activates preprotein-stimulated SecA ATPase activity. Stretches of positively charged residues are much stronger translocation inhibitors and suppressors of the preprotein-stimulated SecA ATPase activity than negatively charged residues. These results indicate that both clusters of positively and negatively charged amino acids are poor substrates for the Sec translocase and that this is reflected by their inability to stimulate the ATPase activity of SecA.  相似文献   

10.
Rise and fall of the delta globin gene   总被引:9,自引:0,他引:9  
The complete nucleotide sequence of the gene phoE, which codes for the phosphate limitation inducible outer membrane pore protein of Escherichia coli K12 was established. The results show that PhoE protein is synthesized in a precursor form with a 21 amino acid residue amino-terminal extension. This peptide has the general characteristics of a signal sequence. The promoter region of phoE has no homlogy with the consensus sequence of E. coli promoter regions, but homologous sequences with the promoter region of phoA, the structural gene for alkaline phosphatase, were observed. The deduced amino acid sequence showed that the mature PhoE protein is composed of 330 amino acid residues with a calculated molecular weight of 36,782. A number of 81 charged amino acids was found scattered throughout the protein while no large stretches of hydrophobic amino acids were observed. Hydrophobicity and hydration profiles of PhoE protein showed five pronounced hydrophilic maxima which are all located in the region from the amino terminus to residue 212.When the deduced amino acid sequence of PhoE protein was compared with the established sequence of the OmpF pore protein, a number of 210 identical residues was found. Some aspects of the structure-function relationship of PhoE protein are discussed in view of the hydrophobicity and hydration profiles, and the homology between PhoE protein and OmpF protein.  相似文献   

11.
A putative fatty acyl-acyl carrier protein (acyl-ACP) thioesterase (thioesterase) full-length cDNA sequence named as ClFATB1 was obtained from the seed cDNA library of Cinnamomum longepaniculatum by the SMART-RACE method. The novel gene encodes a protein of 382 amino acid residues with close homology to fatty acid thioesterase type B (FATB) enzymes of other plants, with two essential residues (His285 and Cys320) for thioesterase catalytic activity. The gene was transcribed in all tissues of C. longepaniculatum, the highest being in seeds. Recombinant ClFATB1 in Escherichia coli had higher specific activities against saturated 16:0- and 18:0-ACPs than on unsaturated 18:1-ACP. Overexpression of ClFATB1 in transgenic tobaccos upregulated thioesterase activities of crude proteins against 16:0-ACP and 18:0-ACP by 20.3 and 5.7%, respectively, and resulted in an increase in the contents of palmitic and stearic acids by 15.4 and 10.5%, respectively. However, ectopic expression of this gene decreased the substrate specificities of crude proteins to unsaturated 18:1-ACP by 12.7% in transgenic tobacco and lowered the contents of oleic, linoleic, and linolenic acids in transgenic leaves. So ClFATB1 would potentially upregulate the synthesis of saturated fatty acids and downregulate unsaturated ones in the fatty acid synthesis pathway of plants.  相似文献   

12.
The ubiquitin proteasome system plays a pivotal role in controlling the cell cycle. The budding yeast F-box protein Dia2 is required for genomic stability and is targeted for ubiquitin-dependent degradation in a cell cycle–dependent manner, but the identity of the ubiquitination pathway is unknown. We demonstrate that the Hect domain E3 ubiquitin ligase Tom1 is required for Dia2 protein degradation. Deletion of DIA2 partially suppresses the temperature-sensitive phenotype of tom1 mutants. Tom1 is required for Dia2 ubiquitination and degradation during G1 and G2/M phases of the cell cycle, whereas the Dia2 protein is stabilized during S phase. We find that Tom1 binding to Dia2 is enhanced in G1 and reduced in S phase, suggesting a mechanism for this proteolytic switch. Tom1 recognizes specific, positively charged residues in a Dia2 degradation/NLS domain. Loss of these residues blocks Tom1-mediated turnover of Dia2 and causes a delay in G1–to–S phase progression. Deletion of DIA2 rescues a delay in the G1–to–S phase transition in the tom1Δ mutant. Together our results suggest that Tom1 targets Dia2 for degradation during the cell cycle by recognizing positively charged residues in the Dia2 degradation/NLS domain and that Dia2 protein degradation contributes to G1–to–S phase progression.  相似文献   

13.
Mycobacterium tuberculosis is a Gram positive, acid-fast bacteria belonging to genus Mycobacterium, is the leading causative agent of most cases of tuberculosis. The pathogenicity of the bacteria is enhanced by its developed DNA repair mechanism which consists of machineries such as nucleotide excision repair. Nucleotide excision repair consists of excinuclease protein UvrABC endonuclease, multi-enzymatic complex which carries out repair of damaged DNA in sequential manner. UvrC protein is a part of this complex and thus helps to repair the damaged DNA of M. tuberculosis. Hence, structural bioinformatics study of UvrC protein from M. tuberculosis was carried out using homology modeling and molecular docking techniques. Assessment of the reliability of the homology model was carried out by predicting its secondary structure along with its model validation. The predicted structure was docked with the ATP and the interacting amino acid residues of UvrC protein with the ATP were found to be TRP539, PHE89, GLU536, ILE402 and ARG575. The binding of UvrC protein with the DNA showed two different domains. The residues from domain I of the protein VAL526, THR524 and LEU521 interact with the DNA whereas, amino acids interacting from the domain II of the UvrC protein included ARG597, GLU595, GLY594 and GLY592 residues. This predicted model could be useful to design new inhibitors of UvrC enzyme to prevent pathogenesis of Mycobacterium and so the tuberculosis.  相似文献   

14.
VopF, the type III effector molecule, has been implicated in the pathogenesis of non-O1, non-O139 strains of Vibrio cholerae. It is a protein of 530 amino acids, comprises of one formin homology 1-like (FH1-like) domain and three WASP homology 2 (WH2) domains. Previous works have demonstrated that WH2 domains are crucial for VopF function as a modulator of cellular actin homeostasis. Furthermore, domain deletion analysis also suggests that VopF variant constituted with only WH2 domain 3 is more efficient in restricting the growth of budding yeast than its congeners containing either only domain 1 or domain 2. Interestingly, a good degree of sequence diversity is present within each WH2 domain of VopF. In order to ascertain the importance of different amino acids in each WH2 domain, a systemic alanine scanning mutagenesis was employed. Using a yeast model system, the alanine derivatives of each amino acid of WH2 domain 1 and 3 of VopF were examined for growth restricting activity. Taken together, our mutagenesis results reveal the identification of critical residues of WH2 domain 1 and 3 of VopF.  相似文献   

15.
Bacillus thuringiensis is an insecticidal bacterium whose chitinolytic system has been exploited to improve insect resistance in crops. In the present study, we studied the CBP24 from B. thuringiensis using homology modeling and molecular docking. The primary and secondary structure analyses showed CBP24 is a positively charged protein and contains single domain that belongs to family CBM33. The 3D model after refinement was used to explore the chitin binding characteristics of CBP24 using AUTODOCK. The docking analyses have shown that the surface exposed hydrophilic amino acid residues Thr-103, Lys-112 and Ser-162 interact with substrate through H-bonding. While, the amino acids resides Glu-39, Tyr-46, Ser-104 and Asn-109 were shown to have polar interactions with the substrate. The binding energy values evaluation of docking depicts a stable intermolecular conformation of the docked complex. The functional characterization of the CBP24 will elucidate the substrate-interaction pathway of the protein in specific and the carbohydrate binding proteins in general leading towards the exploration and exploitation of the prokaryotic substrate utilization pathways.  相似文献   

16.
TOM22 is an essential mitochondrial outer membrane protein required for the import of precursor proteins into the organelles. The amino-terminal 84 amino acids of TOM22 extend into the cytosol and include 19 negatively and 6 positively charged residues. This region of the protein is thought to interact with positively charged presequences on mitochondrial preproteins, presumably via electrostatic interactions. We constructed a series of mutant derivatives of TOM22 in which 2 to 15 of the negatively charged residues in the cytosolic domain were changed to their corresponding amido forms. The mutant constructs were transformed into a sheltered Neurospora crassa heterokaryon bearing a tom22::hygromycin R disruption in one nucleus. All constructs restored viability to the disruption-carrying nucleus and gave rise to homokaryotic strains containing mutant tom22 alleles. Isolated mitochondria from three representative mutant strains, including the mutant carrying 15 neutralized residues (strain 861), imported precursor proteins at efficiencies comparable to those for wild-type organelles. Precursor binding studies with mitochondrial outer membrane vesicles from several of the mutant strains, including strain 861, revealed only slight differences from binding to wild-type vesicles. Deletion mutants lacking portions of the negatively charged region of TOM22 can also restore viability to the disruption-containing nucleus, but mutants lacking the entire region cannot. Taken together, these data suggest that an abundance of negative charges in the cytosolic domain of TOM22 is not essential for the binding or import of mitochondrial precursor proteins; however, other features in the domain are required.  相似文献   

17.
The complete nucleotide sequence of the gene encoding the cytochrome subunit of the photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis, and the derived amino acid sequence are presented. The nucleotide sequence of the gene reveals the existence of a typical bacterial signal peptide of 20 amino acid residues which is not found in the mature cytochrome subunit. The gene encoding the cytochrome subunit is preceded by the gene encoding the M subunit. Both genes overlap by 1 bp. The mature cytochrome subunit consists of 336 amino acid residues; 73% of its amino acid sequence was confirmed by protein sequencing work. The mol. wt of the cytochrome subunit including the covalently bound fatty acids and the bound heme groups is 40 500. The internal sequence homology is low, despite the symmetric structure of the cytochrome subunit previously shown by X-ray crystallographic analysis of the intact photosynthetic reaction centre. Sequence homologies to other cytochromes were not found.  相似文献   

18.
Sequence comparison of the heterocyst-type ferredoxin (FdxH) from Anabaena 7120 and type-I ferredoxins (PetF) from the same organism and other cyanobacteria revealed a group of positively charged residues characteristic for FdxH. Molecular modeling showed that these basic amino acids are clustered on the surface of FdxH. The corresponding domain of PetF contained acidic or nonpolar residues instead. To identify amino acids that are important for interaction with nitrogenase, we generated site-directed mutations in the fdxH gene and assayed the in vitro activity of the resulting recombinant proteins isolated from Escherichia coli. In addition to the point mutants, two chimeric proteins, FdxH : PetF and PetF : FdxH, were constructed containing the 58 N-terminal amino acids of one ferredoxin fused to the 40 C-terminal amino acids of the other. Exchange of lysines 10 and 11 of FdxH for the corresponding residues of PetF (glutamate 10 and alanine 11) resulted in a ferredoxin with greatly decreased affinity to nitrogenase. This indicates an important function of these basic amino acids in interaction with dinitrogenase reductase (NifH) from Anabaena. In addition we checked the reactivity of the recombinant ferredoxins with ferredoxin-NADP+ oxidoreductase (FNR) and photosystem I. The experiments with both the chimeric and point mutated ferredoxins showed that the C-terminal part of this protein determines its activity in NADP+ photoreduction.  相似文献   

19.
We isolated a rice cDNA clone encoding the ubiquitin protein fused to a ribosomal protein. This clone encodes a single ubiquitin polypeptide and extension protein of 53 amino acids. This extension protein shows a high degree of homology with those of the yeast ubil or ubi2 gene, both of which encode the same protein. Northern blot analysis suggested that the expression pattern of this gene is more similar to other ribosomal protein genes not linked to ubiquitin protein than to the polyubiquitin gene.  相似文献   

20.
The amino acid sequences of the C-terminal domain (CTD) of the type II DNA topoisomerases are divergent and species specific as compared with the highly conserved N-terminal and central domains. A set of C-terminal deletion mutants of Leishmania donovani topoisomerase II was constructed. Removal of more than 178 amino acids out of 1236 amino acid residues from the C-terminus inactivates the enzyme, whereas removal of 118 amino acids or less has no apparent effect on the ability of the parasite enzyme to complement a temperature-sensitive mutation of the Saccharomyces cerevisiae topoisomerase II gene. Deletion analysis revealed a potent nuclear localization signal (NLS) within the amino acid residues 998–1058. Immunomicroscopy results suggest that the removal of an NLS in the CTD is likely to contribute to the physiological dysfunction of these proteins. Modeling of the LdTOP2 based on the crystal structure of the yeast type II DNA topoisomerase showed that the parasite protein assumes a structure similar to its yeast counterpart harboring all the conserved residues in a structurally similar position. However, a marked difference in electrostatic potential was found in a span of 60 amino acid residues (998–1058), which also do not have any homology with topoisomerase II sequences. Such significant differences can be exploited by the structure-based design of selective inhibitors using the structure of the Leishmania enzyme as a template.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号