首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was aimed to assess the bioaccumulation and concentration level of three heavy metals such as Chromium (Cr), Cadmium (Cd) and Lead (Pb) in the riverine water and edible fish, Channa punctatus obtained from River Kosi, Rampur, Uttar Pradesh, India. These toxic heavy metals are released into the environment because of E-waste, industrial activities, municipal urban runoff, coal burning, fertilizers etc., then paved the way into the aquatic system due to direct input, atmospheric deposition, and erosions caused by rain. There is every apprehension of aquatic animals getting exposed to elevated levels of heavy metals, thus possessing harmful effects both to flora and fauna. The concentrations of Cd, Cr and Pb in water were found to be 0.051 ± 0.026, 1.091 ± 0.408, and 0.019 ± 0.002 whereas in the kidneys of Channa punctatus, as 0.076 ± 0.208, 0.482 ± 0.059, and 0.127 ± 0.705 respectively.  相似文献   

2.
Five heavy metals (Cd, Cu, Ni, Pb, and Zn) in river sediments from Abshineh River, Hamedan, western Iran, were fractionated by a sequential extraction procedure. Cu, Ni, Pb, and Zn existed in sediments mainly in residual fraction (mean 92%, 86%, 77%, and 65%, respectively), whereas Cd occurred mostly as organic matter (mean 41%) and exchangeable (mean 25%) fractions. The mean percent of mobile fraction of Cd, Cu, Ni, Pb, and Zn in contaminated sediments was 25, 13, 4, 24, and 10, respectively, which suggests that the mobility and bioavailability of the five metals in sediments probably decline in the following order: Cd = Pb > Cu > Zn > Ni. The metal levels were also evaluated according to the contamination factor, which revealed significant anthropogenic pollution of Cd and Pb.  相似文献   

3.
Abstract

The purpose of the study was to acquire the source and evaluate the risk posed by heavy metals in road dust of steel industrial city (Anshan), Liaoning, Northeast China. Potential ecological risk index (RI), pollution index (PI) and geo-accumulation index (Igeo) were applied to evaluate the heavy metal pollution level, and the carcinogenic risk (RI) and hazard index (HI) were calculated to estimate the human health risk. The geographic information system maps clearly reveal the hot spots of heavy metal spatial distribution. Principle component analysis (PCA) and cluster analysis (CA) classified heavy metals into three groups. The metal Zn and Pb originate from the traffic emission, while Cd, Cr, Fe, Mn, Ni and Sb primarily come from industrial activities. These two pathways were the major source of heavy metals pollution by positive matrix factorization (PMF). The Igeo and PI values of heavy metals were decreased in the following order: Cd?>?Sb?>?Zn?>?Fe?>?Pb?>?Cu?>?Cr?>?Sn?>?Mn?>?Ni. The RI index showed the heavy metals were moderate to very high potential ecological risk. The HI values for children and adults presented a decreasing order of Cr?>?Pb?>?Ni?>?Cu?>?Cd?>?Zn. The HI also predicted a possibility of non-carcinogenic risk for children living in urban areas in comparison with adults.  相似文献   

4.
The issue of heavy metal pollution is of high concern due to its potential health risks and detrimental effects on human beings, animals, and plants. In this study, farmland soil samples from 79 sampling sites were collected in Karashahar–Baghrash oasis, northwest China, and the contents of eight heavy metal elements (As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn) were determined by standard methods. The spatial distribution, pollution, and ecological risks of heavy metals were analyzed based on Geographical Information System (GIS) technology, contamination factor (CF), pollution load index (PLI), and potential ecological risk index (RI). Results indicated that: (1) The average contents of Cd, Cr, Ni, Pb, and Zn exceeded the background values of irrigation soils of Xinjiang by 54.0, 1.34, 1.39, 3.44, and 5.01 times, respectively. The average contents of Cd exceeded the national standard of China by 10.80 times; (2) The pollution order of CF was ranked as Cd > Zn > Pb > Ni > Cr > Cu > As > Mn, and the ecological risk order of Eri was ranked as Cd > Ni > As > Cu > Ni > Pb > Cr > Zn. The average PLI of the study area showed heavy pollution level, and the average RI of the study area fell into considerable risk; (3) The moderately polluted areas with moderate potential ecological risks distributed in the northern parts, whereas heavily polluted areas with considerable potential ecological risks distributed in the southern parts of the study area; (4) Cr, Cu, and Mn of farmland soils were mainly originated from natural factors. Cd, Ni, and Pb were mainly originated from anthropogenic factors. As and Zn may be associated with both natural and anthropogenic factors. Cd contributed most to the PLI and RI of the farmland soils in the study area.  相似文献   

5.
Abstract

The distribution, contamination status, and ecological risks of heavy metals in Tahaddart estuary were investigated. 24 surface sediment samples and two cores were collected and analyzed for major (Al and Fe), heavy metals (As, Cd, Cr, Cu, Ni, Pb, and Zn), and grain size composition. The heavy metals assessment was carried out using different environmental indices. The results indicated that the spatial distribution patterns of Al, Fe, and Zn were mainly determined by the distribution of the finer grained fraction (<63?μm) in the sediment. In contrast, As, Cd, Cr, Cu, Ni, and Pb concentrations were controlled by anthropogenic activities (vehicular traffic from Highway Bridge and thermal power plant). The distribution of heavy metals in sediment cores showed an upward enrichment in heavy metals with high concentration found in the uppermost may related to the increasing in human activities. The pollution indexes confirmed that the Tahaddart estuary sediment was considerably to high contaminated by heavy metals near to different anthropogenic inputs. Similarly, the potential ecological risk index and the biological risk index present 21% probability of toxicity posing potential risk to the aquatic organisms. These results provide basic information that can be used to protect and improve the quality of this ecosystem.  相似文献   

6.
Tajan River is among the most significant rivers of the Caspian Sea water basin. In this study, the concentration of Cr, Cu, Fe, Mn, Ni, Pb, Cd, and Zn were determined in brain, heart, liver, gill, bile, and muscle of Rutilus frisii kutum which has great economic value in the Mazandaran state. Trace element levels in fish samples were analyzed by means of atomic absorption spectrometry. Nearly all non-essential metals levels (Ni, Pb, Cd) detected in tissues were higher than limits for fish proposed by FAO/WHO, EU, and TFC. Generally, non-essential metals (Ni, Pb) were so much higher in muscle than the essential metals (Cu, Zn, and Mn) except Fe, which was higher than other metals in nearly all parts, except in gills. Fe distribution pattern in tissues was in order of heart > brain > liver > muscle > bile > gill. Distribution patterns of metal concentrations in the muscle of fish as a main edible part followed the sequence: Fe > Pb > Ni > Cu > Mn > Zn > Cd.  相似文献   

7.
Heavy metal contamination of agricultural soils resulting from rapid industrialization and urbanization is of great concern because of potential health risk due to dietary intake of contaminated vegetables. The present study aims to evaluate the status of heavy metals contamination of agricultural soils and food crops around an urban-industrial region in India. Transfer factor values of Cu, Cr, Pb, Cd, Zn, and Ni from soil to vegetable was estimated. The mean heavy metal concentrations (mg/kg) in agricultural soils (Cu: 17.8, Cr: 27.3, Pb: 29.8, Cd: 0.43, Zn: 87, Mn: 306.6, Fe: 16984, and Ni: 53.8) were within allowable concentrations for Indian agricultural soil. The concentrations of Pb, Cd, Zn, and Ni in crops/vegetables exceeded the World Health Organization/Food and Agriculture Organization safe limits. Relative orders of transfer of metals from soil to edible parts of the crops/vegetables were Cd > Pb > Ni > Zn > Cu > Cr. The enrichment factors of heavy metals in soil indicated minor to moderately severe enrichment for Pb, Cd, and Ni; minor to moderate enrichment for Zn; no enrichment to minor enrichment for Mn; and no enrichment to moderate enrichment for Cu at different sites. Ecological risk index of soil showed considerable contamination in one of the wastewater irrigated sites.  相似文献   

8.
Abstract

Distribution of possible chemical forms of Al, Si, Sn, Pb, Zn, Fe, Hg, Cd and Cu in marine sediments of Cape Town harbour was investigated using a modified Tessier’s sequential extraction procedure and ICP-MS and ICP-AES for heavy metals determination. The mean fractions for all metals at all locations were: 1.5–7196 mg kg-1 for Si, 7.79–7266 mg kg-1 for Al, 161-639 mg kg-1 for Cu, 19–41978 mg kg-1 for Fe, 2.83–5864 mg kg-1 for Zn, 1.45–13.26 mg kg-1for Cd, 9.87–223 mg kg-1 for Sn, 11.98-979 mg kg-1 for Pb and 0.13–5.93 mg kg-1 for Hg. Si, Al and Zn were mostly associated with Fe–Mn oxides, whereas Sn and Hg were mainly bound to residual and organic matter. Pb existed mainly in the residual and iron/manganese oxide phases while Cd was evenly distributed in all the five phases. The loading plots of heavy metals bound to the various chemical forms, as well as Pearson correlation coefficients, enabled the determination binding relationship. Pb, Sn and Hg exhibited similar binding behaviour which indicated an anthropogenic point source from wastes from the ship maintenance workshop, and the presence of Sn in the organic phase can be identified with the use of anti-fouling paints at the harbour, whereas Al, Fe, Si, Cu and Zn would probably be of natural origin. Lastly Cd probably came from a diffuse pollution sources in the harbour due to its unique binding characteristic. The mobility of heavy metals varied depending on location and the heavy metal type. The mobility of metals followed the order: Si > Zn > Fe > Cu> Al> Cd> Pb > Sn > Hg. The high percentage of Cd and Pb in the bioavailable forms suggested the need to keep close surveillance on these metals because of their high toxicity.  相似文献   

9.
Xijiang River is the main surface water source in Guangxi province, South China. This study was carried out to investigate the distribution and potential ecological risks of seven heavy metals (Cu, Pb, Zn, As, Cd, Ni, and Cr) in surface sediments in Xijiang River basin. The results illustrated that the average concentrations of Zn, Pb, Cd, Cu, As, Ni, and Cr were 483.9, 207.5, 13.35, 23.50, 312.1, 28.75, and 50.62 mg/kg, respectively. Among them, Zn, Pb, Cd, and As were the major heave metals with concentration exceeding Class 3 threshold value of Chinese national standard. The result also showed samples with high ecological risk were mainly located in the upstream of Xijiang River basin as Diaojiang River, Hongshui River, Jincheng River, and Dahuan River. Based on the pollution risk assessment, the area manifested composite pollution of heavy metals in the sediments, signifying As, Pb, and Cd as the dominant heavy metals, and there were high ecological risk in sediments for these metals. According to correlation matrix and factor analysis (FA), the seven heavy metals were divided into three types/classes, Cd, as and Zn attributed by anthropogenic sources, natural sources corresponds for Ni and Cr while both natural and anthropogenic sources were attributed to Cu.  相似文献   

10.
《农业工程》2020,40(1):64-71
Twenty five water samples were collected along the Taizihe River, the concentration and health risks of Zn, Cu, Pb, Cr and Cd were detected and evaluated, and the pollution sources was analyzed through principal components analyses. The results indicated that the order of average concentration of heavy metals was follows: Pb > Cr > Cu > Zn and Cd. Among that, the concentrations of Zn, Cu and Cr were at the permissible levels, but Pb and Cd exceeded grade V standard at some sites. The concentrations of Zn and Cu in the wet season were significant higher than that in the dry season (p < 0.05), but the average concentrations of Pb, Cr and Cd were not significantly different in the two seasons (p > 0.05). The annual average risks of human health caused by Cd and Cr were 10−3/a and 10−4/a, respectively, which were higher than the recommended maximum acceptable risk level. The human health risk values of Zn, Pb and Cu were all concentrated at 10−8/a or 10−9/a levels, which did not exceed the recommended standard. On the whole, Cd and Cr were the main health risk pollutants of Taizihe River. Pollution sources of Pb was different from other heavy metals in wet and dry season, Cd and Cr were similar in the wet and dry season. The mainly pollution source of heavy metals was industry, especially mining, metal smelting and electroplating industry.  相似文献   

11.
The purpose of this study was to determine the contamination level, distribution, health risk and potential sources of Cr, Cd, Pb, Zn, Cu, Ni and As in 66 topsoil samples from industrial areas in Bandar Abbas County. The geoaccumulation index, pollution index and pollution load index were calculated to assess the pollution level in the industrial soils. The hazard index and carcinogenic risk were used to assess human health risk of heavy metals. Results showed that the contamination levels of heavy metals were in the descending order of Cu> Cd> Pb> Zn> As> Ni> Cr. Moreover, based on principal component analysis, Cd, Zn, Cu, and Pb originated mainly from anthropogenic sources, including power plants, oil and gas refinery, steel and zinc production factories and municipal waste landfills. For non-carcinogenic effects, hazard index of studied metals decreased in the order of Cr> As> Cd> Pb> Ni > Cu> Zn. Arsenic, chromium and cadmium were regarded as the priority pollutants. Carcinogenic risks due to Cd and As in suburban soils were within tolerable risk to human health; however, children faced more health risk in their daily life than adults via their unconscious ingestion and dermal contact pathway.  相似文献   

12.
The present study investigated the water quality index (WQI) of the Kshipra river at Dewas, Madhya Pradesh, India, using native fish Labeo rohita, and plant Eichhornia crassipes. The temperature, pH, dissolved oxygen, alkalinity, turbidity, and dissolved solids were found to be within the prescribed limits. However, heavy metals concentration exceeded the limit except for Cu and Zn. Their occurrence in river water was as follows: Ni > Fe > Cd > Cr > Mn > Zn > Cu. Among these heavy metals, Cd was found to be highly bioavailable, whereas Zn was the least bioavailable metal. Based on WQI, the water was found to be unfit for drinking, and the high WQI value was due to the presence of Cr and Cd. In fish tissues (muscle, liver, gut, gills, and kidney), the highest and lowest metal pollution index was found in gills (45.03) and kidneys (12.21), respectively. Bioaccumulation of these metals resulted in significant depletion of energy reserves (protein, glucose, and glycogen) and also altered hematological parameters. Moreover, liver function tests showed hepatic damage in the exposed fish. In-plant, both the bioaccumulation and mobility factor exceeded 1 for all these metals. On the other hand, the translocation factor was found to be beyond 1 for Fe, Ni, and Zn. These high values make this plant fit for phytoextraction of Mn, Fe, Cu, Zn, and Cd and phytostabilization of Cr in water. Moreover, consumption of L. rohita from the Kshipra River does not pose a non-cancer risk as the target hazard quotient was below 1, but it may pose cancer risk because of the presence of Cr in the range of 1.402 × 10?3 to 1.599 × 10?3.  相似文献   

13.
In this study, sediment samples were collected from Kabul River (Pakistan) and analyzed for heavy metals including zinc (Zn), cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb). The physico-chemical characteristics were also determined which are known to influence the metal accumulation within the sediment matrix. Heavy metal concentrations (mg kg?1, dry weight basis) in the sediment were in the order of Zn > Cr > Ni > Pb > Cd. Heavy metal concentrations were found in moderately polluted category set by U. S. Environmental Protection Agency (USEPA). However, Cr and Ni concentrations exceeded the screening levels at the sites where a larger volume of industrial effluents enter into Kabul River. Higher concentrations of almost all the tested metals were detected at locations of greater industrial and sewage entry points. Sediment organic matter (OM) exhibited strong correlation with Pb (R2 = 0.80), Ni (R2 = 0.67) and Zn (R2 = 0.46), indicating that OM plays a significant role in metal retention and accumulation. The findings of this study showed that Kabul River is reasonably contaminated with selected heavy metals released from anthropogenic sources. In the study area, sewage discharge was the major source of heavy metals including Zn and Pb, which were observed at locations where sewage effluents enter into the river.  相似文献   

14.
Heavy metals found in construction waste can enter soil and water bodies through surface runoff and leachate, where they represent an environmental hazard. In this study, we investigate the pollution characteristics and ecological risks of eight heavy metals (Cd, Cr, Cu, Mn, Ni, Pb, Zn, and As) in the soils of an unofficial construction waste landfill site in Beijing, China. The results indicate that long-term disposal of construction waste in the dry riverbed can reduce the pH value of the soil, increase the soil organic carbon content, and affect the total amount and distribution of heavy metals. Moreover, the landfill site pollutes the external soil environment, with Cd, Zn, Pb, and Cu as the characteristic pollutants. According to the Nemerow comprehensive pollution index and potential ecological risk assessment, heavy metal pollution decreases in the following order: internal soil > bottom soil > boundary soil. Cd, Zn, Pb, and Cu pollution is higher in the internal region, with single heavy-metal pollution indexes (Pi) of 1.41, 1.65, 1.26, and 1.28, respectively. Conversely, the Pi for Cr is higher in boundary and bottom soils (1.91 and 1.94, respectively). Risk assessment codes indicate that Cd and Mn pose the greatest environmental risk (31.9% and 17.8%, respectively) as they have the highest effective content, bioavailability, and mobility. Thus, environmental monitoring is a necessity for these metals.  相似文献   

15.
BackgroundBaltic herring and European sardine are pelagic, fish of particular ecological importance, on the one hand control numbers of planktonic organisms, and on the other hand exist as food for predators on higher trophic levels. Moreover, these fish are among the main species caught for human consumption. Rare earth elements (REEs) come mainly from geogenic sources but, due to their use in technology, agriculture and medicine, the importance of anthropogenic sources is growing steadily.MethodsSamples used for the study were available on the market. Fresh materials of fish muscle, ova and seminal fluid were mineralized and elements were determined by means of inductively coupled plasma – mass spectrometry (ICP-MS).ResultsThe conducted research indicated the presence of REEs in the muscles of the Baltic herring (∑REE = 0.076 ± 0.047 mg/kg) and European sardine (∑REE = 0.191 ± 0.163 mg/kg), with a clear dominance of heavy REEs in both fish species. Trace elements (TE) in the muscles of the tested fish demonstrated a similar system of concentration (Baltic herring: Zn > As > Se > Cu > Cr > Ni > Pb > Cd; European sardine: Zn > As > Se > Cu > Ni > Cr > Pb > Cd). REEs and TEs in these fish were presence in ova and seminal fluid indicates intergenerational transfer.ConclusionChanges in the concentrations of some trace elements (As, Cu, Cd) in the muscles of herring indicate increases compared to the historical data. The availability of metals in the aquatic environment may be determined by ongoing climate changes, effected water salinity and warming increased availability of labile forms of trace metals. Decline trends in the condition of pelagic fish need to extend the research in the context of contemporary environmental threats.  相似文献   

16.
Heavy metals in the site received industrial effluents were investigated to assess the pollution levels, distribution of metal among solid-phase fractions and possible metal sources. The soil samples at different depths of 0–5, 5–25 and 25–50 cm were collected and analyzed for Fe, Mn, Cd, Zn, Cu, Ni and Pb. Among all metals, Cd content was not detected in all soil samples. The average contents of Pb and Zn are higher than the corresponding values of common range in earth crust. Meanwhile, the maximum contents of Cu and Zn are higher than those of Dutch optimum value but lower that the Dutch protection act target value. The maximum contents of Cu, Pb and Zn are higher than the average shale value. The most investigated heavy metals are mostly found in the potentially labile pool (>50.0%) including metal bound to carbonate, Fe/Mn oxides, or organically fractions. Enrichment factor (EF) in combination with multivariate analysis including principal component analysis (PCA) and hierarchical cluster analysis (HCA) suggest that Mn and Ni associated with Fe in the soil samples were primarily originated from lithogenic sources. Pb was largely derived only from anthropogenic source, while Cu and Zn in the soil samples were controlled by the mixed natural and anthropogenic sources. These results suggest that discharging the industrial effluents into dumping site increased pollution level of Pb, Zn and Cu as well as enhanced their potentially labile pool that may be responsible for occurring potential toxic impacts on environmental quality.  相似文献   

17.
To assess the risk of heavy metals contamination on the aquatic ecosystem in downstream waters of a gold field in Northeast China, samples of sediment, fish, shrimp, and mussels were collected to determine heavy metals concentrations. According to Igeo, more attention should be given to Hg, Pb, and Cu pollution in sediment of Weisha River. For aquatic animals, the greatest contents of Hg, Cu, and Pb were found in samples collected from Weisha River, while the maximum values of Zn, Cd, and Cr were found in Hongshi Reservoir, Banmiao River, and Songhua Lake, respectively. The Hg and Pb contents in fish were found in the order of predatory fish > omnivorous fish > herbivorous fish, although for other metals no significant difference was observed among the three trophic levels. The contents of metals in Oriental river prawn and Chinese pond mussel were greater than that in fish, except for Pb. The Target Hazard Quotient and Hazard Index of metals showed that the Carnivorous and Omnivorous fish from Songhua Lake and Hongshi Reservoir, as well as all fish from Banmiao River and Weisha River, were not suitable for consuming in the view of the combined risk of all metals.  相似文献   

18.
The aim of this study was to quantify the levels of toxic heavy metals and sodium in topsoil of farmlands around the Urmia Lake. A total of 96 topsoil samples were collected, pre-treated, and analyzed for metals using ICP-AES.

Median concentrations of As, Cd, Cu, Ni, Pb, Zn, and Na in sampling sites were 5, 0.26, 30, 40, 13, 84, and 251 mg/kg, respectively. The enrichment factor, geoaccumulation index, and contamination factor of the metals ranked them in the order of: Na > Pb > Cu > As > Cd > Zn > Ni, indicating minor contamination for them except Na and Pb with moderate contamination. Furthermore, the spatial analysis indicated that Cd, Cu, Pb, Ni, and Zn had similar distribution patterns in the north and northwest lands of the lake. Principal component analysis revealed anthropogenic sources for Cd, Cu, Ni, Pb, and Zn in the soil, whereas, sources of As and Na were most likely related to the dust emitting from the dried bed of Urmia Lake and from a cement industry. Potential ecological risk index in 7% of the sampling sites was at serious or considerable pollution level, and Cd and Pb were identified as the main pollutants.  相似文献   


19.
Trace elements are essential components of biological structures, but alternatively, they can be toxic at concentrations beyond those necessary for their biological functions. Changes in the concentration of essential trace elements and heavy metals may affect acute hemorrhagic stroke. The aim of this study was to measure serum levels of essential trace elements [iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), and magnesium (Mg)] and heavy metals [cobalt (Co), cadmium (Cd), and lead (Pb)] in patients with acute hemorrhagic stroke. Twenty-six patients with acute hemorrhagic stroke and 29 healthy controls were enrolled. Atomic absorption spectrophotometry (UNICAM-929) was used to measure serum Fe, Cu, Pb, Cd, Zn, Co, Mn and Mg concentrations. Serum Cd, Pb and Fe levels were significantly higher in patients with acute hemorrhagic stroke than controls (p < 0.001), while serum Cu, Zn, Mg and Mn levels were significantly lower (all p < 0.001). However, there was no significant difference between the groups with respect to serum Co levels (p > 0.05). We first demonstrate increased Cd, Pb, and Fe levels; and decreased Cu, Zn, Mg, and Mn levels in patients with acute hemorrhagic stroke. These findings may have diagnostic and prognostic value for acute hemorrhagic stroke. Further studies are required to elucidate the roles of trace elements and heavy metals in patients with acute hemorrhagic stroke.  相似文献   

20.
The Korbeva?ka River is located in the southeastern part of Serbia. This river is a main recipient of all kinds of pollutants from the Pb?Zn mine “Grot.” Sediments from the Korbeva?ka River were studied to determine the distribution of the metals along the river, assess the quality of sediment, and find the degree of contamination. The concentration of iron, manganese, nickel, copper, zinc, cadmium, lead, mercury, arsenic, chromium, and barium were determined. River sediments were collected and analyzed for heavy metal concentration using atomic absorption spectrophotometer. The degree of pollution in the sediments of the Korbeva?ka River has been evaluated based on Canadian sediment quality guidelines, enrichment factor (EF), geo-accumulation index (Igeo) and pollution load index (PLI). Inter-metal associations have been evaluated by Pearson correlation coefficients (r). The results indicated that: (1) sediments have been polluted with Pb, Cd, Zn, and Cu and have high anthropogenic influences; (2) the calculation of geo-accumulation index suggests that the Korbeva?ka River sediments have background concentrations of Fe, Cr, and Ni (Igeo < 1); (3) the co-precipitation (inclusion, occlusion, and adsorption) of heavy metals (except As and Ba) with Mn and Fe geochemical phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号