首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Alcohol dehydrogenases (ADH) of classes V and VI, ADH5 and ADH6, have been defined in man and rodents, respectively. Sequence data have been obtained at cDNA and genomic levels, but limited data are available for functionality and substrate repertoire. The low positional identity (65%) between the two ADHs, place them into separate classes. We have shown that the ADH5 gene yields two differently processed mRNAs and harbors a gene organization identical to other mammalian ADHs. This is probably due to an alternative splicing in the eighth intron that results in a shorter message missing the ninth exon or a normal message with the expected number of codons. The isolated rat ADH6 cDNA was found to be fused to ADH2 at the 5′-end. The resulting main open reading frame translates into an N-terminally extended polypeptide. In vitro translation results in a polypeptide of about 42 kDa and further, protein was possible to express in COS cells as a fusion product with Green Fluorescent Protein. Both ADH5 and ADH6 show genes and gene products that are processed comparably to other mammalian ADHs and the deduced amino acid sequences indicate a lack of ethanol dehydrogenase activity that probably explains why no corresponding proteins have been isolated. The functionality of these ADHs is therefore still an enigma.  相似文献   

2.
Alcohol dehydrogenases (ADH) of classes V and VI, ADH5 and ADH6, have been defined in man and rodents, respectively. Sequence data have been obtained at cDNA and genomic levels, but limited data are available for functionality and substrate repertoire. The low positional identity (65%) between the two ADHs, place them into separate classes. We have shown that the ADH5 gene yields two differently processed mRNAs and harbors a gene organization identical to other mammalian ADHs. This is probably due to an alternative splicing in the eighth intron that results in a shorter message missing the ninth exon or a normal message with the expected number of codons. The isolated rat ADH6 cDNA was found to be fused to ADH2 at the 5'-end. The resulting main open reading frame translates into an N-terminally extended polypeptide. In vitro translation results in a polypeptide of about 42 kDa and further, protein was possible to express in COS cells as a fusion product with Green Fluorescent Protein. Both ADH5 and ADH6 show genes and gene products that are processed comparably to other mammalian ADHs and the deduced amino acid sequences indicate a lack of ethanol dehydrogenase activity that probably explains why no corresponding proteins have been isolated. The functionality of these ADHs is therefore still an enigma.  相似文献   

3.
Phylogenetic relationship and the rates of evolution of mammalian alcohol dehydrogenases (ADHs) have been studied by using the amino acid sequences from the human (ADH alpha, ADH beta, and ADH gamma), rat, mouse, and horse (ADH E and ADH S). With the maize ADH1 and ADH2 used as references, the patterns of the amino acid replacements in the beta-sheets, alpha-helices, and random coils in each of the catalytic and coenzyme-binding domains were analyzed separately. The phylogenetic trees based on the different sets of amino acid substitutions consistently showed that (1) multiple ADHs in human and horse have arisen after mammalian radiation, (2) the common ancestor of human ADHs alpha and beta diverged from the ancestor of ADH gamma first and the former two ADHs diverged from each other more recently, and (3) the human ADHs are more closely related to the rodent ADHs than to the horse ADHs. Furthermore, the estimated branch lengths showed that the rodent ADHs are evolving faster than the other ADHs. This difference in evolutionary rate between the two groups of organisms is explainable either in terms of the difference in the number of cell generations per year or in terms of reduction of functional constraints.  相似文献   

4.
Ethanol is teratogenic to many vertebrates. We are utilizing zebrafish as a model system to determine whether there is an association between ethanol metabolism and ethanol-mediated developmental toxicity. Here we report the isolation and characterization of two cDNAs encoding zebrafish alcohol dehydrogenases (ADHs). Phylogenetic analysis of these zebrafish ADHs indicates that they share a common ancestor with mammalian class I, II, IV, and V ADHs. The genes encoding these zebrafish ADHs have been named Adh8a and Adh8b by the nomenclature committee. Both genes were genetically mapped to chromosome 13. The 1450-bp Adh8a is 82, 73, 72, and 72% similar at the amino acid level to the Baltic cod ADH8 (previously named ADH1), the human ADH1B2, the mouse ADH1, and the rat ADH1, respectively. Also, the 1484-bp Adh8b is 77, 68, 67, and 66% similar at the amino acid level to the Baltic cod ADH8, the human ADH1B2, the mouse ADH1, and the rat ADH1, respectively. ADH8A and ADH8B share 86% amino acid similarity. To characterize the functional properties of ADH8A and ADH8B, recombinant proteins were purified from SF-9 insect cells. Kinetic studies demonstrate that ADH8A metabolizes ethanol, with a V(max) of 13.4 nmol/min/mg protein, whereas ADH8B does not metabolize ethanol. The ADH8A K(m) for ethanol as a substrate is 0.7 mm. 4-Methyl pyrazole, a classical competitive inhibitor of class I ADH, failed to inhibit ADH8A. ADH8B has the capacity to efficiently biotransform longer chain primary alcohols (>/=5 carbons) and S-hydroxymethlyglutathione, whereas ADH8A does not efficiently metabolize these substrates. Finally, mRNA expression studies indicate that both ADH8A and ADH8B mRNA are expressed during early development and in the adult brain, fin, gill, heart, kidney, muscle, and liver. Together these results indicate that class I-like ADH is conserved in zebrafish, albeit with mixed functional properties.  相似文献   

5.
A cDNA encoding human class III (chi ADH5) alcohol dehydrogenase was isolated, sequenced and used to comparatively map this unusual ADH. In their coding sequences, the three major ADH classes were approximately equisimilar, class II and III ADHs sharing the highest sequence identity (67%). A class III-like ADH was mapped to mouse chromosome 3, site of the ADH gene complex, and synteny of ADH5 with four other ADH loci on human chromosome 4 was confirmed. The nearly full-length 1613 nucleotide cDNA contained 433 nucleotides of 3' nontranslated sequence and two possible initiation sites for translation. A protein of 374 amino acid residues could be synthesized using the potential initiation codon at nucleotide 59. However, use of the likely initiation codon at nucleotide 5 would produce a protein of 392 residues with 19 additional N-terminal residues as compared to the known protein sequence. The derived protein sequence also differs at residue 166, where Tyr is found. This difference, due to a single base substitution, could result from cloning artifact, polymorphism, or two expressed class III ADH genes.  相似文献   

6.
7.
Cellulose acetate zymograms of alcohol dehydrogenase (ADH), aldehyde dehydrogenase (AHD), aldehyde reductase (AHR), aldehyde oxidase (AOX) and xanthine oxidase (XOX) extracted from horse tissues were examined. Five ADH isozymes were resolved: three corresponded to the previously reported class I ADHs (EE, ES and SS) (Theorell, 1969); a single form of class II ADH (designated ADH-C2) and of class III ADH (designated ADH-B2) were also observed. The latter isozyme was widely distributed in horse tissues whereas the other enzymes were found predominantly in liver. Four AHD isozymes were differentially distributed in subcellular preparations of horse liver: AHD-1 (large granules); AHD-3 (small granules); and AHD-2, AHD-4 (cytoplasm). AHD-1 was more widely distributed among the horse tissues examined. Liver represented the major source of activity for most AHDs. A single additional form of NADPH-dependent AHR activity (identified as hexonate dehydrogenase), other than the ADHs previously described, was observed in horse liver. Single forms of AOX and XOX were observed in horse tissue extracts, with highest activities in liver.  相似文献   

8.
Mammalian ALDH3 genes (ALDH3A1, ALDH3A2, ALDH3B1 and ALDH3B2) encode enzymes of peroxidic and fatty aldehyde metabolism. ALDH3A1 also plays a major role in anterior eye tissue UV-filtration. BLAT and BLAST analyses were undertaken of several vertebrate genomes using rat, chicken and zebrafish ALDH3-like amino acid sequences. Predicted vertebrate ALDH3 sequences and structures were highly conserved, including residues involved in catalysis, coenzyme binding and enzyme structure as reported by Liu et al. [27] for rat ALDH3A1. Phylogeny studies of human, rat, opossum, platypus, chicken, xenopus and zebrafish ALDH3-like sequences supported three hypotheses: (1) the mammalian ALDH3A1 gene was generated by a tandem duplication event of an ancestral vertebrate ALDH3A2 gene; (2) multiple mammalian and chicken ALDH3B-like genes were generated by tandem duplication events within genomes of related species; and (3) vertebrate ALDH3A and ALDH3B genes were generated prior to the appearance of bony fish more than 500 million years ago.  相似文献   

9.
Mammalian ALDH3 isozymes participate in peroxidic and fatty aldehyde metabolism, and in anterior eye tissue UV-filtration. BLAT analyses were undertaken of the opossum genome using rat ALDH3A1, ALDH3A2, ALDH3B1, and ALDH3B2 amino acid sequences. Two predicted opossum ALDH3A1-like genes and an ALDH3A2-like gene were observed on chromosome 2, as well as an ALDH3B-like gene, which showed similar intron–exon boundaries with other mammalian ALDH3-like genes. Opossum ALDH3 subunit sequences and structures were highly conserved, including residues previously shown to be involved in catalysis and coenzyme binding for rat ALDH3A1. Eleven glycine residues were conserved for all of the opossum ALDH3-like sequences examined, including two glycine residues previously located within the stem of the rat ALDH3A1 active site funnel. Phylogeny studies of human, rat, opossum, and chicken ALDH3-like sequences indicated that the common ancestor for ALDH3A- and ALDH3B-like genes predates the appearance of birds during vertebrate evolution.  相似文献   

10.
1. Isoelectric focusing (IEF) and zymogram methods were used to examine the tissue distribution, multiplicity and substrate specificities of alcohol dehydrogenases (ADHs), aldehyde dehydrogenases (ALDHs) and ocular oxidases (EOXs) from mammalian anterior eye tissues. 2. Baboon, cattle, pig and sheep corneal extracts exhibited high ALDH activities; the corneal ALDHs were distinct from the major liver ALDHs and distinguished by their preference for medium-chain aldehydes. 3. Baboon and pig corneal extracts also showed high ADH activities, by comparison with ovine and bovine samples. Moreover, the ADHs were distinct from the major liver isozymes in pI value and substrate specificity. 4. Mammalian lens extracts exhibited significant ALDH activity of a form corresponding to the major liver cytosolic isozyme. Minor activity of the corneal enzyme was also observed in some species. 5. Lens ADH phenotypes were species-specific, and consisted of either Class II activity (baboon and sheep), Class III ADH activity (pig), or activities of both ADH classes (cattle). 6. Lens extracts also exhibited a complex pattern of ocular oxidase (EOX) activities following IEF. 7. A role in peroxidatic aldehyde detoxification is proposed for these enzymes in anterior eye tissues.  相似文献   

11.
Evidence is presented for six opossum ALDH1A genes, including four ALDH1A1-like genes on chromosome 6 and ALDH1A2- and ALDH1A3-like genes on chromosome 1. Predicted structures for the opossum aldehyde dehydrogenase (ALDH) subunits and the intron–exon boundaries for opossum ALDH genes showed a high degree of similarity with other mammalian ALDHs. Phylogenetic analyses supported the proposed designation of these opossum class 1 ALDHs as ALDH1A-like, ALDH1A2-like, and ALDH1A3-like and are therefore likely to play important roles in retinal and peroxidic aldehyde metabolism. Alignments of predicted opossum ALDH1A amino acid sequences with sheep ALDH1A1 and rat ALDH1A2 sequences demonstrated conservation of key residues previously shown to participate in catalysis and coenzyme binding. Amino acid substitution rates observed for family 1A ALDHs during vertebrate evolution indicated that ALDH1A2-like genes are evolving slower than ALDH1A1- and ALDH1A3-like genes. It is proposed that the common ancestor for ALDH1A genes predates the appearance of birds during vertebrate evolution.  相似文献   

12.
The amino acid composition of human alcohol dehydrogenase (ADH) was compared with alcohol dehydrogenases from different organisms and with other proteins. Similar amino acid sequences in human ADH (template protein) and in other proteins were determined by means of an original computer program. Analysis of amino acid motifs reveals that the ADHs from evolutionary more close organisms have more common amino acid sequences. The quantity measure of amino acid similarity was the number of similar motifs in analyzed protein per protein length. This value was measured for ADHs and for different proteins. For ADHs, this quotient was higher than for proteins with different functions; for vertebrates it correlated with evolutionary closeness. The similar operation of motif comparison was made with the help of program complex “MEME”. The analysis of ADHs revealed 4 motifs common to 6 of 10 tested organisms and no such motifs for proteins of different function. The conclusion is that general amino composition is more important for protein function than amino acid order and for enzymes of similar function it better correlates with evolutionary distance between organisms.  相似文献   

13.
14.
Current information on the molecular structure of human alcohol dehydrogenase (ADH) genes is fragmentary. To characterize all ADH genes, we have isolated 63 ADH clones from human genomic libraries made from one individual. Fifty-nine clones have been classified into five previously known loci: ADH1 (18 clones), ADH2 (20 clones), and ADH3 class I (16 clones), ADH4 class II (4 clones), and ADH5 class III (1 clone). Sequencing of one of the remaining four unclassified clones, SY lambda ADHE38, about 1.1 kb in length, shows no introns and three frameshift mutations in the coding region, with a total of 10 internal termination codons. When its deduced amino acid sequence was compared with those of the class I, class II, and class III ADHs, the proportions of identical amino acids were 56.7%, 55.5%, and 88.7%, respectively, suggesting that the processed pseudogene was derived from an ADH5 gene. The duplication event seems to have occurred about 3.5 million years ago, and the pseudogene has undergone a rapid change since then.  相似文献   

15.
The most efficient, specific and rapid procedures for alcohol dehydrogenase (ADH) purification utilize immobilized 4-(3-aminopropyl) pyrazole to which pyrazole sensitive ADHs, i.e. class I isozymes, bind. Because of the length of the reported synthesis of this affinity resin, we synthesized the 4-(3-aminopropyl) pyrazole ligand by a new method in two steps from commercially available nicotinaldehyde. The ligand synthesized by this simplified procedure was directly coupled to the chain-extended support, Activated CH-Sepharose 4B, to yield the same ligand-spacer combination as reported by L.G. Lange and B.L. Vallee (Biochem. 15: 4681-4686, 1976). Human and hamster class I ADHs purified using this resin were homogeneous by SDS-PAGE followed by silver staining. Specific activity and recovery of human class I ADH were comparable to those previously reported.  相似文献   

16.
The localization of different classes of alcohol dehydrogenases (ADH) in the brain is of great interest because of their role in both ethanol and retinoic acid metabolism. Conflicting data have been reported in the literature. By Northern blot and enzyme activity analyses only class III ADH has been detected in adult brain specimens, while results from riboprobe in situ hybridization indicate class I as well as class IV ADH expression in different regions of the rat brain. Here we have studied the expression patterns of three ADH classes in adult rat, mouse and human tissues using radioactive oligonucleotide in situ hybridization. Specificity of probes was tested on liver and stomach control tissue, as well as tissue from class IV ADH knock-out mice. Only class III ADH mRNA was found to be expressed in brain tissue of all three investigated species. Particularly high expression levels were found in neurons of the red nucleus in human tissue, while cortical neurons, pyramidal and granule cells of the hippocampus and dopamine neurons of substantia nigra showed moderate expression levels. Purkinje cells of cerebellum were positive for class III ADH mRNA in all species investigated, whereas granular layer neurons were positive only in rodents. The choroid plexus was highly positive for class III ADH, while no specific signal for class I or class IV ADH was detected. Our results thus support the notion that the only ADH expressed in adult mouse, rat and human brain is class III ADH.  相似文献   

17.
18.
19.
Phylogenetic relationships and rates of nucleotide substitution were studied for alcohol dehydrogenase (ADH) genes by using DNA sequences from mammals and plants. Mammalian ADH sequences include the three class I genes and a class II gene from humans and one gene each from baboon, rat, and mouse. Plant sequences include two ADH genes each from maize and rice, three genes from barley, and one gene each from wheat and two dicots, Arabidopsis and pea. Phylogenetic trees show that relationships among ADH genes are generally consistent with taxonomic relationships: mammalian and plant ADH genes are classified into two distinct groups; primate class I genes are clustered; and two dicot sequences are clustered separately from monocot sequences. Accelerated evolution has been detected among the duplicated ADH genes in plants, in which synonymous substitutions occurred more often within the coenzyme-binding domain than within the catalytic domains.  相似文献   

20.
cDNAs for alcohol dehydrogenase (ADH) isozymes were cloned and sequenced from two tephritid fruit flies, the medfly Ceratitis capitata and the olive fly Bactrocera oleae. Because of the high sequence divergence compared with the Drosophila sequences, the medfly cDNAs were cloned using sequence information from the purified proteins, and the olive fly cDNAs were cloned by functional complementation in yeast. The medfly peptide sequences are about 83% identical to each other, and the corresponding mRNAs have the tissue distribution shown by the corresponding isozymes, ADH-1 and ADH-2. The olive fly peptide sequence is more closely related to medfly ADH-2. The tephritid ADHs share less than 40% sequence identity with Drosophila ADH and ADH-related genes but are >57% identical to the ADH of the flesh fly Sarcophaga peregrina, a more distantly related species. To explain this unexpected finding, it is proposed that the ADH: genes of the family Drosophilidae may not be orthologous to the ADH: genes of the other two families, Tephritidae and Sarcophagidae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号