首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Glucose uptake was monitored on a seasonal basis, using [6-3H]glucose and undisturbed cores collected from an intertidal mud flat. The fate of glucose carbon, including the formation of CO2 and biomass, was assayed by using undisturbed cores and [U-14C]glucose; the production of short-chain fatty acids was monitored with [U-14C]glucose and sediment slurries. Rate constants for glucose uptake varied temporally, with temperature accounting for much of the variability; turnover times ranged from about 2 to 10 min. Rate constants decreased with increasing sediment depth and in the following order for several common monosaccharides: glucose>galactose>mannose~fucose. Time course analyses of 14CO2 production provided evidence of significant isotopic dilution; although pore water glucose turnover times were on the order of minutes, 14CO2 did not plateau until after approximately 6 h of incubation. At this time a maximum of about 40% of the added radioglucose had been respired. The extent of respiration varied as a function of sediment depth and season, with the highest values below the surface (4 to 7 cm) and in summer and fall. Incorporation of radiolabelled glucose into biomass also varied seasonally, but the greatest extent of incorporation (about 40%) was observed in the fall and for the 0- to 1-cm depth interval. The production of short-chain fatty acid end products was largely limited to acetate, which accounted for only a small percentage of the added radiolabel. Other organic acids, pyruvate in particular, were observed in pore water and were due to artifacts in the heat-kill procedure used to terminate incubations. An accurate assessment of the distribution and importance of short-chain fatty acids as end products required the use of an enzymatic technique coupled with high-pressure liquid chromatography to verify qualitative identities.  相似文献   

2.
The carbon and electron flow pathways and the bacterial populations responsible for the transformation of H2-CO2, formate, methanol, methylamine, acetate, ethanol, and lactate were examined in eutrophic sediments collected during summer stratification and fall turnover. The rate of methane formation averaged 1,130 μmol of CH4 per liter of sediment per day during late-summer stratification versus 433 μmol of CH4 per liter of sediment per day during the early portion of fall turnover, whereas the rate of sulfate reduction was 280 μmol of sulfate per liter of sediment per day versus 1,840 μmol of sulfate per liter of sediment per day during the same time periods, respectively. The sulfate-reducing population remained constant while the methanogenic population decreased by one to two orders of magnitude during turnover. The acetate concentration increased from 32 to 81 μmol per liter of sediment while the acetate transformation rate constant decreased from 3.22 to 0.70 per h, respectively, during stratification versus turnover. Acetate accounted for nearly 100% of total sedimentary methanogenesis during turnover versus 70% during stratification. The fraction of 14CO2 produced from all 14C-labeled substrates examined was 10 to 40% higher during fall turnover than during stratification. The addition of sulfate, thiosulfate, or sulfur to stratified sediments mimicked fall turnover in that more CO2 and CH4 were produced. The addition of Desulfovibrio vulgaris to sulfate-amended sediments greatly enhanced the amount of CO2 produced from either [14C]methanol or [2-14C]acetate, suggesting that H2 consumption by sulfate reducers can alter methanol or acetate transformation by sedimentary methanogens. These data imply that turnover dynamically altered carbon transformation in eutrophic sediments such that sulfate reduction dominated over methanogenesis principally as a consequence of altering hydrogen metabolism.  相似文献   

3.
The rates, products, and controls of the metabolism of fermentation intermediates in the sediments of a eutrophic lake were examined. 14C-fatty acids were directly injected into sediment subcores for turnover rate measurements. The highest rates of acetate turnover were in surface sediments (0- to 2-cm depth). Methane was the dominant product of acetate metabolism at all depths. Simultaneous measurements of acetate, propionate, and lactate turnover in surface sediments gave turnover rates of 159, 20, and 3 μM/h, respectively. [2-14C]propionate and [U-14C]lactate were metabolized to [14C]acetate, 14CO2, and 14CH4. [14C]formate was completely converted to 14CO2 in less than 1 min. Inhibition of methanogenesis with chloroform resulted in an immediate accumulation of volatile fatty acids and hydrogen. Hydrogen inhibited the metabolism of C3-C5 volatile fatty acids. The rates of fatty acid production were estimated from the rates of fatty acid accumulation in the presence of chloroform or hydrogen. The mean molar rates of production were acetate, 82%; propionate, 13%; butyrates, 2%; and valerates, 3%. A working model for carbon and electron flow is presented which illustrates that fermentation and methanogenesis are the predominate steps in carbon flow and that there is a close interaction between fermentative bacteria, acetogenic hydrogen-producing bacteria, and methanogens.  相似文献   

4.
1. Livers from fed male rats were perfused in situ in a non-recirculating system with whole rat blood containing acetate at six concentrations, from 0.04 to 1.5 μmol/ml, to cover the physiological range encountered in the hapatic portal venous blood in vivo. 2. Below a concentration of 0.25 μmol/ml there was net production of acetate by the liver, while above it there was ner uptake with a fractional extraction of 40%. 3.No relationship was observed between blood [acetate] and hepatic ketogenesis, the ration [3-hydroxybutyrate]/[acetoacetate] or glucose output, either at low fatty acid concentration s or during oleate infusion. 4. Following the increase in serum fatty acid concentration, induced by oleate infusion, there were suquential incresase in ketogenesis and the ratio of [3-hydroxybutyrate]/[acetoacetate] while glucose output rose and lactate uptake fell significantly after in redox state. 5. There was a highly significant negative correlation between blood [acetate] and hepatic lactate uptake during oleate infusion. At the highest acetate concentration of 1.5 μmol/ml there was a small net hepatic lactate output. After oleate infusion ceased, lactate uptake increased, but the negative correlation between blood [acetate] and hepatic lactate uptake persisted. 6. Livers were also perfused with iether [1-14C]acetate or [U-14C]lactate at a concentration of acetate of either 0.3 or 1.3 μmol/ml of blood. With [1-14C]acetate, most of the radioactivity was recovered as fatty acids at the lower concentration of blood acetate. At the higher blood [acetate] a considerably smaller proportion of the radioactivity was recovered in lipids. With [U-14C]lactate the reverse pattern obtained i.e., recovery was greater at the high concentration of acetate and fell at the low concentration. Fatty acid biosynthesis, measured with 3H2O, was stimulated from 2.4 to 6.6 μmol of fatty acid/g of liver per h by high blood [acetate] although the contribution of (acetate+lactate) to synthesis remained constant at 33–38% of the total. 7. These results emphasize the important role of the liver in regulating blood acetate concentrations and indicate that it can be major hepatic substrate. Acetate taken up by the liver appeared to compete directly with lactate, for lipogenesis and metabolism and acetate uptake was inhibited by raised bloodd [lactate].  相似文献   

5.
An ecological substrate relationship between sulfate-reducing and methane-producing bacteria in mud of Lake Vechten has been studied in experiments using 14C-labeled acetate and lactate as substrates. Fluoroacetate strongly inhibited the formation of 14CO2 from [U-14C]-acetate and β-fluorolactate gave an inhibition of similar magnitude of the breakdown of [U-14C]-l-lactate to 14CO2 thus confirming earlier results on the specific action of these inhibitors. The turnover-rate constant of l-lactate was 2.37 hr-1 and the average l-lactate pool size was 12.2 μg per gram of wet mud, giving a turnover rate of 28.9 μg of lactate/gram of mud per hr. The turnover-rate constant of acetate was 0.35 hr-1 and the average pool size was 5.7 μg per gram of wet mud, giving a rate of disappearance of 1.99 μg of acetate/gram of mud per hr. Estimations of the acetate turnover rate based upon the formation of 14CO2 from [U-14C]-acetate or [1-14C]-acetate yielded figures of the same magnitude (range 0.45 to 1.74). These and other results suggest that only a portion of the lactate dissimilated is turned over through the acetate pool. The ratio of 14CO2/14CH4 produced from [U-14C]-acetate by mud was 1.32; indicating that 0.862 moles of CH4 and 1.138 moles of CO2 are formed per mole of acetate. From the rate of disappearance of acetate (0.027 μmoles/gram wet mud per hr) and the rate of methane production (0.034 μmoles/gram wet mud per hr), it may be concluded that acetate is an important precursor of methanogenesis in mud (approximately 70%). A substrate relationship between the two groups of bacteria is likely since 14CH4 was formed from [U-14C]-l-lactate.  相似文献   

6.
Mineralization rates of 14C-labeled substrates were determined in the presence and absence of Na2MoO4, an inhibitor of sulfate reduction, in the profundal sediments of a shallow eutrophic lake. Sulfate reduction was inhibited by Na2MoO4 at all concentrations tested (0.2 to 200 mM), whereas methane production was inhibited at Na2MoO4 concentrations greater than 20 mM. Initial mineralization rates of glucose were unaffected by Na2MoO4; however, Na2MoO4 decreased the mineralization rates of lactate (58%), propionate (52%), an amino acid mixture (85%), and acetate (14%). These decreases in the rates of mineralization were attributed to inhibition of sulfate reduction. Hydrogen stimulated the reduction of 35SO42− 2.5- to 2.8-fold, demonstrating potential hydrogen oxidation by sulfate-reducing bacteria. These results indicate that sulfate reducers utilize an array of substrates as electron donors and are of potential significance to the in situ mineralization of lactate, propionate, and free amino acids in these sediments.  相似文献   

7.
The carbon and electron flow pathways and the bacterial populations responsible for transformation of H2-CO2, formate, methanol, methylamine, acetate, glycine, ethanol, and lactate were examined in sediments collected from Knaack Lake, Wis. The sediments were 60% organic matter (pH 6.2) and did not display detectable sulfate-reducing activity, but they contained the following average concentration (in micromoles per liter of sediment) of metabolites and end products: sulfide, 10; methane, 1,540; CO2, 3,950; formate, 25; acetate, 157; ethanol, 174; and lactate, 138. Methane was produced predominately from acetate, and only 4% of the total CH4 was derived from CO2. Methanogenesis was limited by low environmental temperature and sulfide levels and more importantly by low pH. Increasing in vitro pH to neutral values enhanced total methane production rates and the percentage of CO2 transformed to methane but did not alter the amount of 14CO2 produced from [2-14C]acetate (~24%). Analysis of both carbon transformation parameters with 14C-labeled tracers and bacterial trophic group enumerations indicated that methanogenesis from acetate and both heterolactic- and acetic acid-producing fermentations were important to the anaerobic digestion process.  相似文献   

8.
The fates and the rates of metabolism of acetate, trimethylamine, methylamine, and methanol were examined to determine the significance of these compounds as in situ methane precursors in surface sediments of an intertidal zone in Maine. Concentrations of these potential methane precursors were generally <3 μM, with the exception of sediments containing fragments of the seaweed Ascophyllum nodosum, in which acetate was 96 μM. [2-14C]acetate turnover in all samples was rapid (turnover time <2 h), with 14CO2 as the primary product. [14C]trimethylamine and methylamine turnover times were slower (>8 h) and were characterized by formation of both 14CH4 and 14CO2. Ratios of 14CH4/14CO2 from [14C]trimethylamine and methylamine in uninhibited sediments indicated that a significant fraction of these substrates were catabolized via a non-methanogenic process. Data from inhibition experiments involving sodium molybdate and 2-bromoethanesulfonic acid supported this interpretation. [14C]methanol was oxidized relatively slowly compared with the other substrates and was catabolized mainly to 14CO2. Results from experiments with molybdate and 2-bromoethanesulfonic acid suggested that methanol was oxidized primarily through sulfate reduction. In Lowes Cove sediments, trimethylamine accounted for 35.1 to 61.1% of total methane production.  相似文献   

9.
The effect of glucagon on the incorporation of U-14 C-labeled lactate, pyruvate or alanine into glucose has been studied using isolated hepatocytes from livers of fed rats. Rates of incorporation into glucose were about the same as observed in perfused liver preparations provided precautions were taken to avoid depletion of certain metabolities by the preparative procedures. With each substrate, stimulation of the incorporation into glucose by a maximally effective concentration of glucagon (10 nM) was associated with about a 75% reduction in the substrate concentration required for a half-maximal rate and with about a 30% increase in maximum rate. Consequently, the hormone caused a substantial (2–4-fold) stimulation when any one of the above substrates was present at a near physiological concentration, but brought about only a relatively small stimulation (1.4-fold) when very high substrate concentrations were used. Provision of cytoplasmic reducing equivalents (by ethanol addition), or of precursor for acetyl-coenzyme A formation (by acetate addition)-stimulated incorporation of labeled alanine into glucose and their effects were additive with that of glucagon. This suggested that provision of either of these intermediates was not a means by which the hormone increased the incorporation of labeled substrate into glucose. NH4+ stimulated the incorporation of 20 mM [U-14 C] lactate into glucose 2-fold, probably by promoting glutamate synthesis and thus enhancing the transamination of oxaloacetate to aspartate. Evidence was obtained to support the view that glucagon also increases glutamate production (presumably from endogenous protein). However, the stimulation of incorporatio into glucose from 20 mM [U-14 C] lactate by NH4+ plus glucagon was synergistic. This suggested that glucagon also stimulates the incorporation of labeled substrate into glucose by additional means. Stimulation of the incorporation of [U-14 C] alanine into glucose by β-hydroxybutyrate plus glucagon was also synergistic. This suggested that another action of glucagon may be to provide more intramitochondrial reducing potential.  相似文献   

10.
Contributions of omega-oxidation to overall fatty acid oxidation in slices from livers of ketotic alloxan diabetic rats and of fasted monkeys are estimated. Estimates are made from a comparison of the distribution of 14C in glucose formed by the slices from omega-14C-labeled compared to 2-14C-labeled fatty acids of even numbers of carbon atoms and from [1-14C]acetate compared to [2-14C]acetate. These estimates are based on the fact that 1) the dicarboxylic acid formed via omega-oxidation of a omega-14C-labeled fatty acid will yield [1-14C]acetate and [1-14C]succinate on subsequent beta-oxidation, if beta-oxidation is assumed to proceed to completion; 2) only [2-14C]acetate will be formed if the fatty acid is metabolized solely via beta-oxidation; and 3) 14C from [1-14C]acetate and [1-14C]succinate is incorporated into carbons 3 and 4 of glucose and 14C from [2-14C]acetate is incorporated into all six carbons of glucose. From the distributions found, the contribution of omega-oxidation to the initial oxidation of palmitate by liver slices is estimated to between 8% and 11%, and the oxidation of laurate between 17% and 21%. Distributions of 14C in glucose formed from 14C-labeled palmitate infused into fasted and diabetic rats do not permit quantitative estimation of the contribution of omega-oxidation to fatty acid oxidation in vivo. However, the distributions found also indicate that, of the fatty acid metabolized by the whole animal in the environment of glucose formation, at most, only a minor portion is initially oxidized via omega-oxidation. As such, omega-oxidation cannot contribute more than a small extent to the formation of glucose.  相似文献   

11.
The effect of thyroid status on glucose recycling was measured in intact rats by comparing the fates of differently labeled [3H]- and [14C]glucose. Glucose recycling at the level of three-carbon compounds (i.e., Cori and glucose-alanine cycles) was measured by comparing the rates of turnover of [6-3H]- and [6-14C]glucose in the same animal. The rate of recycling increased (33–110%) in hyperthyroid rats and decreased (22–30%) in hypothyroid (thyroidectomized) rats. The relative importance of the Cori and glucose-alanine cycles was measured by analyzing the labeled glycolytic intermediates after the injection of labeled glucose; and by measuring the rate of glucose production from the infused labeled lactate and alanine. The results showed that the rate of the Cori cycle is much greater than the glucose-alanine cycle in rats. Substrate cycling at the level of glucokinase-glucose-6-phosphatase was measured by comparing the rates of turnover of [2-3H]- and [6-3H]glucose; and phosphofructokinase-fructose bisphosphatase was measured by comparing the rates of turnover of [3-3H]- and [6-3H]glucose. These cycles were also affected by thyroid states of the animals. The rate of the phosphofructokinase-fructose bisphosphatase cycle increased threefold in hyperthyroid rats and decreased by about half in hypothyroid rats. The glucokinase-glucose-6-phosphatase substrate cycle occurred at the rate of nearly 2 μmol/min/100 g body wt in the hyperthyroid, fasted rats; it was not detectable in hypo- or euthyroid rats. The contribution of the energy released by these cycles to thyroid thermogenesis was discussed. Effects of thyroid states on glucose metabolism in perfused muscles were also studied. There is an apparent shift in the source of energy for oxidation in the hyperthyroid rat. The ratio of lactate production to glucose uptake was significantly elevated in the hyperthyroid rats. This change predisposes for increased glucose recycling in hyperthyroid rats to avoid lactate accumulation and acidosis.  相似文献   

12.
The fate of lignin in water and sediment of the Garonne river (France) and of a pond in its floodplain was examined using specifically labeled [14C-lignin] lignocelluloses. No significant differences appeared in the mineralization rate of alder, poplar or willow [14C-lignin] in running water samples. Conversion of total radioactivity to 14CO2 ranged between 18.7% and 24.4% after 120 days of incubation. Degree of 14C-labeled lignin mineralization in standing water and sediments was clearly lower, especially in submerged sediments, and was correlated with oxygen supply. After 60 days of incubation 3.3% to 7.9% of the 14C-labeled lignin was recovered in water samples as dissolved organic carbon originating from microbial metabolism. In water extracts from sediment the percentage of dissolved organic 14C was only 0.4% to 1.3% of the applied activity. In the humic fraction extracted from sediments it did not exceed 4.4% which was much lower than in soils. No significant difference appeared between river and pond conditions for humic substances formation.  相似文献   

13.
Summary Carbon distribution from substrates to products in Clostridium acetobutylicum ATCC 824 was investigated by adding 14C-labeled substrates as tracers. Comparison of carbon conversion between chloramphenicol (CAP)-treated and untreated cultures was also studied. The percentage of 14C recovery in butanol, acetone and ethanol from uniformly labeled [14C]glucose was increased by 17, 25 and 30%, respectively, after CAP addition. The incorporation of 14C in solvents from 14C-labeled acetate and butyrate was also increased by the antibiotic treatment. A total 14C recovery of 12% in all the products from added [14C]Na2CO3 indicates significant heterotrophic CO2 fixation in this microorganism. The ratio of carbon in butanol derived from glucose, acetate and butyrate was about 71:6:18, and this ratio was unchanged by CAP treatment.This paper represents contribution No. 2685 of the Rhode Island Agricultural Experimental StationCorrespondence to: R. W. Traxler  相似文献   

14.
The effects of glucose (10 mm), glycerol (3 mm), and lactate/pyruvate (10 mm) on the incorporation of 3H from 3H2O into fatty acids were studied in isolated hepatocytes prepared from chow-fed female rats. Lactate/pyruvate markedly increased lipogenic rates, while glucose and glycerol did not significantly affect rates of lipogenesis. In cells incubated with lactate/pyruvate plus glycerol, the increase in 3H incorporation was greater than observed with lactate/pyruvate alone. In hepatocytes isolated from 24-h starved rats, lactate/pyruvate again increased de novo fatty acid synthesis to a greater extent than either glucose or glycerol. Glycerol significantly increased lipogenesis compared to the endogenous rates and when incubated with lactate/pyruvate produced an increase above lactate/pyruvate alone. (?)-Hydroxycitrate, a potent inhibitor of ATP-citrate lyase (EC 4.1.3.8), and agaric acid, an inhibitor of tricarboxylate anion translocation, were studied in hepatocytes to determine their effects on lipogenesis by measuring 3H2O, [1-14C]acetate, and [2-14C]lactate incorporation into fatty acids. 3H incorporation into fatty acids was markedly inhibited by both inhibitors with agaric acid (60 μm) producing the greater inhibition. (?)-Hydroxycitrate (2 mm) increased acetate incorporation into fatty acids from [1-14C]acetate and agaric acid produced a strong inhibitory effect. Combined effects of (?)-hydroxycitrate and agaric acid on lipogenesis from [1-14C]acetate showed an inhibitory response to a lesser extent than with agaric acid alone. With substrate concentrations of acetate present, there was no significant increase in rates of lipogenesis from [1-14C]acetate and the increase previously observed with (?)-hydroxycitrate alone was minimized. Agaric acid significantly inhibited fatty acid synthesis from acetate in the presence of exogenous substrate, but the effect was decreased in comparison to rates with only endogenous substrate present. With [2-14C]lactate as the lipogenic precursor, agaric acid and (?)-hydroxycitrate strongly inhibited fatty acid synthesis. However, agaric acid despite its lower concentration (60 μm vs 2 mm) was twice as effective as (?)-hydroxycitrate. A similar pattern was observed when substrate concentrations of lactate/pyruvate (10 mm) were added to the incubations. When (?)-hydroxycitrate and agaric acid were simultaneously incubated in the presence of endogenous substrate, there was an additive effect of the inhibitors on decreasing fatty acid synthesis. Results are discussed in relation to the origin of substrate for hepatic lipogenesis and whether specific metabolites increase lipogenic rates.  相似文献   

15.
Microbial biomass and activity were examined in four different arctic sediments: littoral lake sediment and profundal lake sediment from Toolik Lake, Alaska, thaw pond sediment, and eroding river bank peat. The thaw pond sediment had the largest viable microbial biomass, while the profundal sediment had the smallest. Rates of glucose or acetate incorporation into lipids, glucose mineralization, and lignocellulose mineralization (all normalized per unit of biomass) were highest in the river peat sample, however. The kinetics of glucose mineralization in the profundal sediment were very different from those in the other three samples: although the initial rate of mineralization was five times lower than that in the peat and two times lower than that in the littoral and thaw pond sediments, the maximum amount of 14CO2 evolved from [14C]glucose eventually equaled that in the peat and exceeded that in the littoral and thaw pond sediments by 2.0 and 3.5 times, respectively. Carex aquatilis [14C-cellulose]- and [14C-lignin]lignocellulose mineralization rates in the profundal sediment equaled or exceeded those in the littoral sediment after 16 and 46 days, but the pattern of nutrient limitation differed: the profundal sediment was the only one sampled that exhibited nitrogen limitation, while the other three sediments appeared to be limited primarily by phosphorus. The addition of nitrogen and phosphorus together had no cumulative effects on lignocellulose mineralization. When the rates of mineralization or incorporation of glucose are compared with those of lignocellulose, the results of this study indicate that profundal sediment communities may be better able to utilize the more recalcitrant substrates relative to the labile substrates than microbial communities from sediments rich in detritus and standing macrophytes.  相似文献   

16.
Microbial biomass and activity were examined in four different arctic sediments: littoral lake sediment and profundal lake sediment from Toolik Lake, Alaska, thaw pond sediment, and eroding river bank peat. The thaw pond sediment had the largest viable microbial biomass, while the profundal sediment had the smallest. Rates of glucose or acetate incorporation into lipids, glucose mineralization, and lignocellulose mineralization (all normalized per unit of biomass) were highest in the river peat sample, however. The kinetics of glucose mineralization in the profundal sediment were very different from those in the other three samples: although the initial rate of mineralization was five times lower than that in the peat and two times lower than that in the littoral and thaw pond sediments, the maximum amount of 14CO2 evolved from [14C]glucose eventually equaled that in the peat and exceeded that in the littoral and thaw pond sediments by 2.0 and 3.5 times, respectively. Carex aquatilis [14C-cellulose]- and [14C-lignin]lignocellulose mineralization rates in the profundal sediment equaled or exceeded those in the littoral sediment after 16 and 46 days, but the pattern of nutrient limitation differed: the profundal sediment was the only one sampled that exhibited nitrogen limitation, while the other three sediments appeared to be limited primarily by phosphorus. The addition of nitrogen and phosphorus together had no cumulative effects on lignocellulose mineralization. When the rates of mineralization or incorporation of glucose are compared with those of lignocellulose, the results of this study indicate that profundal sediment communities may be better able to utilize the more recalcitrant substrates relative to the labile substrates than microbial communities from sediments rich in detritus and standing macrophytes.  相似文献   

17.
Treatment of rats with 6-aminonicotinamide showed a small but significant decrease in the labeling of amino acids in the brain after injection of [3H]acetate. The results of these experiments also gave evidence of the presence of [3H]glucose and [3H]lactate, and an increase in [3H]glucose content in the brain of 6-aminonicotinamide treated rats. To apportion the contribution of [3H]glucose formed by gluconeogenesis from [3H]acetate to the labeling of amino acids a method was formulated based on the measurement of radioactivity of amino acids, lactate and free sugars in brain after injection of [6-3H]glucose or [1-3H]glucose relative to that after co-injection of [U-14C]glucose or [2-14C]glucose. In contrast to the expected formation of [1, 6-3H]glucose by gluconeogenesis from [3H]acetate,3H-labeled glucose isolated from brain, blood and liver showed the presence of [6-3H]glucose only. The values corrected for the presence of [6-3H]glucose showed that treatment with 6-aminonicotinamide had no effect on the labeling of amino acids by oxidation of [3H]acetate. These findings indicated that a significant decrease in the labeling of amino acids from [U-14C]glucose reported previously and again confirmed using [1-3H], [6-3H], [2-14C] or [U-14C]glucose in the present investigation was not due to the inhibition of the activities of enzymes of the citric acid cycle. These results support the postulated role of the hexosemonophosphate shunt for the utilization of glucose in providing neurotransmitter amino acids glutamate and -aminobutyrate.Dedicated to Professor K. A. C. Elliott on his 80th birthday.  相似文献   

18.
Isolated acini from lactating rat mammary gland were incubated with glucose (5 mm) and progesterone. The steroid (0.1 mm) decreased glucose utilization and pyruvate accumulation, but increased the formation of lactate. The production of 14CO2 and 14C-labeled lipid from [1-14C]glucose, and the incorporation of 3H2O into lipid were also inhibited by progesterone. At lower concentrations of progesterone (0.01–0.025 mm) the only effects were an increased [lactate], a decreased [pyruvate], and a consequent rise in the lactate/pyruvate ratio. Addition of dichloroacetate, an activator of pyruvate dehydrogenase, did not reverse these effects and assays of active pyruvate dehydrogenase showed no inactivation by progesterone. The steroid did not affect pyruvate utilization but markedly inhibited the removal of lactate, suggesting that progesterone causes a decreased reoxidation of cytosolic NADH and thus alters the cytosolic redox state. The findings are discussed in relation to the physiological role of progesterone during pregnancy and lactation.  相似文献   

19.
Preparation of 14C-Labeled Sterigmatocystin in Liquid Media   总被引:3,自引:2,他引:1       下载免费PDF全文
14C-labeled sterigmatocystin was prepared from surface cultures of Aspergillus versicolor A-18074 maintained in liquid media by multiple additions of [1-14C]acetate to the cultures. The highest yield of 7.75 mg/10 ml was found with a sucrose-asparagine-ammonium medium in which more than 3% of the radioactivity of the added [1-14C]acetate was recovered in the purified [ring-14C] sterigmatocystin. The method offers an easy way to prepare 14C-labeled sterigmatocystin for studies of this mycotoxin.  相似文献   

20.
1. Superovulated rat ovary slices from rats treated with 20μg. of luteininzing hormone/100g. body wt. 2hr. before death and from control animals have been incubated in vitro. Output of Δ4-3-oxo steroids (0·2μmole/g. wet wt./hr. in control tissue) was linear for 4hr., and was increased by approx. 70% in slices from luteinizing hormone-treated rats. Rate of oxygen consumption (90·0±4·6μmoles/g. wet wt./hr.) was linear for 3hr. and unaltered by luteinizing hormone treatment or addition of glucose (1mg./ml.) to the medium. 2. In slices from control animals, steady-state rate of glucose uptake was 78·0±2·9μg. atoms of carbon/g. wet wt./hr.; steady-state rates of lactate output, pyruvate output and incorporation of [U-14C]-glucose carbon atoms into carbon dioxide and total lipid extract were 60·7±0·9, 2·4±0·1, 18·0±1·1 and 0·7±0·1μg. atom of carbon/g. wet wt./hr. and accounted for 104·5±1·9% of the glucose uptake. In slices from luteinizing hormone-treated rats, glucose uptake and outputs of lactate, pyruvate and [14C]carbon dioxide were increased by approx. 25%, and 108·4±3·2% of the glucose uptake could be accounted for. 3. The total lipid extract was separated by thin-layer chromatography and saponification. Of the 14C incorporated into this fraction during incubation with [U-14C]glucose 97% was found in the fractions containing glyceride glycerol and less than 3% in the fractions containing sterols, steroids or fatty acids. Appreciable quantities of 14C were incorporated into these lipid fractions from [1-14C]acetate. 4. From a consideration of the tissue glycogen content, the specific activities of [14C]lactate and glucose 6-phosphate (C-1) derived from [1-14C]-, [6-14C]- and [U-14C]-glucose, and the ratio of [14C]carbon dioxide yields from [1-14C]glucose and [6-14C]glucose, it was concluded that there was no appreciable glycogenolysis or flow through the pentose phosphate cycle. 5. In ovary slices from both control and luteinizing hormone-treated animals, glucose in vitro raised the incorporation rate of 14C from [1-14C]acetate into sterols and steroids. Luteinizing hormone in vivo stimulated the incorporation rate in vitro but only in the presence of glucose. 6. In slices incubated in medium containing [3H]water, [14C]sorbitol and glucose (1mg./ml.), the total water space (865±7·1μl./g.) and the extracellular water space (581±22μl./g.) were unchanged by luteinizing hormone treatment in vivo but the glucose space was raised from 540±23·6μl./g. to 639±31·3μl./g. 7. Luteinizing hormone treatment was found to lower the tissue concentration of the hexose monophosphates and to increase the total activity of hexokinase, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase and possibly of phosphofructokinase. 8. The kinetic properties of a partially purified preparation of phosphofructokinase were found to be qualitatively similar to those from other mammalian tissues. 9. The results are discussed with reference to both the role of glucose metabolism in steroidogenesis and the mechanism by which luteinizing hormone increases the rate of glucose uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号