首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HL-60/AMSA is a human leukemia cell line that is 100 times more resistant to the cytotoxic actions of the antineoplastic, topoisomerase II-reactive DNA intercalating acridine derivative amsacrine (m-AMSA) than is its parent HL-60 line. HL-60/AMSA cells are minimally resistant to etoposide, a topoisomerase II-reactive drug that does not intercalate. Previously we showed that HL-60 topoisomerase II activity in cells, nuclei, or nuclear extracts was sensitive to m-AMSA and etoposide, while HL-60/AMSA topoisomerase II was resistant to m-AMSA but sensitive to etoposide. Now we show that purified topoisomerase II from the two cell lines exhibits the same drug sensitivity or resistance as that in the nuclear extracts although the magnitude of the m-AMSA resistance of HL-60/AMSA topoisomerase II in vitro is not as great as the resistance of the intact HL-60/AMSA cells. In addition HL-60/AMSA cells are cross-resistant to topoisomerase II-reactive intercalators from the anthracycline and ellipticine families and the pattern of sensitivity or resistance to the cytotoxic actions of the various topoisomerase II-reactive drugs is paralleled by topoisomerase II-reactive drug-induced DNA cleavage and protein cross-link production in cells and the production of drug-induced, topoisomerase II-mediated DNA cleavage and protein cross-linking in isolated biochemical systems. In addition to its lowered sensitivity to intercalators, HL-60/AMSA differed from HL-60 in 1) the susceptibility of its topoisomerase II to stimulation of DNA topoisomerase II complex formation by ATP, 2) the catalytic activity of its topoisomerase II in an ionic environment chosen to reproduce the environment found within the living cell, and 3) the observed restriction enzyme pattern on a Southern blot probed with a cDNA for human topoisomerase II. These data indicate that an m-AMSA-resistant form of topoisomerase II contributes to the resistance of HL-60/AMSA to m-AMSA and to other topoisomerase II-reactive DNA intercalating agents. The drug resistance is associated with additional biochemical and molecular alterations that may be important determinants of cellular sensitivity or resistance to topoisomerase II-reactive drugs.  相似文献   

2.
TAS-103 is a novel antineoplastic agent that is active against in vivo tumor models [Utsugi, T., et al. (1997) Jpn. J. Cancer Res. 88, 992-1002]. This drug is believed to be a dual topoisomerase I/II-targeted agent, because it enhances both topoisomerase I- and topoisomerase II-mediated DNA cleavage in treated cells. However, the relative importance of these two enzymes for the cytotoxic actions of TAS-103 is not known. Therefore, the primary cellular target of the drug and its mode of action were determined. TAS-103 stimulated DNA cleavage mediated by mammalian topoisomerase I and human topoisomerase IIalpha and beta in vitro. The drug was less active than camptothecin against the type I enzyme but was equipotent to etoposide against topoisomerase IIalpha. A yeast genetic system that allowed manipulation of topoisomerase activity and drug sensitivity was used to determine the contributions of topoisomerase I and II to drug cytotoxicity. Results indicate that topoisomerase II is the primary cellular target of TAS-103. In addition, TAS-103 binds to human topoisomerase IIalpha in the absence of DNA, suggesting that enzyme-drug interactions play a role in formation of the ternary topoisomerase II.drug.DNA complex. TAS-103 induced topoisomerase II-mediated DNA cleavage at sites similar to those observed in the presence of etoposide. Like etoposide, it enhanced cleavage primarily by inhibiting the religation reaction of the enzyme. Based on these findings, it is suggested that TAS-103 be classified as a topoisomerase II-targeted drug.  相似文献   

3.
The DNA cleavage produced by 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) in mammalian cells is putatively mediated by topoisomerase II. We found that in synchronized HeLa cells the frequency of such cleavage was 4-15-fold greater in mitosis than in S while the DNA of G1 and G2 cells exhibited an intermediate susceptibility to cleavage. The hypersensitivity of mitotic DNA to m-AMSA-induced cleavage was acquired relatively abruptly in late G2 and was lost similarly abruptly in early G1. The susceptibility of mitotic cells to m-AMSA-induced DNA cleavage was not clearly paralleled by an increase in topoisomerase II activity (decatenation of kinetoplast DNA) in 350 mM NaCl extracts from mitotic cells compared to similar extracts from cells in G1, S, or G2. Furthermore, equal amounts of decatenating activity from cells in mitosis and S produced equal amounts of m-AMSA-induced cleavage of simian virus 40 (SV40) DNA; i.e., the interaction between m-AMSA and extractable enzyme was similar in mitosis and S. The DNA of mitotic cells was also hypersensitive to cleavage by 4'-demethylepipodophyllotoxin 4-(4,6-O-ethylidene-beta-D-glucopyranoside) (etoposide), a drug that produces topoisomerase II mediated DNA cleavage without binding to DNA. Thus, alterations in the drug-chromatin interaction during the cell cycle seem an unlikely explanation for results in whole cells. Cell cycle stage dependent fluctuations in m-AMSA-induced DNA cleavage may result from fluctuations in the structure of chromatin per se that occur during the cell cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Etoposide is a widely prescribed anticancer drug that stabilizes covalent topoisomerase II-cleaved DNA complexes. The drug contains a polycyclic ring system (rings A-D), a glycosidic moiety at C4, and a pendant ring (E-ring) at C1. Interactions between human topoisomerase IIα and etoposide in the binary enzyme--drug complex appear to be mediated by substituents on the A-, B-, and E-rings of etoposide. These protein--drug contacts in the binary complex have predictive value for the actions of etoposide within the ternary topoisomerase IIα--drug--DNA complex. Although the D-ring of etoposide does not appear to contact topoisomerase IIα in the binary complex, etoposide derivatives with modified D-rings display reduced cytotoxicity against murine leukemia cells [Meresse, P., et al. (2003) Bioorg. Med. Chem. Lett. 13, 4107]. This finding suggests that alterations in the D-ring may affect etoposide activity toward topoisomerase IIα in the ternary enzyme--drug--DNA complex. Therefore, to address the potential contributions of the D-ring to the activity of etoposide, we characterized drug derivatives in which the C13 carbonyl was moved to the C11 position (retroetoposide and retroDEPT) or the D-ring was opened (D-ring diol). All of the D-ring alterations decreased the ability of etoposide to enhance DNA cleavage mediated by human topoisomerase IIα in vitro and in cultured cells. They also weakened etoposide binding in the ternary enzyme--drug--DNA complex and altered sites of enzyme-mediated DNA cleavage. On the basis of these findings, we propose that the D-ring of etoposide has important interactions with DNA in the ternary topoisomerase II cleavage complex.  相似文献   

5.
Cells released from quiescence exhibit increased levels of the DNA-modifying enzyme topoisomerase II, a nuclear protein which is also a target for antitumour drugs such as VP-16 (etoposide) and m-AMSA (4',9'-acridinylamino-methanesulfon-m-anisidide). By using Western blotting, DNA-protein crosslinking and drug-induced DNA cleavage to detect topoisomerase II, we show here that oestrogen stimulation of T-47D human breast cancer cells results in increased cellular enzyme content at least 4hr prior to enhancement of DNA synthesis. Taken in conjunction with previous findings, these results suggest that oestrogen enhances topoisomerase II synthesis within a G1-phase cell subset.  相似文献   

6.
Bandele OJ  Osheroff N 《Biochemistry》2008,47(45):11900-11908
Genistein, a widely consumed bioflavonoid with chemopreventative properties in adults, and etoposide, a commonly prescribed anticancer drug, are well-characterized topoisomerase II poisons. Although both compounds display similar potencies against human topoisomerase IIalpha and IIbeta in vitro and induce comparable levels of DNA cleavage complexes in cultured human cells, their cytotoxic and genotoxic effects differ significantly. As determined by assays that monitored cell viability or the phosphorylation of histone H2AX, etoposide was much more toxic in CEM cells than genistein. Further studies that characterized the simultaneous treatment of cells with genistein and etoposide indicate that the differential actions of the two compounds are not related to the effects of genistein on cellular processes outside of its activity against topoisomerase II. Rather, they appear to result from a longer persistence of cleavage complexes induced by etoposide as compared to genistein. Parallel in vitro studies with purified type II enzymes led to similar conclusions regarding cleavage complex persistence. Isoform-specific differences were observed in vitro and in cells treated with etoposide. To this point, the t 1/2 of etoposide-induced DNA cleavage complexes formed with topoisomerase IIalpha in CEM cells was approximately 5 times longer than those formed with topoisomerase IIbeta. The cytotoxicity of etoposide following four treatment-recovery cycles was similar to that induced by continuous exposure to the drug over an equivalent time period. Taken together, these findings suggest that it may be possible to preferentially target topoisomerase IIalpha with etoposide by employing a schedule that utilizes pulsed drug treatment-recovery cycles.  相似文献   

7.
TOP-53 is a promising anticancer agent that displays high activity against non-small cell lung cancer in animal tumor models [Utsugi, T., et al. (1996) Cancer Res. 56, 2809-2814]. Compared to its parent compound, etoposide, TOP-53 is considerably more toxic to non-small cell lung cancer cells, is more active at generating chromosomal breaks, and displays improved cellular uptake and pharmacokinetics in animal lung tissues. Despite the preclinical success of TOP-53, several questions remain regarding its cytotoxic mechanism. Therefore, this study characterized the basis for drug action. Results indicate that topoisomerase II is the primary cytotoxic target for TOP-53. Furthermore, the drug kills cells by acting as a topoisomerase II poison. TOP-53 exhibits a DNA cleavage site specificity that is identical to that of etoposide. Like its parent compound, the drug increases the number of enzyme-mediated DNA breaks by interfering with the DNA religation activity of the enzyme. TOP-53 is considerably more efficient than etoposide at enhancing topoisomerase II-mediated DNA cleavage and exhibits high activity against human topoisomerase IIalpha and IIbeta in vitro and in cultured cells. Therefore, at least in part, the enhanced cytotoxic activity of TOP-53 can be attributed to an enhanced activity against topoisomerase II. Finally, TOP-53 displays nearly wild-type activity against a mutant yeast type II enzyme that is highly resistant to etoposide. This finding suggests that TOP-53 can retain activity against systems that have developed resistance to etoposide, and indicates that substituents on the etoposide C-ring are important for topoisomerase II-drug interactions.  相似文献   

8.
Adherent epithelial cancer cells, such as colon cancer cells, are much more resistant to anthracyclines and to many other major anticancer agents when the cell population reaches confluence. Our purpose is to analyze the mechanisms of this confluence dependent resistance (CDR) that is probably the major cause of the natural resistance of solid tumors to chemotherapy. Some drugs (anthracyclines, etoposide and vincristine) but not others (cisplatin, melphalan and 5-fluorouracil) accumulate less in confluent than in nonconfluent cells. A decrease of the passive transmembrane drug transport in confluent cells is associated to a reduced membrane fluidity. However, the predominant mechanism of CDR is an increase in the intrinsic resistance of the DNA to the drug-induced damage. This mechanism is now relatively well understood for anthracyclines and etoposide that act mainly through an inhibition of the topoisomerase II: as the enzyme level is low in slowly proliferating confluent cells, the number of drug-induced DNA strand breaks is lower than in rapidly growing nonconfluent cells which highly express the topoisomerase II gene. Mechanisms of CDR for the other drugs are less clear and could involve an increase in the ability to repair damaged DNA. Attempts to circumvent CDR could consist in the stimulation of the cell proliferation by hormones or growth factors, or in the recruitment of quiescent cells into the S and G2 phases by previous treatment of confluent cells with infratoxic concentration of DNA-damaging agents.  相似文献   

9.
Although acetaminophen is the most widely used analgesic in the world, it is also a leading cause of toxic drug overdoses. Beyond normal therapeutic doses, the drug is hepatotoxic and genotoxic. All of the harmful effects of acetaminophen have been attributed to the production of its toxic metabolite, N-acetyl-p-benzoquinone imine (NAPQI). Since many of the cytotoxic/genotoxic events triggered by NAPQI are consistent with the actions of topoisomerase II-targeted drugs, the effects of this metabolite on human topoisomerase IIalpha were examined. NAPQI was a strong topoisomerase II poison and increased levels of enzyme-mediated DNA cleavage >5-fold at 100 microM. The compound induced scission at a number of DNA sites that were similar to those observed in the presence of the topoisomerase II-targeted anticancer drug etoposide; however, the relative site utilization differed. NAPQI strongly impaired the ability of topoisomerase IIalpha to reseal cleaved DNA molecules, suggesting that inhibition of DNA religation is the primary mechanism underlying cleavage enhancement. In addition to its effects in purified systems, NAPQI appeared to increase levels of DNA scission mediated by human topoisomerase IIalpha in cultured CEM leukemia cells. In contrast, acetaminophen did not significantly affect the DNA cleavage activity of the human enzyme in vitro or in cultured CEM cells. Furthermore, the analgesic did not interfere with the actions of etoposide against the type II enzyme. These results suggest that at least some of the cytotoxic/genotoxic effects caused by acetaminophen overdose may be mediated by the actions of NAPQI as a topoisomerase II poison.  相似文献   

10.
M Saijo  M Ui  T Enomoto 《Biochemistry》1992,31(2):359-363
We have investigated the amount of DNA topoisomerase II and phosphorylation of the enzyme in Swiss 3T3 cells during the transition from cell quiescence to proliferation. A relatively high level of phosphorylation was observed with proliferating cells while no or a very low level of phosphorylation was observed with quiescent cells. Phosphoamino acid analysis of the phosphorylated topoisomerase II revealed that the phosphorylated aminoacyl residue was serine. When quiescent cells were stimulated to grow by the addition of serum, DNA synthesis began to increase at 9 h after serum addition, reaching a maximum at 15 h and then declining. The amount of topoisomerase II began to increase at 6 h and reached a maximum at 22-27 h, corresponding to the G2 phase. The phosphorylation of topoisomerase II measured by pulse-labeling gradually increased from 6 to 18 h and reached a maximum at 22 h when the amount of the enzyme was maximum. The level of phosphorylation measured by continuous-labeling increased gradually up to 12 h and markedly up to 28 h, and then declined. The increase in the rate of phosphorylation in the G2 phase was affected by inhibiting DNA synthesis, but the increase in the amount of the enzyme was not. Thus, it was suggested that the regulation of phosphorylation of topoisomerase II differs from that of the amount of the enzyme.  相似文献   

11.
N Osheroff 《Biochemistry》1989,28(15):6157-6160
Beyond its essential physiological functions, topoisomerase II is the primary cellular target for a number of clinically relevant antineoplastic drugs. Although the chemotherapeutic efficacies of these drugs correlate with their abilities to stabilize the covalent topoisomerase II-DNA cleavage complex, their molecular mechanism of action has yet to be described. In order to characterize the drug-induced stabilization of this enzyme-DNA complex, the effect of etoposide on the DNA cleavage/religation reaction of Drosophila melanogaster topoisomerase II was studied. Under the conditions employed, etoposide increased levels of enzyme-mediated double-stranded DNA cleavage 5-6-fold and single-stranded cleavage approximately 4-fold. Maximal stimulation was observed at 80-100 microM etoposide with 50% of the maximal effect at approximately 15 microM drug. By employing a topoisomerase II mediated DNA religation assay [Osheroff, N. & Zechiedrich, E.L. (1987) Biochemistry 26, 4303-4309], etoposide was found to stabilize the enzyme-DNA cleavage complex (at least in part) by inhibiting the enzyme's ability to religate cleaved DNA. Moreover, in order for the drug to affect religation, it has to be present at the time of DNA cleavage.  相似文献   

12.
Etoposide is an anticancer drug that acts by inducing topoisomerase II-mediated DNA cleavage. Despite its wide use, etoposide is associated with some very serious side-effects including the development of treatment-related acute myelogenous leukemias. Etoposide targets both human topoisomerase IIα and IIβ. However, the contributions of the two enzyme isoforms to the therapeutic vs. leukemogenic properties of the drug are unclear. In order to develop an etoposide-based drug with specificity for cancer cells that express an active polyamine transport system, the sugar moiety of the drug has been replaced with a polyamine tail. To analyze the effects of this substitution on the specificity of hybrid molecules toward the two enzyme isoforms, we analyzed the activity of a series of etoposide-polyamine hybrids toward human topoisomerase IIα and IIβ. All of the compounds displayed an ability to induce enzyme-mediated DNA cleavage that was comparable to or higher than that of etoposide. Relative to the parent drug, the hybrid compounds displayed substantially higher activity toward topoisomerase IIβ than IIα. Modeling studies suggest that the enhanced specificity may result from interactions with Gln778 in topoisomerase IIβ. The corresponding residue in the α isoform is a methionine.  相似文献   

13.
Despite the likely requirement for a DNA topoisomerase II activity during synthesis of mitochondrial DNA in mammals, this activity has been very difficult to identify convincingly. The only DNA topoisomerase II activity conclusively demonstrated to be mitochondrial in origin is that of a type II activity found associated with the mitochondrial, kinetoplast DNA network in trypanosomatid protozoa [Melendy, T., Sheline, C., and Ray, D.S. (1988) Cell 55, 1083-1088; Shapiro, T.A., Klein, V.A., and Englund, P.A. (1989) J. Biol. Chem.264, 4173-4178]. In the present study, we report the discovery of a type DNA topoisomerase II activity in bovine mitochondria. Identified among mtDNA replicative proteins recovered from complexes of mtDNA and protein, the DNA topoisomerase relaxes a negatively, supercoiled DNA template in vitro, in a reaction that requires Mg2+ and ATP. The relaxation activity is inhibited by etoposide and other inhibitors of eucaryotic type II enzymes. The DNA topoisomerase II copurifies with mitochondria and directly associates with mtDNA, as indicated by sensitivity of some mtDNA circles in the isolated complex of mtDNA and protein to cleavage by etoposide. The purified activity can be assigned to a approximately 150-kDa protein, which is recognized by a polyclonal antibody made against the trypanosomal mitochondrial topo II enzyme. Mass spectrometry performed on peptides prepared from the approximately 150-kDa protein demonstrate that this bovine mitochondrial activity is a truncated version of DNA topoisomerase IIbeta, one of two DNA topoisomerase II activities known to exist in mammalian nuclei.  相似文献   

14.
Topoisomerase II activity was measured in wild-type, Chinese hamster ovary K1 cells, and in the DNA double-strand break repair deficient xrs-6 cell line. Total topoisomerase II activity in a high salt, nuclear extract was found to be the same in both cell lines, as measured by decatenation of kinetoplast DNA networks and catenation of plasmid pBR322 DNA. While at low drug concentrations m-AMSA-induced enzyme cutting of nuclear DNA was 25% less in xrs-6 cells, the frequency of DNA breaks at high concentrations of the drug, and thus the frequency of the topoisomerase II enzyme, was the same in both cell lines. Despite the presence of equivalent enzyme levels in both cell lines, the xrs-6 cell line was 3 times more sensitive to drug-induced cytotoxicity. These results may be due to the fact that, as with X-radiation-induced DNA damage, xrs-6 cells are deficient in the capacity to rejoin topoisomerase II-induced DNA double-strand breaks.  相似文献   

15.
Topoisomerase II is a ubiquitous enzyme that removes knots and tangles from the genetic material by generating transient double-strand DNA breaks. While the enzyme cannot perform its essential cellular functions without cleaving DNA, this scission activity is inherently dangerous to chromosomal integrity. In fact, etoposide and other clinically important anticancer drugs kill cells by increasing levels of topoisomerase II-mediated DNA breaks. Cells rely heavily on recombination to repair double-strand DNA breaks, but the specific pathways used to repair topoisomerase II-generated DNA damage have not been defined. Therefore, Saccharomyces cerevisiae was used as a model system to delineate the recombination pathways that repair DNA breaks generated by topoisomerase II. Yeast cells that expressed wild-type or a drug-hypersensitive mutant topoisomerase II or overexpressed the wild-type enzyme were examined. Based on cytotoxicity and recombination induced by etoposide in different repair-deficient genetic backgrounds, double-strand DNA breaks generated by topoisomerase II appear to be repaired primarily by the single-strand invasion pathway of homologous recombination. Non-homologous end joining also was triggered by etoposide treatment, but this pathway was considerably less active than single-strand invasion and did not contribute significantly to cell survival in S.cerevisiae.  相似文献   

16.
M J Robinson  N Osheroff 《Biochemistry》1990,29(10):2511-2515
In order to elucidate the mechanism by which the intercalative antineoplastic drug 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) stabilizes the covalent topoisomerase II-DNA cleavage complex, the effect of the drug on the DNA cleavage/religation reaction of the type II enzyme from Drosophila melanogaster was examined. At a concentration of 60 microM, m-AMSA enhanced topoisomerase II mediated double-stranded DNA breakage approximately 5-fold. Drug-induced stabilization of the enzyme-DNA cleavage complex was readily reversed by the addition of EDTA or salt. When a DNA religation assay was utilized, m-AMSA was found to inhibit the topoisomerase II mediated rejoining of cleaved DNA approximately 3.5-fold. This result is similar to that previously reported for the effects of etoposide on the activity of the Drosophila enzyme [Osheroff, N. (1989) Biochemistry 28, 6157-6160]. Thus, it appears that structurally disparate classes of topoisomerase II targeted antineoplastic drugs stabilize the enzyme's DNA cleavage complex primarily by interfering with the ability of topoisomerase II to religate DNA.  相似文献   

17.
The epipodophyllotoxin etoposide is a potent and widely used anticancer drug that targets DNA topoisomerase II. The synthesis, photochemical, and biological testing of a photoactivatable aromatic azido analogue of etoposide also containing an iodo group is described. This azido analogue should prove useful for identifying the etoposide interaction site on topoisomerase II. Irradiation of the azido analogue and an aldehyde-containing azido precursor with UV light produced changes in their UV--visible spectra that were consistent with photoactivation. The azido analogue strongly inhibited topoisomerase II and inhibited the growth of Chinese Hamster Ovary cells. Azido analogue-induced topoisomerase II--DNA covalent complexes were significantly increased subsequent to UV irradiation of drug-treated human leukemia K562 cells as compared to etoposide-treated cells. These results suggest that the photoactivated form of etoposide is a more effective topoisomerase II poison either by interacting directly with the enzyme or with DNA subsequent to topoisomerase II-mediated strand cleavage.  相似文献   

18.
Although cobalt is an essential trace element for humans, the metal is genotoxic and mutagenic at higher concentrations. Treatment of cells with cobalt generates DNA strand breaks and covalent protein-DNA complexes. However, the basis for these effects is not well understood. Since the toxic events induced by cobalt resemble those of topoisomerase II poisons, the effect of the metal on human topoisomerase IIalpha was examined. The level of enzyme-mediated DNA scission increased 6-13-fold when cobalt(II) replaced magnesium(II) in cleavage reactions. Cobalt(II) stimulated cleavage at all DNA sites observed in the presence of magnesium(II), and the enzyme cut DNA at several "cobalt-specific" sites. The increased level of DNA cleavage in the presence of cobalt(II) was partially due to a decrease in the rate of enzyme-mediated religation. Topoisomerase IIalpha retained many of its catalytic properties in reactions that included cobalt(II), including sensitivity to the anticancer drug etoposide and the ability to relax and decatenate DNA. Finally, cobalt(II) stimulated topoisomerase IIalpha-mediated DNA cleavage in the presence of magnesium(II) in purified systems and in human MCF-7 cells. These findings demonstrate that cobalt(II) is a topoisomerase II poison in vitro and in cultured cells and suggest that at least some of the genotoxic effects of the metal are mediated through topoisomerase IIalpha.  相似文献   

19.
In this study, we evaluated the influence of protein kinase C zeta (PKC zeta) on topoisomerase II inhibitor-induced cytotoxicity in monocytic U937 cells. In U937-zeta J and U937-zeta B cells, enforced PKC zeta expression, conferred by stable transfection of PKC zeta cDNA, resulted in total inhibition of VP-16- and mitoxantrone-induced apoptosis and decreased drug-induced cytotoxicity, compared with U937-neo control cells. In PKC zeta-overexpressing cells, drug resistance correlated with decreased VP-16-induced DNA strand breaks and DNA protein cross-links measured by alkaline elution. Kinetoplast decatenation assay revealed that PKC zeta overexpression resulted in reduced global topoisomerase II activity. Moreover, in PKC zeta-overexpressing cells, we found that PKC zeta interacted with both alpha and beta isoforms of topoisomerase II, and these two enzymes were constitutively phosphorylated. However, when human recombinant PKC zeta (rH-PKC zeta) was incubated with purified topoisomerase II isoforms, rH-PKC zeta interacted with topoisomerase II beta but not with topoisomerase II alpha. PKC zeta/topoisomerase II beta interaction resulted in phosphorylation of this enzyme and in decrease of its catalytic activity. Finally, this report shows for the first time that topoisomerase II beta is a substrate for PKC zeta, and that PKC zeta may significantly influence topoisomerase II inhibitor-induced cytotoxicity by altering topoisomerase II beta activity through its kinase function.  相似文献   

20.
We have recently shown that the aggregation factor (AF) from the sponge Geodia cydonium stimulates DNA synthesis in quiescent, dissociated cells from the same organism; this event was correlated with the release of the two second messengers: inositol trisphosphate and diacylglycerol. Here we describe that after binding of the AF to the plasma membrane-bound aggregation receptor, a rapid and drastic increase in the incorporation of 32Pi into a series of proteins in the pore complex-lamina fraction occurs. Addition of the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate, to quiescent cells resulted in a similar stimulation of phosphorylation of nuclear proteins. Among them we have selected one protein with a polypeptide Mr of 170,000 (pp170) for detailed studies. By immunoblotting pp170 was identified as DNA topoisomerase II. In vitro studies with nuclei and purified, homogeneous protein kinase C together with the required activators of this enzyme also showed a phosphorylation of pp170. After phosphorylation, DNA topoisomerase II activity was found to be 2.5-fold that of the non-phosphorylated enzyme. From these data we conclude that protein kinase C is involved in AF induced transmembrane signalling, ultimately leading to an initiation of DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号