首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondrial F1-ATPase from the yeast Schizosaccharomyces pombe has been prepared under a stable form and in relatively high amounts by an improved purification procedure. Specific chemical modification of the enzyme by the thiol reagent N-ethylmaleimide (NEM) at pH 6.8 leads to complete inactivation characterized by complex kinetics and pH dependence, indicating that several thiols are related to the enzyme activity. A complete protection against NEM effect is afforded by low concentrations of nucleotides in the presence of Mg2+, with ADP and ATP being more efficient than GTP. A total binding of 5 mol of [14C]NEM/mol of F1-ATPase is obtained when the enzyme is 85% inactivated: 3 mol of the label are located on the alpha-subunits and 2 on the gamma-subunit. Two out of the 3 mol on the alpha-subunits bind very rapidly before any inactivation occurs, indicating that the two thiols modified are unrelated to the inactivation process. Complete protection by ATP against inactivation by NEM prevents the modification of three essential thiols out of the group of five thiols labeled in the absence of ATP: one is located on a alpha-subunit and two on the gamma-subunit. These two essential thiols of the gamma-subunit can be differentiated by modification with 6,6'-dithiodinicotinic acid (CPDS), another specific thiol reagent. A maximal binding of 4 mol of [14C]CPDS/mol of enzyme is obtained, concomitant to a 25% inhibition. Sequential modification of the enzyme by CPDS and [14C]NEM leads to the same final deep inactivation as that obtained with [14C]NEM alone. One out of the two thiols of the gamma-subunit is no longer accessible to [14C]NEM after CPDS treatment. When incubated at pH 6.8 with [3H]ATP in the presence of Mg2+, F1-ATPase is able to bind 3, largely exchangeable, mol of nucleotide/mol of enzyme. Modification of the three essential thiols by NEM dramatically decreases the binding of 3H-nucleotide down to about 1 mol/mol of enzyme. Partial modification modifies the cooperative properties, the enzyme being no longer sensitive to anion activation.  相似文献   

2.
NADP-linked malic enzyme from Escherichia coli W contains 7 cysteinyl residues per enzyme subunit. The reactivity of sulfhydryl (SH) groups of the enzyme was examined using several SH reagents, including 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and N-ethylmaleimide (NEM). 1. Two SH groups in the native enzyme subunit reacted with DTNB (or NEM) with different reaction rates, accompanied by a complete loss of the enzyme activity. The second-order modification rate constant of the "fast SH group" with DTNB coincided with the second-order inactivation rate constant of the enzyme by the reagent, suggesting that modification of the "fast SH group" is responsible for the inactivation. When the enzyme was denatured in 4 M guanidine HCl, all the SH groups reacted with the two reagents. 2. Althoug the inactivation rate constant was increased by the addition of Mg2+, an essential cofactor in the enzyme reaction, the modification rate constant of the "fast SH group" was unaffected. The relationship between the number of SH groups modified with DTNB or NEM and the residual enzyme activity in the absence of Mg2+ was linear, whereas that in the presence of Mg2+ was concave-upwards. These results suggest that the Mg2+-dependent increase in the inactivation rate constant is not the result of an increase in the rate constant of the "fast FH group" modification. 3. The absorption spectrum of the enzyme in the ultraviolet region was changed by addition of Mg2+. The dissociation constant of the Mg2+-enzyme complex obtained from the Mg2+- dependent increment of the difference absorption coincided with that obtained from the Mg2+- dependent enhancement of NEM inactivation. 4. Both the inactivation rate constant and the modification rate constant of the "fast SH group" were decreased by the addition of NADP+. The protective effect of NADP+ was increased by the addition of Mg2+. Based on the above results, the effects of Mg2+ on the SH-group modification are discussed from the viewpoint of conformational alteration of the enzyme.  相似文献   

3.
Deoxycytidylate (dCMP) hydroxymethylase from Escherichia coli infected with a T-4 bacteriophage amber mutant has been purified to homogeneity. It is a dimer with a subunit molecular weight of 28,000. Chemical modification of the homogeneous enzyme with N-ethylmaleimide (NEM) and 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) leads to complete loss of enzyme activity. dCMP can protect the enzyme against NEM inactivation, but the dihydrofolate analogues methotrexate and aminopterin alone do not afford similar protection. Compared to dCMP alone, dCMP plus either methotrexate or aminopterin greatly enhances protection against NEM inactivation. DTNB inactivation is reversed by dithiothreitol. For both reagents, inactivation kinetics obey second-order kinetics. NEM inactivation is pH dependent with a pKa for a required thiol group of 9.15 +/- 0.11. Complete enzyme inactivation by both reagents involves the modification of one thiol group per mole of dimeric enzyme. There are two thiol groups in the totally denatured enzyme modified by either NEM or DTNB. Kinetic analysis of NEM inactivation cannot distinguish between these two groups; however, with DTNB kinetic analysis of 2-nitro-5-thiobenzoate release shows that enzyme inactivation is due to the modification of one fast-reacting thiol followed by the modification of a second group that reacts about 5-6-fold more slowly. In the presence of methotrexate, the stoichiometry of dCMP binding to the dimeric enzyme is 1:1 and depends upon a reduced thiol group. It appears that the two equally sized subunits are arranged asymmetrically, resulting in one thiol-containing active site per mole of dimeric enzyme.  相似文献   

4.
The kinetics of Klebsiella aerogenes urease inactivation by disulfide and alkylating agents was examined and found to follow pseudo-first-order kinetics. Reactivity of the essential thiol is affected by the presence of substrate and competitive inhibitors, consistent with a cysteine located proximal to the active site. In contrast to the results observed with other reagents, the rate of activity loss in the presence of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) saturated at high reagent concentrations, indicating that DTNB must first bind to urease before inactivation can occur. The pH dependence for the rate of urease inactivation by both disulfide and alkylating agents was consistent with an interaction between the thiol and a second ionizing group. The resulting macroscopic pKa values for the 2 residues are less than 5 and 12. Spectrophotometric studies at pH 7.75 demonstrated that 2,2'-dithiodipyridine (DTDP) modified 8.5 +/- 0.2 mol of thiol/mol of enzyme or 4.2 mol of thiol/mol of catalytic unit. With the slow tight binding competitive inhibitor phenyl-phosphorodiamidate (PPD) bound to urease, 1.1 +/- 0.1 mol of thiol/mol of catalytic unit were protected from modification. PPD-bound DTDP-modified urease could be reactivated by dialysis, consistent with the presence of one thiol per active site. Analogous studies at pH 6.1, using the competitive inhibitor phosphate, confirmed the presence of one protected thiol per catalytic unit. Under denaturing conditions, 25.5 +/- 0.3 mol of thiol/mol of enzyme (Mr = 211, 800) were modified by DTDP.  相似文献   

5.
Inactivation of isocitrate lyase (native and EDTA-dialysed) by excess tetranitromethane (TNM) exhibits, biphasic kinetics, in which half of the initial activity is lost in a fast and the remaining half in a slow phase each following the pseudo-first order kinetics. Rate constants of the two phases are proportional to the TNM concentration. High succinate concentration protects the enzyme against TNM inactivation only in the slow phase without any effect on the fast phase. With the EDTA-dialysed enzyme, no such protection (against inactivation by TNM) is observed in the presence of succinate or Mg2+ ions. Addition of both these ligands together brings about protection against the slow phase (as with the native enzyme). It has been proposed that the site-site heterogeneity of isocitrate lyase is a consequence of its quaternary structure constraints.  相似文献   

6.
The lysosomal membrane enzyme acetyl-CoA:alpha-glucosaminide N-acetyltransferase catalyzes the transfer of the acetyl group from acetyl-CoA to terminal alpha-linked glucosamine residues of heparan sulfate. The reaction appears to be a transmembrane process: the enzyme is acetylated on the outside of the lysosome, and the acetyl group is transferred across the membrane to the inside of the lysosome where it is used to acetylate glucosamine. To determine the reactive site residues involved in the acetylation reaction, lysosomal membranes were treated with various amino acid modification reagents and assayed for enzyme activity. Although four thiol modification reagents were examined, only one, p-chloromercuribenzoate inactivated the N-acetyltransferase. Thiol modification by p-chloromercuribenzoate did not appear to occur at the active site since inactivation was still observed in the presence of the substrate acetyl-CoA. N-Acetyltransferase could be inactivated by N-bromosuccinimide, even after pretreatment with reagents specific for tyrosine and tryptophan, suggesting that the modified residue is a histidine. Diethyl pyrocarbonate, another histidine modification reagent, could also inactivate the enzyme; this inactivation could be reversed by incubation with hydroxylamine. N-Bromosuccinimide and diethyl pyrocarbonate modifications appear to be at the active site of the enzyme since co-incubation with acetyl-CoA protects the N-acetyltransferase from inactivation. This protection is lost if glucosamine is also present. Pre-acetylated lysosomal membranes are also able to provide protection from N-bromosuccinimide inactivation, providing further evidence for a histidine moiety at the active site and for the existence of an acetyl-enzyme intermediate.  相似文献   

7.
Mammalian and Escherichia coli succinate dehydrogenase (SDH) and E. coli fumarate reductase apparently contain an essential cysteine residue at the active site, as shown by substrate-protectable inactivation with thiol-specific reagents. Bacillus subtilis SDH was found to be resistant to this type of reagent and contains an alanine residue at the amino acid position equivalent to the only invariant cysteine in the flavoprotein subunit of E. coli succinate oxidoreductases. Substitution of this alanine, at position 252 in the flavoprotein subunit of B. subtilis SDH, by cysteine resulted in an enzyme sensitive to thiol-specific reagents and protectable by substrate. Other biochemical properties of the redesigned SDH were similar to those of the wild-type enzyme. It is concluded that the invariant cysteine in the flavoprotein of E. coli succinate oxidoreductases corresponds to the active site thiol. However, this cysteine is most likely not essential for succinate oxidation and seemingly lacks an assignable specific function. An invariant arginine in juxtaposition to Ala-252 in the flavoprotein of B. subtilis SDH, and to the invariant cysteine in the E. coli homologous enzymes, is probably essential for substrate binding.  相似文献   

8.
Interaction of purified human liver and placental alkaline phosphatases (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) with sulfhydryl groups, sulfhydryl reagents, and Mg2+ were studied. L-Cysteine (0.1 mmol/l) or Mg2+ activated the liver enzyme 4-5-fold and the placental enzyme 2-3-fold, with optimal pH 7.5-8.0; these activations were not additive. L-Cysteine (2 mmol/l) inhibited both enzymes maximally at pH greater than 9.0; phosphate protected the enzymes. S-Methylcysteine had little effect, with or without Mg2+. Inhibition by sulfur-containing compounds paralleled their ability to bind Zn2+. Fluoresceine mercury acetate (specific for sulfhydryl groups) inhibited the isoenzymes, whereas iodoacetic acid, iodoacetamide, dithionitrobenzoic acid, and p-chloromercuribenzoate had little effect. The inhibition was reversed by L-cysteine and only slightly protected by inorganic phosphate. Thus, there are two sites on human liver and placental alkaline phosphatase that interact with L-cysteine; a Mg2+-binding site, which results in activation, and a site that involves one or both of the bound Zn2+ ions and results in inactivation. Both enzymes have a protected essential thiol group.  相似文献   

9.
beta-Ketoacyl-CoA thiolase (acyl-CoA:acetyl-CoA C-acyltransferase, EC 2.3.1.16) is known to possess sulfhydryl groups of cysteines at the active site that are essential for its catalytic activity. Other groups at the active site that participate in the catalytic process were identified by using anhydride reagents which covalently modify the protein by specifically reacting with any amino groups potentially present at the active site. Since these reagents may also react with thiol groups, the enzyme's amino groups were modified after masking the cysteine thiols present by an alkylalkane thiosulfonate-type reagent, methyl methanethiol-sulfonate (MMTS), that selectively formed a disulfide bridge, thus generating an inactive thiolmethylated enzyme. When this procedure was followed, the enzyme could be undoubtedly modified at its amino by the anhydride reagent, leading to a doubly modified protein. The thiomethyl group could then be removed by reduction with dithiothreitol, yielding an enzyme modified solely on the amino residues. The amino group could be unblocked in turn by exposure to acidic pH. The different anhydrides inactivated thiolase, but only acetoacetyl coenzyme A (AcAcCoA) provided any protection against inactivation. When thiolmethylcitraconyl thiolase was reduced with dithiothreitol the enzyme remained inactive, but when the doubly modified enzyme was exposed to pH 5 then the reduction led to formation of an active enzyme. These results are interpreted as demonstrating a role for an amino group at the enzyme active site. A catalytic mechanism is proposed for the enzyme which involves the amino group.  相似文献   

10.
N Latruffe  Y Gaudemer 《Biochimie》1975,57(8):849-857
1. Rat liver mitochondrial D(-)-beta-hydroxybutyrate dehydrogenase (submitochondrial particles and partially purified preparation) is inhibited by some dicarboxylates, especially by malonate and succinate. The inhibition is reversible and competitive with beta-hydroxybutyrate while uncompetitive with acetoacetate, NAD and NADH: the inhibition is maximal at pH 6 and decrease with increasing pH. 2. Diethylpyrocarbonate (which reacts preferentially with histidyl residues at pH 6.6) inactivates the dehydrogenase at pH 6.1, beta-hydroxybutyrate protects against inactivation, this inactivation being almost completely released by hydroxylamine. The diethylpyrocarbonate-treated enzyme shows an absorbance increase at 242 nm which is characterisitic of reaction between diethylpyrocarbonate and histidyl residue. 3. The optimum pH of the enzyme for beta-hydroxybutyrate oxidation is around 8.2, while for acetoacetate reduction, the optimum pH is around 7. 4. All these results favour the existence of a histidyl residue in the catalytic center and taking into account previous results concerning the effect of thiol reagents on the same enzyme and especially, the protective effect of NAD+ and NADH against these reagents [11] we discuss the possible occurrence of, at least, one histidyl and one cysteyl residue on the catalytic center.  相似文献   

11.
Porcine liver aminopeptidase was inactivated by various sulfhydryl-reactive reagents, whose inactivation rates were in the order: p-chloromercuribenzoate(PCMB) greater than HgCl2 greater than 2,2'-dithiodipyridine greater than 5,5'-dithiobis(2-nitrobenzoic acid)(DTNB). The processes of inactivation by these reagents did not follow pseudo-first-order kinetics, and prolonged incubation did not alter the level of maximum inactivation. The substrates provided no protection against the inactivation by DTNB, and the numbers of sulfhydryl groups titrated with the reagent were not influenced by the presence or absence of puromycin (a competitive inhibitor). The modification of sulfhydryl groups caused a slight increase in the Km value for the enzyme and a significant decrease of the Vmax value. There are two ionizable groups (pKe, 6.2; 7.8 and pKes, 6.0; 7.8) in the catalytic action of the enzyme. From the pKi vs. pH profile of inhibition with PCMB, the pK value of 7.8 does not correspond to the ionization of a sulfhydryl group. The thiol-modified enzyme was activated by cobalt ion, as was the native enzyme (Kawata, S., et al. (1982) J. Biochem. 92, 1093-1101). But in contrast with the native enzyme, the thiol-modified enzyme was activated about 2.5-fold and the maximum activation remained almost constant during prolonged incubation with cobalt ion. These results suggest that the sulfhydryl groups of the enzyme are located apart from the binding site of cobalt ion and do not participate directly in the catalytic process.  相似文献   

12.
D W Pettigrew 《Biochemistry》1986,25(16):4711-4718
Glycerol kinase (EC 2.7.1.30, ATP:glycerol 3-phosphotransferase) from Escherichia coli is inactivated by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) and by N-ethylmaleimide (NEM) in 0.1 M triethanolamine at pH 7 and 25 degrees C. The inactivation by DTNB is reversed by dithiothreitol. In the cases of both reagents, the kinetics of activity loss are pseudo first order. The dependencies of the rate constants on reagent concentration show that while the inactivation by NEM obeys second-order kinetics (k2app = 0.3 M-1 s-1), DTNB binds to the enzyme prior to the inactivation reaction; i.e., the pseudo-first-order rate constant shows a hyperbolic dependence on DTNB concentration. Complete inactivation by each reagent apparently involves the modification of two sulfhydryl groups per enzyme subunit. However, analysis of the kinetics of DTNB modification, as measured by the release of 2-nitro-5-thiobenzoate, shows that the inactivation is due to the modification of one sulfhydryl group per subunit, while two other groups are modified 6 and 15 times more slowly. The enzyme is protected from inactivation by the ligands glycerol, propane-1,2-diol, ATP, ADP, AMP, and cAMP but not by Mg2+, fructose 1,6-bisphosphate, or propane-1,3-diol. The protection afforded by ATP or AMP is not dependent on Mg2+. The kinetics of DTNB modification are different in the presence of glycerol or ATP, despite the observation that the degree of protection afforded by both of these ligands is the same.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effects of a alpha-dicarbonyl chromophoric reagent: 4-hydroxy-3-nitrophenylglyoxal on the D-beta-hydroxybutyrate dehydrogenase have been compared to those of phenylglyoxal, a specific arginyl reagent in proteins. Both reagents inactivate irreversibly the enzyme. Kinetic experiments show that only one molecule of these reagents per molecule of enzyme is sufficient to inactivate the enzyme. The second order inactivation rate constant is more than 500 times higher with the chromophoric reagent than with phenylglyoxal. A pseudosubstrate (methylmalonate) in presence of coenzyme (NAD) strongly protects enzyme against inactivation by both reagents. Coenzyme alone has no effect on inactivation by phenylglyoxal while it protects whether inhibitor is the chromophoric reagent or N-ethylmaleimide: a thiol specific reagent. These results indicate: 1. That one arginyl residue is essential for D-beta-hydroxybutyrate dehydrogenase activity (experiments with phenylglyoxal). 2. That the presence of a nitro group on position 3 and a hydroxyl-group on position 4 strongly increase the reactivity of the alpha-dicarbonyl groups, but the specificity of the chemical reaction with arginyl residues seems to be lost for the benefit of cysteyl residues.  相似文献   

14.
7-Chloro-4-nitrobenzo-2-oxa-1,3-diazole reacts with two thiol groups of the dimeric horse erythrocyte glutathione transferase at pH 5.0, with strong inactivation reversible on dithiothreitol treatment. The inactivation kinetic follows a biphasic pattern, similar to that caused by other thiol reagents as recently reported. Both S-methylglutathione and 1-chloro-2,4-dinitrobenzene protect the enzyme from inactivation. Analysis of the reactive SH group-containing peptide gives the sequence Ala-Ser-Cys-Leu-Tyr, identical with that of the peptide that contains the reactive cysteine 47 of the human placental transferase. In the presence of glutathione, the enzyme is not inactivated by this reagent, but it catalyzes its conjugation to glutathione. At higher pH values, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reacts with 2 tyrosines/dimer and lysines, as well as with cysteines. Reaction with lysine seems essentially without effect on activity; whether the reactive tyrosines are important for activity could not be determined using this reagent only. However, 2 tyrosines among the 4 that are nitrated by tetranitro-methane are important for activity.  相似文献   

15.
J L Wyatt  R F Colman 《Biochemistry》1977,16(7):1333-1342
Rabbit muscle pyruvate kinase is irreversibly inactivated upon incubation with the adenine nucleotide analogue, 5'-p-fluorosulfonylbenzoyladenosine. A plot of the time dependence of the logarithm of the enzymatic activity at a given time divided by the initial enzymatic activity(logE/Eo) reveals a biphasic rate of inactivation, which is consistent with a rapid reaction to form partially active enzyme having 54% of the original activity, followed by a slower reaction to yield totally inert enzyme. In addition to the pyruvate kinase activity of the enzyme, modification with 5'-p-fluorosulfonylbenzoyladenosine also disrupts its ability to catalyze the decarboxylation of oxaloacetate and the ATP-dependent enolization of pyruvate. In correspondence with the time dependence of inactivation, the rate of incorporation of 5'-p-[14C]fluorosulfonylbenzoyladenosine is also biphasic. Two moles of reagent per mole of enzyme subunit are bound when the enzyme is completely inactive. The pseudo-first-order rate constant for the rapid rate is linearly dependent on reagent concentration, whereas the constant for the slow rate exhibits saturation kinetics, suggesting that the reagent binds reversibly to the second site prior to modification. The adenosine moiety is essential for the effectiveness of 5'-p-fluorosulfonylbenzoyladenosine, since p-fluorosulfonylbenzoic acid does not inactivate pyruvate kinase at a significant rate. Thus, the reaction of 5'-p-fluorosulfonylbenzoyladenosine with pyruvate kinase exhibits several of the characteristics of affinity labeling of the enzyme. Protection against inactivation by 5'-p-fluorosulfonylbenzoyladenosine is provided by the addition to the incubation mixture of phosphoenolpyruvate. Mg-ADP or Mg2+. In contrast, the addition of pyruvate, Mg-ATP, or ADP and ATP alone has no effect on the rate of inactivation. These observations are consistent with the postulate that the 5'-p-fluorosulfonylbenzoyladenosine specifically labels amino acid residues in the binding region of Mg2+ and the phosphoryl group of phosphoenolpyruvate which is transferred during the catalytic reaction. The rate of inactivation increases with increasing pH, and k1 depends on the unprotonated form of an amino acid residue with pK = 8.5. On the basis of the pH dependence of the reaction of pyruvate kinase with 5'-p-fluorosulfonylbenzoyladenosine and the elimination of cysteine residues as possible sites of reaction, it is postulated that lysyl or tyrosyl residues are the most probably candidates for the critical amino acids.  相似文献   

16.
Fatty acid synthetase of chicken liver is rapidly and reversibly inactivated by 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) at a rate (k2 = 132 mM-1 S-1 in 3 mM EDTA, 1% (v/v) glycerol, pH 7.0, at 25 degrees C) up to 2200 times higher than the reaction of this reagent with simple thiol compounds. The inactivation is caused by the reaction of the phosphopantetheine SH group, since it is protected competitively by either acetyl- or malonyl-CoA, and since the inactivated enzyme is unreactive with the phosphopantetheine label chloroacetyl-CoA but reactive with the cysteine reagent 1,3-dibromopropanone. Moreover, chloroacetyl-CoA prevents the modification of the rapidly reacting essential SH group by DTNB. The number of SH groups involved in inactivation was determined by correlating activity loss with the extent of reaction and by stopped-flow analysis of substrate (or chloroacetyl-CoA) protection. Values between 0.91 and 1.15 SH groups/dimer were obtained, indicating the presence of substoichiometric amounts of the prosthetic group in the fatty acid synthetase preparations used in this study. Inactivation of the synthetase by DTNB is strongly inhibited by increasing salt concentration and protected noncompetitively by NADP+ and NADPH. Treatment of the enzyme inactivated at low salt by salt, NADP+, or NADPH also effectively reduced cross-linking between enzyme subunits. The parallel effects of these treatments on the reaction with DTNB and subsequent dimerization are consistent with a minimum model of two discreet conformation states for fatty acid synthetase. In the low salt conformer, the phosphopantetheine and cysteine SH groups are juxtaposed, and the DTNB reaction (k2 approximately 132 mM-1 S-1) and dimerization are both facilitated. Transition to the high salt conformer by the above treatments is accompanied by an approximately 20-fold reduction of reactivity with DTNB (k2 = 6.8 mM-1 S-1) and reduced dimerization, due to spatial separation of the SH groups. During palmitate synthesis, the enzyme may oscillate between these conformation states to permit the reaction of intermediates at different active sites. Results obtained by studies on the effect of pH on DTNB inactivation implicate a pK of 5.9-6.1 for the essential SH group independent of salt concentration. This value is 1.5-1.8 pH units lower than the pK of 7.6-7.7 for CoA and may explain the 23-fold increase of the rate constant from a value of 0.3 mM-1 S-1 for CoA to that of the high salt conformer.  相似文献   

17.
Ribulose-5-phosphate kinase from spinach was rapidly inactivated by N-bromoacetylethanolamine phosphate in a bimolecular fashion with a k2 of 2.0 M-1 S-1 at 2 degrees C and pH 8.0. Ribulose 5-phosphate had little effect on the rate of inactivation, whereas complete protection was afforded by ADP or ATP. The extent of incorporation as determined with 14C-labeled reagent was about 1 molar equivalent per subunit in the presence of ATP with full retention of enzymatic activity, and about 2 molar equivalents per subunit in the completely inactivated enzyme. Amino acid analyses of enzyme derivatized with 14C-labeled reagent reveal that all of the covalently incorporated reagent was associated with cysteinyl residues. Hence two sulfhydryls are reactive, but the inactivation correlates with alkylation of one cysteinyl residue at or near the enzyme's nucleotide binding site. The kinase was also extremely sensitive to the sulfhydryl reagents 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethyl-maleimide. The reactive sulfhydryl groups are likely those generated by reduction of a disulfide during activation.  相似文献   

18.
Since 1938 mammalian succinate dehydrogenase has been thought to contain thiol groups at the active site. This hypothesis was questioned recently, because irreversible inhibition by bromopyruvate and N-ethylmaleimide appeared not to satisfy the requisite criteria for reaction at the active site. These recent observations of incomplete inactivation of succinate dehydrogenase by N-ethylmaleimide and incomplete protection by substrates can, however, be explained adequately by the presence of oxalacetate and other strong competitors of the inactivation process in the enzyme used in these studies. Substrates, competitive inhibitors, and anions which activate succinate dehydrogenase protect the enzyme from inhibition by N-ethylmaleimide. Inhibition of succinate dehydrogenase by N-ethylmaleimide involves at least two second order reactions which are pH dependent, with pKa values of 8.0 to 8.2. This pH dependence, the known reactivity of N-ethylmaleimide toward thiols, and the protection by substrate and competitive inhibitors indicate that sulfhydryl residues are required for catalytic activity and perform an essential, not secondary, role in the catalysis. Just as the presence of tightly bound oxalacetate prevents inhibition by N-ethylmaleimide, alkylation of the sulfhydryl residue(s) at the active site prevents the binding of [14C]oxalacetate. Thus, these thiol groups at the active site also may be the site of tight binding of oxalacetate during the activation-deactivation cycle.  相似文献   

19.
Nonactivated phosphorylase kinase from rabbit skeletal muscle is inactivated by treatment with phenylglyoxal. Under mild reaction conditions, a derivative that retains 10-15% of the pH 8.2 catalytic activity is obtained. The kinetics of inactivation profile, differential effects of modification on pH 6.8 and 8.2 catalytic activities, and the insensitiveness of the modified enzyme to activation by ADP reveal that the 10-15% of catalytic activity remaining is very likely due to intrinsic catalytic activity of the derivative rather than to the presence of unmodified enzyme molecules. The kinetic results also suggest that the inactivation is correlatable with the reaction of one molecule of the reagent with the enzyme without any prior binding of phenylglyoxal. The phenylglyoxal modification reduces the autophosphorylation rate of the kinase. Autophosphorylated phosphorylase kinase is inactivated by phenylglyoxal at a much slower rate than the inactivation of nonactivated kinase. Thus, phenylglyoxal modification influences the phosphorylation and vice versa. The modified enzyme can be reactivated by treatment with trypsin or by dissociation using chatropic salts. The activity of the phenylglyoxal-modified enzyme after trypsin digestion or dissociation with LiBr reaches the same level as that of the native enzyme digested with trypsin or treated with LiBr under identical conditions. The results suggest that the effect of modification is overcome by dissociation of the subunits of phosphorylase kinase and that the catalytic site is not modified under conditions when 85% of the pH 8.2 catalytic activity is lost. Among various nucleotides and metal ions tested, only ADP, with or without Mg2+, afforded effective protection against inactivation with phenylglyoxal. At pH 6.8, 1 mM ADP afforded complete protection against inactivation. Experiments with 14C-labeled phenylglyoxal revealed that ADP seemingly protects one residue from modification. This result is in agreement with the kinetic result that the inactivation seemingly is due to reaction of one molecule of the reagent with the enzyme. The results confirm the existence of a high-affinity ADP binding site on nonactivated phosphorylase kinase and suggest the involvement of a functional arginyl residue at or near the ADP binding site in the regulation of of pH 8.2 catalytic activity of the enzyme.  相似文献   

20.
We have studied the inactivation of membrane-bound and solubilized UDP-glucose:ceramide glucosyltransferase from Golgi membranes by various types of sulfhydryl reagents. The strong inhibition of the membrane-bound form by the non-penetrant mercurial-type reagents clearly corroborated the fact that in sealed and right-side-out Golgi vesicles the ceramide glucosyltransferase is located on the cytoplasmic face. No significant differences in the susceptibility to the various sulfhydryl reagents were noted when solubilized enzyme was assayed, showing that solubilization does not reveal other critical SH groups. The different results obtained must be interpreted with regard to several thiol groups, essential for enzyme activity. No protection by the substrate UDP-glucose against mercurial-type reagents was obtained indicating that these thiol groups were not located in the nucleotide sugar binding domain. A more thorough investigation of the thiol inactivation mechanism was undertaken with NEM (N-ethylmaleimide), an irreversible reagent. The time dependent inactivation followed first order kinetics and provided evidence for the binding of 1 mol NEM per mol of enzyme. UDP-Glucose protected partially against NEM inactivation, indicating that the thiol groups may be situated in or near the substrate binding domain. Inactivation experiments with disulfide reagents showed that increased hydrophobicity led to more internal essential SH groups which are not obviously protected by the substrate UDP-glucose, thus not implicated in the substrate binding domain, but rather related to conformational changes of the enzyme during the catalytic process.Abbreviations Chaps 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulfonate - Mops 4-morpholinepropanesulfonic acid - PC phosphatidylcholine - NEM N-ethylmaleimide - CPDS carboxypyridine disulfide (dithio-6,6-dinicotinic acid) - DTNB 5,5-dithiobis-(2-nitrobenzoic acid) - DTP dithiodipyridine - p-HMB para-hydroxymercuribenzoate - DTT dithiothreitol - BAL British anti-Lewisite (dimercaptopropanol) - Zw 3–14 Zwittergent 3–14  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号