首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
ABSTRACT: BACKGROUND: The thylakoid system in plant chloroplasts is organized into two distinct domains: granaarranged in stacks of appressed membranes and non-appressed membranes consisting ofstroma thylakoids and margins of granal stacks. It is argued that the reason for thedevelopment of appressed membranes in plants is that their photosynthetic apparatus need tocope with and survive ever-changing environmental conditions. It is not known however,why different plant species have different arrangements of grana within their chloroplasts. Itis important to elucidate whether a different arrangement and distribution of appressed andnon-appressed thylakoids in chloroplasts are linked with different qualitative and/orquantitative organization of chlorophyll-protein (CP) complexes in the thylakoid membranesand whether this arrangement influences the photosynthetic efficiency. RESULTS: Our results from TEM and in situ CLSM strongly indicate the existence of differentarrangements of pea and bean thylakoid membranes. In pea, larger appressed thylakoids areregularly arranged within chloroplasts as uniformly distributed red fluorescent bodies, whileirregular appressed thylakoid membranes within bean chloroplasts correspond to smaller andless distinguished fluorescent areas in CLSM images. 3D models of pea chloroplasts show adistinct spatial separation of stacked thylakoids from stromal spaces whereas spatial divisionof stroma and thylakoid areas in bean chloroplasts are more complex. Structural differencesinfluenced the PSII photochemistry, however without significant changes in photosyntheticefficiency. Qualitative and quantitative analysis of chlorophyll-protein complexes as well asspectroscopic investigations indicated a similar proportion between PSI and PSII corecomplexes in pea and bean thylakoids, but higher abundance of LHCII antenna in pea ones.Furthermore, distinct differences in size and arrangements of LHCII-PSII and LHCI-PSIsupercomplexes between species are suggested. CONCLUSIONS: Based on proteomic and spectroscopic investigations we postulate that the differences in thechloroplast structure between the analyzed species are a consequence of quantitativeproportions between the individual CP complexes and its arrangement inside membranes.Such a structure of membranes induced the formation of large stacked domains in pea, orsmaller heterogeneous regions in bean thylakoids. Presented 3D models of chloroplasts showed that stacked areas are noticeably irregular with variable thickness, merging with eachother and not always parallel to each other.  相似文献   

2.
The light environment during plant growth determines the structural and functional properties of higher plant chloroplasts, thus revealing a dynamically regulated developmental system. Pisum sativum plants growing under intermittent illumination showed chloroplasts with fully functional photosystem (PS) II and PSI reaction centers that lacked the peripheral chlorophyll (Chi) a/b and Chl a light-harvesting complexes (LHC), respectively. The results suggest a light flux differential threshold regulation in the biosynthesis of the photosystem core and peripheral antenna complexes. Sun-adapted species and plants growing under far-red-depleted illumination showed grana stacks composed of few (3–5) thylakoids connected with long intergrana (stroma) thylakoids. They had a PSII/PSI reaction center ratio in the range 1.3–1.9. Shade-adapted species and plants growing under far-red-enrichcd illumination showed large grana stacks composed of several thylakoids, often extending across the entire chloroplast body, and short intergrana stroma thylakoids. They had a higher PSII/PSI reaction center ratio, in the range of 2.2–4.0. Thus, the relative extent of grana and stroma thylakoid formation corresponds with the relative amounts of PSII and PSI in the chloroplast, respectively. The structural and functional adaptation of the photosynthetic membrane system in response to the quality of illumination involves mainly a control on the rate of PSII and PSI complex biosynthesis.  相似文献   

3.
Photosynthetic membrane sacs (thylakoids) of plants form granal stacks interconnected by non-stacked thylakoids, thereby being able to fine-tune (i) photosynthesis, (ii) photoprotection and (iii) acclimation to the environment. Growth in low light leads to the formation of large grana, which sometimes contain as many as 160 thylakoids. The net surface charge of thylakoid membranes is negative, even in low-light-grown plants; so an attractive force is required to overcome the electrostatic repulsion. The theoretical van der Waals attraction is, however, at least 20-fold too small to play the role. We determined the enthalpy change, in the spontaneous stacking of previously unstacked thylakoids in the dark on addition of Mg2+, to be zero or marginally positive (endothermic). The Gibbs free-energy change for the spontaneous process is necessarily negative, a requirement that can be met only by an increase in entropy for an endothermic process. We conclude that the dominant attractive force in thylakoid stacking is entropy-driven. Several mechanisms for increasing entropy upon stacking of thylakoid membranes in the dark, particularly in low-light plants, are discussed. In the light, which drives the chloroplast far away from equilibrium, granal stacking accelerates non-cyclic photophosphorylation, possibly enhancing the rate at which entropy is produced.  相似文献   

4.
Bertil Andersson  Jan M. Anderson   《BBA》1980,593(2):427-440
The lateral distribution of the main chlorophyll-protein complexes between appressed and non-appressed thylakoid membranes has been studied. The reaction centre complexes of Photosystems I and II and the light-harvesting complex have been resolved by an SDS-polyacrylamide gel electrophoretic method which permits most of the chlorophyll to remain protein-bound.

The analyses were applied to subchloroplast fractions shown to be derived from different thylakoid regions. Stroma thylakoids were separated from grana stacks by centrifugation following chloroplast disruption by press treatment or digitonin. Vesicles derived from the grana partitions were isolated by aqueous polymer two-phase partition. A substantial depletion in the amount of Photosystem I chlorophyll-protein complex and an enrichment in the Photosystem II reaction centre complex and the light-harvesting complex occurred in the appressed grana partition region. The high enrichment in this fraction compared to grana stack fractions derived from press or digitonin treatments, suggests that the grana Photosystem I is restricted mainly to the non-appressed grana end membranes and margins, and that the grana partitions possess mainly Photosystem II reaction centre complex and the light-harvesting complex.

In contrast, stroma thylakoids are highly enriched in the Photosystem I reaction centre complex. They possess also some 10–20% of the total Photosystem II reaction centre complex and the light-harvesting complex.

The ratio of light-harvesting complex to Photosystem II reaction centre complex is rather constant in all subchloroplast fractions suggesting a close association between these complexes. This was not so for the ratio of light-harvesting complex and the Photosystem I reaction centre complex.

The lateral heterogeneity in the distribution of the photosystems between appressed and non-appressed membranes must have a profound impact on current understanding of both the distribution of excitation energy and photosynthetic electron transport between the photosystems.  相似文献   


5.
In higher plants, thylakoid membrane protein complexes show lateral heterogeneity in their distribution: photosystem (PS) II complexes are mostly located in grana stacks, whereas PSI and adenosine triphosphate (ATP) synthase are mostly found in the stroma-exposed thylakoids. However, recent research has revealed strong dynamics in distribution of photosystems and their light harvesting antenna along the thylakoid membrane. Here, the dark-adapted spinach (Spinacia oleracea L.) thylakoid network was mechanically fragmented and the composition of distinct PSII-related proteins in various thylakoid subdomains was analyzed in order to get more insights into the composition and localization of various PSII subcomplexes and auxiliary proteins during the PSII repair cycle. Most of the PSII subunits followed rather equal distribution with roughly 70% of the proteins located collectively in the grana thylakoids and grana margins; however, the low molecular mass subunits PsbW and PsbX as well as the PsbS proteins were found to be more exclusively located in grana thylakoids. The auxiliary proteins assisting in repair cycle of PSII were mostly located in stroma-exposed thylakoids, with the exception of THYLAKOID LUMEN PROTEIN OF 18.3 (TLP18.3), which was more evenly distributed between the grana and stroma thylakoids. The TL29 protein was present exclusively in grana thylakoids. Intriguingly, PROTON GRADIENT REGULATION5 (PGR5) was found to be distributed quite evenly between grana and stroma thylakoids, whereas PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1) was highly enriched in the stroma thylakoids and practically missing from the grana cores. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

6.
We used cryoelectron tomography to reveal the arrangements of photosystem II (PSII) and ATP synthase in vitreous sections of intact chloroplasts and plunge-frozen suspensions of isolated thylakoid membranes. We found that stroma and grana thylakoids are connected at the grana margins by staggered lamellar membrane protrusions. The stacking repeat of grana membranes in frozen-hydrated chloroplasts is 15.7 nm, with a 4.5-nm lumenal space and a 3.2-nm distance between the flat stromal surfaces. The chloroplast ATP synthase is confined to minimally curved regions at the grana end membranes and stroma lamellae, where it covers 20% of the surface area. In total, 85% of the ATP synthases are monomers and the remainder form random assemblies of two or more copies. Supercomplexes of PSII and light-harvesting complex II (LHCII) occasionally form ordered arrays in appressed grana thylakoids, whereas this order is lost in destacked membranes. In the ordered arrays, each membrane on either side of the stromal gap contains a two-dimensional crystal of supercomplexes, with the two lattices arranged such that PSII cores, LHCII trimers, and minor LHCs each face a complex of the same kind in the opposite membrane. Grana formation is likely to result from electrostatic interactions between these complexes across the stromal gap.  相似文献   

7.
The formation of grana in chloroplasts of higher plants is examined in terms of the subtle interplay of physicochemical forces of attraction and repulsion. The attractive forces between two adjacent membranes comprise (1) van der Waals attraction that depends on the abundance and type of atoms in each membrane, on the distance between the membranes and on the dielectric constant, (2) depletion attraction that generates local order by granal stacking at the expense of greater disorder (i.e. entropy) in the stroma, and (3) an electrostatic attraction of opposite charges located on adjacent membranes. The repulsive forces comprise (1) electrostatic repulsion due to the net negative charge on the outer surface of thylakoid membranes, (2) hydration repulsion that operates at small separations between thylakoid membranes due to layers of bound water molecules, and (3) steric hindrance due to bulky protrusions of Photosystem I (PSI) and ATP synthase into the stroma. In addition, specific interactions may occur, but they await experimental demonstration. Although grana are not essential for photosynthesis, they are ubiquitous in higher plants. Grana may have been selected during evolution for the functional advantages that they confer on higher plants. The functional consequences of grana stacking include (1) enhancement of light capture through a vastly increased area-to-volume ratio and connectivity of several PSIIs with large functional antenna size, (2) the ability to control the lateral separation of PSI from PSII and, therefore, the balanced distribution of excitation energy between two photosystems working in series, (3) the reversible fine-tuning of energy distribution between the photosystems by State 1-State 2 transitions, (4) the ability to regulate light-harvesting via controlled thermal dissipation of excess excitation energy, detected as non-photochemical quenching, (5) dynamic flexibility in the light reactions mediated by a granal structure in response to regulation by a trans-thylakoid pH gradient, (6) delaying the premature degradation of D1 and D2 reaction-centre protein(s) in PSII by harbouring photoinactived PSIIs in appressed granal domains, (7) enhancement of the rate of non-cyclic synthesis of adenosine triphosphate (ATP) as well as the regulation of non-cyclic vs. cyclic ATP synthesis, and (8) the potential increase of photosynthetic capacity for a given composition of chloroplast constituents in full sunlight, concomitantly with enhancement of photochemical efficiency in canopy shade. Hence chloroplast ultrastructure and function are intimately intertwined.  相似文献   

8.
Thylakoid membrane remodeling during state transitions in Arabidopsis   总被引:1,自引:0,他引:1  
Adaptability of oxygenic photosynthetic organisms to fluctuations in light spectral composition and intensity is conferred by state transitions, short-term regulatory processes that enable the photosynthetic apparatus to rapidly adjust to variations in light quality. In green algae and higher plants, these processes are accompanied by reversible structural rearrangements in the thylakoid membranes. We studied these structural changes in the thylakoid membranes of Arabidopsis thaliana chloroplasts using atomic force microscopy, scanning and transmission electron microscopy, and confocal imaging. Based on our results and on the recently determined three-dimensional structure of higher-plant thylakoids trapped in one of the two major light-adapted states, we propose a model for the transitions in membrane architecture. The model suggests that reorganization of the membranes involves fission and fusion events that occur at the interface between the appressed (granal) and nonappressed (stroma lamellar) domains of the thylakoid membranes. Vertical and lateral displacements of the grana layers presumably follow these localized events, eventually leading to macroscopic rearrangements of the entire membrane network.  相似文献   

9.
High-pressure freezing (HPF) in combination with freeze substitution (FS) was used to analyse changes in the structure of barley chloroplasts during the daily change of light and darkness. In contrast to conventional treatment of samples, HPF-FS revealed substantial differences in chloroplast shape, volume and ultrastructure in the light period and during darkness. While chloroplasts have an ellipsoidal shape in the light, they have an enlarged and round form during the dark period. Samples collected in the light show the typical differentiation of stroma and grana thylakoids as observed by conventional ultrastructural analyses. In chloroplasts of samples collected during the dark period, thylakoids were swollen and grana stacks to a large extent were disintegrated. Similar changes occurred when leaves in the light were treated with the uncoupler gramicidin. The results suggest that the light-dependent changes in thylakoid membrane organization are related to the light-dependent changes in the ionic milieu of the thylakoid lumen and the stroma.  相似文献   

10.
Structural and immunochemical studies were used to determinethe photosynthetic potential of the dodder (Cuscuta pentagona)chloroplast. Ultrastructural studies revealed that thylakoidmembranes of pre-parasitic phase Cuscuta pentagona are almostall organized into long, overlapping grana stacks of mainlytwo to five thylakoids with little space between adjacent stacks.Immunoblots reveal chloroplast proteins associated with PSIand II, as well as cytochrome f and plastocyanin. Stromal extractscontained immmunologically-detectable RuBisCO and phosphoribulokinase.Cytochemical localizations of the oxidizing side of PSI showedproduct localization on the lumen side of the thylakoid. Immunocytochemicallocalizations of RuBisCO reveal exclusive labeling in the stroma,whereas antibodies to the PSII proteins, light-harvesting Chla/b complex and the oxygen-evolving complex of PSII, are concentratedover the thylakoids. A limited capacity for CO2 fixation wasfound in seedlings by monitoring CO2 exchange rates in the presenceand absence of atrazine. These data indicate that the chloroplastfrom this species of dodder contains a number of the proteinsrequired for a successful fixation of CO2 and the proteins inthe thylakoids are organized much like other higher plants,with the exception of the large percentage of the thylakoidsorganized into grana. (Received August 10, 1998; Accepted April 3, 1999)  相似文献   

11.
Chloroplasts in plants and some green algae contain a continuous thylakoid membrane system that is structurally differentiated into stacked granal membranes interconnected by unstacked thylakoids, the stromal lamellae. Experiments were conducted to test the hypothesis that the thermodynamic tendency to increase entropy in chloroplasts contributes to thylakoid stacking to form grana. We show that the addition of bovine serum albumin or dextran, two very different water-soluble macromolecules, to a suspension of envelope-free chloroplasts with initially unstacked thylakoids induced thylakoid stacking. This novel restacking of thylakoids occurred spontaneously, accompanied by lateral segregation of PSII from PSI, thereby mimicking the natural situation. We suggest that such granal formation, induced by the macromolecules, is partly explained as a means of generating more volume for the diffusion of macromolecules in a crowded stromal environment, i.e., greater entropy overall. This mechanism may be relevant in vivo where the stroma has a very high concentration of enzymes of carbon metabolism, and where high metabolic fluxes are required.  相似文献   

12.
Inside-out thylakoid membrane vesicles can be isolated by aqueous polymer two-phase partition of Yeda press-fragmented spinach chloroplasts (Andersson, B. and Åkerlund, H.-E. (1978) Biochim. Biophys. Acta 503, 462–472). The mechanism for their formation has been investigated by studying the yield of inside-out vesicles after various treatments of the chloroplasts prior to fragmentation. No inside-out vesicles were isolated during phase partitioning if the chloroplasts had been destacked in a low-salt medium prior to the fragmentation. Only in those cases where the chloroplast lamellae had been stacked by cations or membrane-paired by acidic treatment did we get any yield of inside-out vesicles. Thus, the intrinsic properties of chloroplast thylakoids seem to be such that they seal into right-side out vesicles after disruption unless they are in an appressed state. This favours the following mechanism for the formation of inside-out thylakoids. After press treatment, a ruptured membrane still remains appressed with an adjacent membrane. Resealing of such an appressed membrane pair would result in an inside-out vesicle.If the compartmentation of chloroplast lamellae into appressed grana and unappressed stroma lamellae is preserved by cations before fragmentation, the inside-out vesicles are highly enriched in photosystem II. This indicates a granal origin which is consistent with the proposed model outlined. Inside-out vesicles possessing photosystem I and II properties in approximately equal proportions could be obtained by acid-induced membrane-pairing of chloroplasts which had been destacked and randomized prior to fragmentation. Since this new preparation of inside-out thylakoid vesicles also exposes components derived from the stroma lamellae it complements the previous preparation.It is suggested that fragmentation of paired membranes followed by phase partitioning should be a general method of obtaining inside-out vesicles from membranes of various biological sources.  相似文献   

13.
Eun-Ha Kim  Peter Horton 《BBA》2005,1708(2):187-195
Chloroplasts in plants and some green algae contain a continuous thylakoid membrane system that is structurally differentiated into stacked granal membranes interconnected by unstacked thylakoids, the stromal lamellae. Experiments were conducted to test the hypothesis that the thermodynamic tendency to increase entropy in chloroplasts contributes to thylakoid stacking to form grana. We show that the addition of bovine serum albumin or dextran, two very different water-soluble macromolecules, to a suspension of envelope-free chloroplasts with initially unstacked thylakoids induced thylakoid stacking. This novel restacking of thylakoids occurred spontaneously, accompanied by lateral segregation of PSII from PSI, thereby mimicking the natural situation. We suggest that such granal formation, induced by the macromolecules, is partly explained as a means of generating more volume for the diffusion of macromolecules in a crowded stromal environment, i.e., greater entropy overall. This mechanism may be relevant in vivo where the stroma has a very high concentration of enzymes of carbon metabolism, and where high metabolic fluxes are required.  相似文献   

14.
A proteome analysis of Arabidopsis thaliana thylakoid-associated polysome nascent chain complexes was performed to find novel proteins involved in the biogenesis, maintenance and turnover of thylakoid protein complexes, in particular the PSII (photosystem II) complex, which exhibits a high turnover rate. Four unknown proteins were identified, of which TLP18.3 (thylakoid lumen protein of 18.3 kDa) was selected for further analysis. The Arabidopsis mutants (SALK_109618 and GABI-Kat 459D12) lacking the TLP18.3 protein showed higher susceptibility of PSII to photoinhibition. The increased susceptibility of DeltaTLP18.3 plants to high light probably originates from an inefficient reassembly of PSII monomers into dimers in the grana stacks, as well as from an impaired turnover of the D1 protein in stroma exposed thylakoids. Such dual function of the TLP18.3 protein is in accordance with its even distribution between the grana and stroma thylakoids. Notably, the lack of the TLP18.3 protein does not lead to a severe collapse of the PSII complexes, suggesting a redundancy of proteins assisting these particular repair steps to assure functional PSII. The DeltaTLP18.3 plants showed no clear visual phenotype under standard growth conditions, but when challenged by fluctuating light during growth, the retarded growth of DeltaTLP18.3 plants was evident.  相似文献   

15.
A mild sonication and phase fractionation method has been used to isolate five regions of the thylakoid membrane in order to characterize the functional lateral heterogeneity of photosynthetic reaction centers and light harvesting complexes. Low-temperature fluorescence and absorbance spectra, absorbance cross-section measurements, and picosecond time-resolved fluorescence decay kinetics were used to determine the relative amounts of photosystem II (PSII) and photosystem I (PSI), to determine the relative PSII antenna size, and to characterize the excited-state dynamics of PSI and PSII in each fraction. Marked progressive increases in the proportion of PSI complexes were observed in the following sequence: grana core (BS), whole grana (B3), margins (MA), stroma lamellae (T3), and purified stromal fraction (Y100). PSII antenna size was drastically reduced in the margins of the grana stack and stroma lamellae fractions as compared to the grana. Picosecond time-resolved fluorescence decay kinetics of PSII were characterized by three exponential decay components in the grana fractions, and were found to have only two decay components with slower lifetimes in the stroma. Results are discussed in the framework of existing models of chloroplast thylakoid membrane lateral heterogeneity and the PSII repair cycle. Kinetic modeling of the PSII fluorescence decay kinetics revealed that PSII populations in the stroma and grana margin fractions possess much slower primary charge separation rates and decreased photosynthetic efficiency when compared to PSII populations in the grana stack.  相似文献   

16.
Structural variation in the stroma‐grana (SG) arrangement of the thylakoid membranes, such as changes in the thickness of the grana stacks and in the ratio between grana and inter‐grana thylakoid, is often observed. Broadly, such alterations are considered acclimation to changes in growth and the environment. However, the relation of thylakoid morphology to plant growth and photosynthesis remains obscure. Here, we report changes in the thylakoid during leaf development under a fixed light condition. Histological studies on the chloroplasts of fresh green Arabidopsis leaves have shown that characteristically shaped thylakoid membranes lacking the inter‐grana region, referred to hereafter as isolated‐grana (IG), occurred adjacent to highly ordered, large grana layers. This morphology was restored to conventional SG thylakoid membranes with the removal of bolting stems from reproductive plants. Statistical analysis showed a negative correlation between the incidences of IG‐type chloroplasts in mesophyll cells and the rates of leaf growth. Fluorescence parameters calculated from pulse‐amplitude modulated fluorometry measurements and CO2 assimilation data showed that the IG thylakoids had a photosynthetic ability that was equivalent to that of the SG thylakoids under moderate light. However, clear differences were observed in the chlorophyll a/b ratio. The IG thylakoids were apparently an acclimated phenotype to the internal condition of source leaves. The idea is supported by the fact that the life span of the IG thylakoids increased significantly in the later developing leaves. In conclusion, the heterogeneous state of thylakoid membranes is likely important in maintaining photosynthesis during the reproductive phase of growth.  相似文献   

17.
In chloroplasts of land plants, the thylakoid network is organized into appressed regions called grana stacks and loosely arranged parallel stroma thylakoids. Many factors determining such intricate structural arrangements have been identified so far, including various thylakoid-embedded proteins, and polar lipids that build the thylakoid matrix. Although carotenoids are important components of proteins and the lipid phase of chloroplast membranes, their role in determining the thylakoid network structure remains elusive. We studied 2D and 3D thylakoid network organization in carotenoid-deficient mutants (ccr1-1, lut5-1, szl1-1, and szl1-1npq1-2) of Arabidopsis (Arabidopsis thaliana) to reveal the structural role of carotenoids in the formation and dynamics of the internal chloroplast membrane system. The most significant structural aberrations took place in chloroplasts of the szl1-1 and szl1-1npq1-2 plants. Increased lutein/carotene ratio in these mutants impaired the formation of grana, resulting in a significant decrease in the number of thylakoids used to build a particular stack. Further, combined biochemical and biophysical analyses revealed that hampered grana folding was related to decreased thylakoid membrane fluidity and significant changes in the amount, organization, and phosphorylation status of photosystem (PS) II (PSII) supercomplexes in the szl1-1 and szl1-1npq1-2 plants. Such changes resulted from a synergistic effect of lutein overaccumulation in the lipid matrix and a decreased level of carotenes bound with PS core complexes. Moreover, more rigid membrane in the lutein overaccumulating plants led to binding of Rubisco to the thylakoid surface, additionally providing steric hindrance for the dynamic changes in the level of membrane folding.

Increases in lutein/carotenoid ratios lead to decreased thylakoid fluidity and hamper grana folding due to carotenoid-dependent changes in both photosynthetic complexes and lipid matrix organization.  相似文献   

18.
The electron transport properties of photosystem II (PSII) from five different domains of the thylakoid membrane were analyzed by flash-induced fluorescence kinetics. These domains are the entire grana, the grana core, the margins from the grana, the stroma lamellae, and the Y100 fraction (which represent more purified stroma lamellae). The two first fractions originate from appressed grana membranes and have PSII with a high proportion of O(2)-evolving centers (80-90%) and efficient electron transport on the acceptor side. About 30% of the granal PSII centers were found in the margin fraction. Two-thirds of those PSII centers evolve O(2), but the electron transfer on the acceptor side is slowed. PSII from the stroma lamellae was less active. The fraction containing the entire stroma has only 43% O(2)-evolving PSII centers and slow electron transfer on the acceptor side. In contrast, PSII centers of the Y100 fraction show no O(2) evolution and were unable to reduce Q(B). Flash-induced fluorescence decay measurements in the presence of DCMU give information about the integrity of the donor side of PSII. We were able to distinguish between PSII centers with a functional Mn cluster and without any Mn cluster, and PSII centers which undergo photoactivation and have a partially assembled Mn cluster. From this analysis, we propose the existence of a PSII activity gradient in the thylakoid membrane. The gradient is directed from the stroma lamellae, where the Mn cluster is absent or inactive, via the margins where photoactivation accelerates, to the grana core domain where PSII is fully photoactivated. The photoactivation process correlates to the PSII diffusion along the membrane and is initiated in the stroma lamellae while the final steps take place in the appressed regions of the grana core. The margin domain is seemingly very important in this process.  相似文献   

19.
Brian A. Fineran 《Protoplasma》1995,189(3-4):216-228
Summary Korthalsella (Viscaceae) is a dwarf mistletoe attached to its host branch by a single haustorium. Plants are leafless with flattened or cylindrical stems that function in photosynthesis. When a fresh haustorium is cut the sucker within the host appears bright green. Transmission electron microscopy reveals that this greening is due to chloroplasts, but that their organization differs from those of the aerial stem. The three representatives of Korthalsella endemic to New Zealand were the main species investigated. In the stem, chloroplasts have short stacks of cylindrical grana interconnected by stroma thylakoids typical of normal chloroplasts. Sucker chloroplasts have a more variable organization, with most containing extensive granal stacks and poorly differentiated stroma thylakoids. These granal thylakoids exhibit extensive partitions formed by appression of adjacent membranes. Some sucker plastids also approach etioplasts in having a prominent prolamellar body from which radiate thylakoids with short partitions. Sucker chloroplasts usually contain a few large starch grains, plastoglobuli, and sometimes also a stroma centre. The extensive granal thylakoids in sucker chloroplasts of Korthalsella resemble that found in certain shade plants and tissue grown under low light conditions. Sucker chloroplasts probably have a low level of photosynthesis. This activity might provide a local source of osmotically active material used to assist transport between host and parasite.  相似文献   

20.
Progressive solubilization of spinach chloroplast thylakoids by Triton X-100 was employed to investigate the domain organization of the electron transport complexes in the thylakoid membrane. Triton/chlorophyll ratios of 1:1 were sufficient to disrupt fully the continuity of the thylakoid membrane network, but not sufficient to solubilize either photosystem I (PSI), photosystem II (PSII) or the cytochrome b6-f(Cyt b6-f) complex. Progressive with the Triton concentration increase (Triton/Chl greater than 1:1), a differential solubilization of the three electron transport complexes was observed. Solubilization of the Cyt b6-f complex from the thylakoid membrane preceded that of PSI and apparently occurred early in the solubilization of stroma-exposed segments of the chloroplast lamellae. The initial removal of chlorophyll (up to 40% of the total) occurred upon solubilization of PSI from the stroma-exposed lamella regions in which PSI is localized. The tightly appressed membrane of the grana partition regions was markedly resistant to solubilization by Triton X-100. Thus, solubilization of PSII from this membrane region was initiated only after all Cyt b6-f and PSI complexes were removed from the chloroplast lamellae. The results support the notion of extreme lateral heterogeneity in the organization of the electron transport complexes in higher plant chloroplasts and suggest a Cyt b6-f localization in the membrane of the narrow fret regions which serve as a continuum between the grana and stroma lamellae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号