首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
MPT63, a major secreted protein from Mycobacterium tuberculosis, has been shown to have immunogenic properties and has been implicated in virulence. MPT63 is a β‐sandwich protein containing 11 β strands and a very short stretch of 310 helix. The detailed experimental and computational study reported here investigates the equilibrium unfolding transition of MPT63. It is shown that in spite of being a complete β‐sheet protein, MPT63 has a strong propensity toward helix structures in its early intermediates. Far UV‐CD and FTIR spectra clearly suggest that the low‐pH intermediate of MTP63 has enhanced helical content, while fluorescence correlation spectroscopy suggests a significant contraction. Molecular dynamics simulation complements the experimental results indicating that the unfolded state of MPT63 traverses through intermediate forms with increased helical characteristics. It is found that this early intermediate contains exposed hydrophobic surface, and is aggregation prone. Although MPT63 is a complete β‐sheet protein in its native form, the present findings suggest that the secondary structure preferences of the local interactions in early folding pathway may not always follow the native conformation. Furthermore, the Gly25Ala mutant supports the proposed hypothesis by increasing the non‐native helical propensity of the protein structure.  相似文献   

2.
Mycobacterium tuberculosis, the causative agent of tuberculosis, is known to secrete a number of highly immunogenic proteins that are thought to confer pathogenicity, in part, by mediating binding to host tissues. Among these secreted proteins are the trimeric antigen 85 (Ag85) complex and the related MPT51 protein, also known as FbpC1. While the physiological function of Ag85, a mycolyltransferase required for the biosynthesis of the cell wall component alpha,alpha'-trehalose dimycolate (or cord factor), has been identified recently, the function of the closely related MPT51 (approximately 40% identity with the Ag85 components) remains to be established. The crystal structure of M.tuberculosis MPT51, determined to 1.7 A resolution, shows that MPT51, like the Ag85 components Ag85B and Ag85C2, folds as an alpha/beta hydrolase, but it does not contain any of the catalytic elements required for mycolyltransferase activity. Moreover, the absence of a recognizable alpha,alpha'-trehalose monomycolate-binding site and the failure to detect an active site suggest that the function of MPT51 is of a non-enzymatic nature and that MPT51 may in fact represent a new family of non-catalytic alpha/beta hydrolases. Previous experimental evidence and the structural similarity to some integrins and carbohydrate-binding proteins led to the hypothesis that MPT51 might have a role in host tissue attachment, whereby ligands may include the serum protein fibronectin and small sugars.  相似文献   

3.
The growing list of fully sequenced genomes, combined with innovations in the fields of structural biology and bioinformatics, provides a synergy for the discovery of new drug targets. With this background, the TB Structural Genomics Consortium has been formed. This international consortium is comprised of laboratories from 31 universities and institutes in 13 countries. The goal of the consortium is to determine the structures of over 400 potential drug targets from the genome of Mycobacterium tuberculosis and analyze their structures in the context of functional information. We summarize the efforts of the UCLA consortium members. Potential drug targets were selected using a variety of bioinformatics methods and screened for certain physical and species-specific properties to yield a starting group of protein targets for structure determination. Target determination methods include protein phylogenetic profiles and Rosetta Stone methods, and the use of related biochemical pathways to select genes linked to essential prokaryotic genes. Criteria imposed on target selection included potential protein solubility, protein or domain size, and targets that lack homologs in eukaryotic organisms. In addition, some protein targets were chosen that are specific to M. tuberculosis, such as PE and PPE domains. Thus far, the UCLA group has cloned 263 targets, expressed 171 proteins and purified 40 proteins, which are currently in crystallization trials. Our efforts have yielded 13 crystals and eight structures. Seven structures are summarized here. Four of the structures are secreted proteins: antigen 85B; MPT 63, which is one of the three major secreted proteins of M. tuberculosis; a thioredoxin derivative Rv2878c; and potentially secreted glutamate synthetase. We also report the structures of three proteins that are potentially essential to the survival of M. tuberculosis: a protein involved in the folate biosynthetic pathway (Rv3607c); a protein involved in the biosynthesis of vitamin B5 (Rv3602c); and a pyrophosphatase, Rv2697c. Our approach to the M. tuberculosis structural genomics project will yield information for drug design and vaccine production against tuberculosis. In addition, this study will provide further insights into the mechanisms of mycobacterial pathogenesis.  相似文献   

4.
MPT63 protein is found only in Mycobacterium tuberculosis complex, including M. tuberculosis and M. bovis. Detection of MPT63‐specific IFN‐γ‐secreting T cells could be useful for the diagnosis of tuberculosis (TB) diseases. In the present study, the HLA‐A*0201 restriction of ten predicted MPT63‐derived CD8 + T‐cell epitopes was assessed on the basis of T2 cell line and HLA‐A*0201 transgenic mice. The diagnostic potential of immunogenic peptides in active pulmonary TB patients was evaluated using an IFN‐γ enzyme‐linked immunospot assay. It was found that five peptides bound to HLA‐A*0201 with high affinity, whereas the remaining peptides exhibited low affinity for HLA‐A*0201. Five immunogenic peptides (MPT6318–26, MPT6329–37, MPT6320–28, MPT635–14 and MPT6310–19) elicited large numbers of cytotoxic IFN‐γ‐secreting T cells in HLA‐A*0201 transgenic mice. Each of the five immunogenic peptides was recognized by peripheral blood mononuclear cells from 45% to 73% of 40 HLA‐A*0201 positive TB patients. The total diagnostic sensitivity of the five immunogenic peptides was higher than that of a T‐SPOT.TB assay (based on ESAT‐6 and CFP‐10) (93% versus 90%). It is noticeable that the diagnostic sensitivity of the combination of five immunogenic peptides and T‐SPOT.TB assay reached 100%. These MPT63‐derived HLA‐A*0201‐restricted CD8 + T‐cell epitopes would likely contribute to the immunological diagnosis of M. tuberculosis infection and may provide the components for designing an effective TB vaccine.  相似文献   

5.
The long-term control of tuberculosis (TB) will require the development of more effective anti-TB vaccines, as the only licensed vaccine, Mycobacterium bovis bacille Calmette-Guérin (BCG), has limited protective efficacy against infectious pulmonary TB. Subunit vaccines have an improved safety profile over live, attenuated vaccines, such as BCG, and may be used in immuno-compromised individuals. MPT83 (Rv2873) is a secreted mycobacterial lipoprotein expressed on the surface of Mycobacterium tuberculosis. In this study, we examined whether recombinant MPT83 is recognized during human and murine M. tuberculosis infection. We assessed the immunogenicity and protective efficacy of MPT83 as a protein vaccine, with monophosphyl lipid A (MPLA) in dimethyl-dioctadecyl ammonium bromide (DDA) as adjuvant, or as a DNA vaccine in C57BL/6 mice and mapped the T cell epitopes with peptide scanning. We demonstrated that rMPT83 was recognised by strong proliferative and Interferon (IFN)-γ-secreting T cell responses in peripheral blood mononuclear cells (PBMC) from patients with active TB, but not from healthy, tuberculin skin test-negative control subjects. MPT83 also stimulated strong IFN-γ T cell responses during experimental murine M. tuberculosis infection. Immunization with either rMPT83 in MPLA/DDA or DNA-MPT83 stimulated antigen-specific T cell responses, and we identified MPT83(127-135) (PTNAAFDKL) as the dominant H-2(b)-restricted CD8(+) T cell epitope within MPT83. Further, immunization of C57BL/6 mice with rMPT83/MPLA/DDA or DNA-MPT83 stimulated significant levels of protection in the lungs and spleens against aerosol challenge with M. tuberculosis. Interestingly, immunization with rMPT83 in MPLA/DDA primed for stronger IFN-γ T cell responses to the whole protein following challenge, while DNA-MPT83 primed for stronger CD8(+) T cell responses to MPT83(127-135). Therefore MPT83 is a protective T cell antigen commonly recognized during human M. tuberculosis infection and should be considered for inclusion in future TB subunit vaccines.  相似文献   

6.
The performance of the immunochromatographic assay, SD BIOLINE TB Ag MPT64 RAPID?, was evaluated in Madagascar. Using mouse anti-MPT64 monoclonal antibodies for rapid discrimination between the Mycobacterium tuberculosis complex and nontuberculous mycobacteria, the kit was tested on mycobacteria and other pathogens using conventional methods as the gold standard. The results presented here indicate that this kit has excellent sensitivity (100%) and specificity (100%) compared to standard biochemical detection and can be easily used for the rapid identification of M. tuberculosis complex.  相似文献   

7.
ESAT-6 is a small secreted protein of unknown function from Mycobacterium tuberculosis that is of fundamental importance in virulence and protective immunity. A PSI-BLAST search has identified distant homologues of ESAT-6 in more tractable bacteria, including Bacillus subtilis, Bacillus anthracis, Staphylococcus aureus and Clostridium acetobutylicum. The genes for ESAT-6-like proteins often cluster with genes encoding homologues of B. subtilis YukA. I speculate that the ESAT-6-like and YukA-like proteins form a novel Gram-positive secretion system potentially driven by the FtsK/SpoIIIE ATPase domains in the YukA-like proteins. The way is now open to investigate this hypothesis in organisms that are easier to manipulate than pathogenic mycobacteria.  相似文献   

8.
Peripheral blood mononuclear cells (PBMC) were obtained from tuberculosis (TB) patients and Mycobacterium bovis bacillus Calmette-Guerin vaccinated healthy subjects. PBMC were tested for secretion of tumor necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), interleukin-5 (IL-5) and IL-10 in response to complex (whole cells, culture filtrate and cell walls), single secreted (Ag85B, ESAT6, MPT64, PstS and MPT70) and single cytosolic (DnaK, GroES and GroEL) antigens of Mycobacterium tuberculosis. In the absence of antigens, detectable concentrations of TNF-alpha, IFN-gamma and IL-10 were secreted by PBMC of both donor groups, but the concentrations of only IL-10 were significantly higher (P=0.015) in TB patients than in healthy subjects. In the presence of complex antigens, PBMC secreted IFN-gamma and TNF-alpha in response to all three preparations, whereas IL-10 was secreted in response to whole cells and cell walls only. In the presence of single antigens, IFN-gamma was secreted in response to Ag85B, ESAT6 and MPT64 in TB patients and ESAT6 in healthy donors. Except for GroEL and DnaK, single antigens did not induce TNF-alpha and IL-10 secretion from PBMC in either donor group. The secretion of IFN-gamma, but not IL-10, in the presence of Ag85B, ESAT6 and MPT64 supports their potential as subunit vaccine candidates against TB.  相似文献   

9.
The MPT64 protein and its homologs form a highly conserved family of secreted proteins with unknown function that are found within the pathogenic Mycobacteria genus. The founding member of this family from Mycobacterium tuberculosis (MPT64 or protein Rv1980c) is expressed only when Mycobacteria cells are actively dividing. By virtue of this relatively unique expression profile, Rv1980c is currently under phase III clinical trials to evaluate its potential to replace tuberculin, or purified protein derivative, as the rapid diagnostic of choice for detection of active tuberculosis infection. We describe here the NMR solution structure of Rv1980c. This structure reveals a previously undescribed fold that is based upon a variation of a beta-grasp motif most commonly found in protein-protein interaction domains. Examination of this structure in conjunction with multiple sequence alignments of MPT64 homologs identifies a candidate ligand-binding site, which may help guide future studies of Rv1980c function. The work presented here also suggests structure-based approaches for increasing the antigenic potency of a Rv1980c-based diagnostic.  相似文献   

10.
Although phthiocerol dimycocerosates (DIM) are major virulence factors of Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis, little is known about their mechanism of action. Localized in the outer membrane of mycobacterial pathogens, DIM are predicted to interact with host cell membranes. Interaction with eukaryotic membranes is a property shared with another virulence factor of Mtb, the early secretory antigenic target EsxA (also known as ESAT‐6). This small protein, which is secreted by the type VII secretion system ESX‐1 (T7SS/ESX‐1), is involved in phagosomal rupture and cell death induced by virulent mycobacteria inside host phagocytes. In this work, by the use of several knock‐out or knock‐in mutants of Mtb or Mycobacterium bovis BCG strains and different cell biological assays, we present conclusive evidence that ESX‐1 and DIM act in concert to induce phagosomal membrane damage and rupture in infected macrophages, ultimately leading to host cell apoptosis. These results identify an as yet unknown function for DIM in the infection process and open up a new research field for the study of the interaction of lipid and protein virulence factors of Mtb.  相似文献   

11.
The antifungal protein AFP is a small polypeptide of 51 amino acid residues secreted by Aspergillus giganteus. Its potent activity against phytopathogenic fungi converts AFP in a promising tool in plant protection. However, no data have been reported regarding the mode of action of AFP. The three-dimensional structure of this protein, a small and compact beta barrel composed of five highly twisted antiparallel beta strands, displays the characteristic features of the oligonucleotide/oligosaccharide binding (OB fold) structural motif. A comparison of the structures of AFP and OB fold-containing proteins shows this structural similarity despite the absence of any significant sequence similarity. AFP, like most OB fold-containing proteins, binds nucleic acids. The protein promotes charge neutralization and condensation of DNA as demonstrated by electrophoretic mobility shift and ethidium bromide displacement assays. Nucleic acid produces quenching of the protein fluorescence emission. This nucleic acid interacting ability of AFP may be related to the antifungal activity of this small polypeptide.  相似文献   

12.
Tuberculosis remains a severe worldwide health threat. A thorough understanding of Mycobacterium tuberculosis pathogenesis will facilitate the development of new treatments for tuberculosis. Numerous bacterial pathogens possess specialized protein secretion systems that are dedicated to the export of virulence factors. Mycobacterium tuberculosis is part of a developing group of pathogenic bacteria that share the uncommon property of possessing two secA genes (secA1 and secA2). In mycobacteria, SecA1 is the essential 'housekeeping' SecA protein whereas SecA2 is an accessory secretion factor. Here we demonstrate that SecA2 contributes to the pathogenesis of M. tuberculosis. A deletion of the secA2 gene in M. tuberculosis attenuates the virulence of the organism in mice. By comparing the profile of proteins secreted by wild-type M. tuberculosis and the DeltasecA2 mutant, we identified superoxide dismutase A (SodA) as a protein dependent on SecA2 for secretion. SodA lacks a classical signal sequence for protein export. Our data suggests that SecA2-dependent export is a new type of secretion pathway that is part of a virulence mechanism of M. tuberculosis to elude the oxidative attack of macrophages.  相似文献   

13.
Pseudomonas aeruginosa is an opportunistic pathogen commonly found in humans and other organisms and is an important cause of infection especially in patients with compromised immune defense mechanisms. The PA3611 gene of P. aeruginosa PAO1 encodes a secreted protein of unknown function, which has been recently classified into a small Pseudomonas‐specific protein family called DUF4146. As part of our effort to extend structural coverage of novel protein space and provide a structure‐based functional insight into new protein families, we report the crystal structure of PA3611, the first structural representative of the DUF4146 protein family. Proteins 2014; 82:1086–1092. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Molybdenum cofactor (Moco) biosynthesis is an evolutionarily conserved pathway present in eubacteria, archaea and eukaryotes, including humans. Genetic deficiencies of enzymes involved in Moco biosynthesis in humans lead to a severe and usually fatal disease. Moco contains a tricyclic pyranopterin, termed molybdopterin (MPT), that bears the cis-dithiolene group responsible for molybdenum ligation. The dithiolene group of MPT is generated by MPT synthase, which consists of a large and small subunits. The 1.45 A resolution crystal structure of MPT synthase reveals a heterotetrameric protein in which the C-terminus of each small subunit is inserted into a large subunit to form the active site. In the activated form of the enzyme this C-terminus is present as a thiocarboxylate. In the structure of a covalent complex of MPT synthase, an isopeptide bond is present between the C-terminus of the small subunit and a Lys side chain in the large subunit. The strong structural similarity between the small subunit of MPT synthase and ubiquitin provides evidence for the evolutionary antecedence of the Moco biosynthetic pathway to the ubiquitin dependent protein degradation pathway.  相似文献   

15.
As part of the Northeast Structural Genomics Consortium pilot project focused on small eukaryotic proteins and protein domains, we have determined the NMR structure of the protein encoded by ORF YML108W from Saccharomyces cerevisiae. YML108W belongs to one of the numerous structural proteomics targets whose biological function is unknown. Moreover, this protein does not have sequence similarity to any other protein. The NMR structure of YML108W consists of a four-stranded beta-sheet with strand order 2143 and two alpha-helices, with an overall topology of betabetaalphabetabetaalpha. Strand beta1 runs parallel to beta4, and beta2:beta1 and beta4:beta3 pairs are arranged in an antiparallel fashion. Although this fold belongs to the split betaalphabeta family, it appears to be unique among this family; it is a novel arrangement of secondary structure, thereby expanding the universe of protein folds.  相似文献   

16.
Recombination in mycobacteria   总被引:7,自引:0,他引:7  
Mycobacterium tuberculosis , the causative agent of tuberculosis (TB) is thought to infect a quarter of the world's population and accounts for 3 million deaths each year. Leprosy, caused by Mycobacterium leprae continues to afflict millions. In many countries, the incidence of TB is increasing due to its association with acquired immune deficiency syndrome (AIDS) and the emergence of multidrug resistance strains of tubercle bacilli. Genes that encode major antigens, enzymes, potential virulence determinants and drug resistance in mycobacteria have been isolated and characterized; however, further genetic analysis of pathogenic mycobacteria has been severely hampered by the difficulty in precisely defining the phenotype of both wild-type and mutant genes by utilizing homologous recombination to perform allele exchange. Recombination mechanisms have been intensely studied in Escherichia coli but it is unclear how far mechanistic pathways elucidated in this species are applicable to other organisms, such as mycobacteria. The aim of this review is to examine what is currently known about homologous recombination in mycobacteria. A model is proposed to account for both low levels of homologous recombination and high levels of illegitimate recombination found in the tubercle bacillus.  相似文献   

17.
MPT63核酸疫苗的制备及其免疫原性   总被引:3,自引:0,他引:3  
扩增结核分枝杆菌分泌蛋白MPT63编码序列 ,克隆于真核表达载体pJW 4 30 3中 .转染COS 7细胞 ,用Western印迹检测表明该基因在细胞内得到正确表达 .用该质粒连续免疫C5 7BL 6小鼠 3次后 ,用纯化的重组蛋白MPT63检测小鼠血清中的抗体 ,发现抗体滴度达到 10 5,免疫动物中γ干扰素的含量达到 2 5 8± 0 2U ml ,为空载体DNA免疫对照组的 2 0倍以上 ,说明MPT63核酸疫苗在实验动物体内引起了较强的免疫应答  相似文献   

18.
The structural change of M. tuberculosis MPT63, which is predominantly a β-sheet protein having an immunoglobulin like fold, has been investigated in the pH range 7.5–1.5 using various biophysical techniques along with low-temperature phosphorescence (LTP) spectroscopy. MPT63 contains four Tryptophan (Trp) residues at 26, 48, 82, and 129. Although circular dichroism, steady-state and time-resolved fluorescence, time-resolved anisotropy, 1-aniline-8-naphthalene sulfonic (ANS) acid binding, and analytical ultracentrifuge depict more open largely unfolded structure of MPT63 at pH 1.5 and also more accessible nature of Trp residues to neutral quencher at pH 1.5, it is, however, not possible to assign the specific Trp residue/residues being perturbed. This problem has been resolved using LTP of MPT63, which shows optically resolved four distinct (0, 0) bands corresponding to four Trp residues in the pH range 7.5–3.0. LTP at pH 1.5 clearly reveals that the solvent-exposed Trp 82 and the almost buried Trp 129 are specifically affected compared with Trp 48 and Trp 26. Lys 8 and Lys 27 are predicted to affect Trp 129. Tyrosine residues are found to be silent even at pH 1.5. This type of specific perturbation in a multi-Trp protein has not been addressed before. LTP further indicates that partially exposed Trp 48 is preferentially quenched by acrylamide compared with other Trp residues at both pH 7.5 and 1.5. The solvent-exposed Trp 82 is surprisingly found to be not quenched by acrylamide at pH 7.5. All the results are obtained using micromolar concentration of protein and without using any Trp-substituted mutant.  相似文献   

19.
A critical element of tuberculosis control is early and sensitive diagnosis of infection and disease. Our laboratories recently showed that different stages of disease were distinguishable via two-dimensional Western blot analyses of Mycobacterium tuberculosis culture filtrate proteins. However, this methodology is not suitable for high throughput testing. Advances in protein microarray technology provide a realistic mechanism to screen a large number of serum samples against thousands of proteins to identify biomarkers of disease states. Techniques were established for separation of native M. tuberculosis cytosol and culture filtrate proteins, resulting in 960 unique protein fractions that were used to generate protein microarrays. Evaluation of serological reactivity from 42 patients in three tuberculosis disease states and healthy purified protein derivative-positive individuals demonstrated that human immunodeficiency virus (HIV)-negative cavitary and noncavitary tuberculosis (TB) patients' sera recognized 126 and 59 fractions, respectively. Sera from HIV patients coinfected with TB recognized 20 fractions of which five overlapped with those recognized by non-HIV TB patients' sera and 15 were unique to the HIV+TB+ disease state. Identification of antigens within the reactive fractions yielded 11 products recognized by both cavitary and noncavitary TB patients' sera and four proteins (HspX, MPT64, PstS1, and TrxC) specific to cavitary TB patients. Moreover four novel B cell antigens (BfrB, LppZ, SodC, and TrxC) of human tuberculosis were identified.  相似文献   

20.
The highly complex nature of interactions of Mycobacterium tuberculosis with cells of the immune system has puzzled researchers the world-over in understanding the pathogenesis and immunology associated with tuberculosis (TB). This has contributed to the delay in development of effective vaccine(s) for TB. Several excellent studies have provided only a glimpse of the kind and degree of immune responses elicited following infection by mycobacteria. Preferred entry via respiratory route results in the capture of mycobacteria by alveolar macrophages that eventually become their long-term hosts. Since the pathogen is rarely cleared this has resulted in the human population serving as a large reservoir for mycobacteria. Owing to their unique ability to prime na?ve and memory T cells, dendritic cells (DCs) play important and indispensable roles in the initiation and maintenance of protective immune responses following infection. The kind of immune response initiated by DCs with respect to mycobacteria determines the character of immune responses mounted by the host against the pathogen. The profile of cytokines and chemokines secreted as a result of infection of DCs by mycobacteria further plays an important role in defining the course of infection. This minireview attempts to highlight key interactions of mycobacteria with dendritic cells. We discus the uptake of mycobacteria by DCs followed by DC activation and the spectrum of immune responses initiated by infected/activated DCs, followed by numerous ways the pathogen has devised to subvert protective responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号