首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aminoacyl-tRNA synthetases of bakers' yeast (Saccharomyces cerevisiae) were adsorbed to a phosphocellulose (P-cellulose) column, and those specific for tyrosine [EC 6.1.1.1], threonine [EC 6.1.1.3], valine [EC 6.1.1.9], and isoleucine [EC 6.1.1.5] were eluted with several specific tRNAs. Elutions of these synthetases were affected by ATP and/or MgCl2. The effects of ATP and MgCl2 differ with synthetases. Elutions of tyrosyl- and valyl-tRNA synthetases with their cognate tRNAs were more specific in the presence of MgCl2. Isoleucyl-tRNA synthetase was eluted with its cognate tRNA in the presence of both ATP and MgCl2. On the other hand, threonyl-tRNA synthetase was eluted in the absence of ATP and MgCl2 with unfractionated tRNA but not with some non-cognate tRNAs. This suggests that elution of threonyl-tRNA synthetase is highly specific. The present data on the effects of ATP or MgCl2 or both on this affinity elution will be useful for simple and rapid purification of the synthetases.  相似文献   

2.
A method is described for the purification of aminoacyl-tRNA synthetases by affinity chromatography, using a column of tRNA lacking the cognate tRNA, followed by a column of the cognate tRNA. The ability of the enzyme to discriminate between cognate and non-cognate tRNA is exploited in a novel and rapid preparation of the two columns.  相似文献   

3.
The usefulness of affinity chromatography for the purification of aminoacyl-tRNA synthetases was explored by using column ligands derived from the corresponding amino acid and aminoalkyladenylate, a non-labile analogue of the aminoacyladenylate reaction intermediate. Four modes of attachment of the aminoalkyladenylate to Sepharose were studied. The interaction between amino acid derivatives and the corresponding aminoacyl-tRNA synthetases is too weak to allow their use as ligands for affinity chromatography. Attachment of the aminoalkyladenylate via the alpha-nitrogen atom of the amino acid or via C-8 of the nucleotide abolishes synthetase binding, and immobilization via the oxidized ribose ring is only marginally useful. However, attachment of the aminoalkyladenylate to the matrix via N-6 of the nucleotide allows strong and specific synthetase binding, and the use of such columns permits the isolation of homogeneous synthetase from crude mixtures. The effect of non-specific adsorption and the utility of pre-columns and of specific substrate elution are investigated and discussed.  相似文献   

4.
It has been shown that tRNA-Sepharose, a chromatographic adsorbent containing unfractionated tRNA bound to a Sepharose matrix, is a useful, group-specific adsorbent for fractionation of the plant aminoacyl-tRNA synthetases. Conditions are described in which Val-, Trp-, Phe-, Leu- and Ile-tRNA synthetases from yellow lupin seeds can be separated from each other on the tRNA-Sepharose columns. Factors affecting affinity chromatography on the t-RNA-Sepharose columns are discussed. The affinity chromatography procedure for the purification of lupin Ser-tRNA synthetase to homogenity is described.  相似文献   

5.
The partition behavior of isoleucyl-tRNA synthetase, leucyl-tRNA synthetase and tRNA in aqueous two-phase systems composed of the polymers poly(ethyleneglycol) and dextran was investigated. From the results of this investigation a two-phase system could be derived which can be employed for the study of the interactions between synthetases and their cognate tRNAs by equilibrium partition. These measurements show that in each case one molecule of cognate tRNA is bound per molecule of enzyme. The binding constants were in the range 1-5micronM-1. It could be demonstrated that equilibrium partition is a useful method for the study of interactions between macromolecules.  相似文献   

6.
The purification of valyl-tRNA synthetase from Bacillus stearothermophilus is described. The protein was greater than 90% homogeneous on polyacrylamide-gel electrophoresis after more than 850-fold purification. It has a molecular weight of 110000, and no evidence was found for the presence of subunit structure. The properties of the purified enzyme were compared with those of purified valyl-tRNA synthetase from Escherichia coli. The thermal stability, pH-stability and dependence of activity on the temperature and pH of the assay are reported. The two enzymes recognize and charge tRNA(Val) from crude tRNA of the mesophile E. coli and of the thermophile B. stearothermophilus, indiscriminately. The gel-filtration method was extended to measure the binding of tRNA to synthetase directly. Binding constants for tRNA(Val) to valyl-tRNA synthetase from B. stearothermophilus were determined between 5 degrees and 60 degrees C.  相似文献   

7.
J G Moe  D Piszkiewicz 《Biochemistry》1979,18(13):2810-2814
The inhibitory effects of blue dextran and a small dye molecule derived from it (F3GA-OH) on the steady-state reaction catalyzed by Escherichia coli isoleucy-tRNA synthetase have been studied. Blue dextran gave uncompetitive inhibition with respect to Mg.ATP, mixed inhibition with respect to L-isoleucine, and competitive inhibition with respect to tRNA. The small dye molecule (F3GA-OH) was also competitive with respect to tRNA. These inhibition patterns were not consistent with the bi-uni-uni-bi Ping Pong mechanism generally accepted for aminoacyl-tRNA synthetases. They were consistent with a mechanism in which a second L-isoleucine is bound after isoleucyl-AMP synthesis and before transfer of the isoleucyl moiety to tRNA. Enzyme-bound L-isoleucine lowered the affinity of the enzyme for blue dextran approximately fivefold, a value comparable to the ninefold lowering of the enzyme's affinity for tRNA upon binding L-isoleucine. The affinity of the synthetase for F3GA-OH (K1 = 1.0 X 10(-7) M) is approximately fivefold higher than its affinity for blue dextran (K1 = 5.3 X 10(-7) M). These results indicate that blue dextran and its derivatives may be useful for kinetic and physical studies of polynucleotide binding sites on proteins as well as NAD and ATP sites.  相似文献   

8.
J G Moe  D Piszkiewicz 《Biochemistry》1979,18(13):2804-2810
A steady-state kinetic analysis was conducted of the overall aminoacylation reaction catalyzed by isoleucyl-tRNA synthetase. The patterns of Lineweaver-Burk plots obtained indicated that tRNA adds to the enzyme only after isoleucyl adenylate formation and pyrophosphate release. These kinetic patterns were consistent with the bi-uni-uni-bi Ping Pong mechanism generally accepted for this aminoacyl-tRNA synthetase, but they could also be accommodated by a mechanism in which a second molecule of L-isoleucine added to the enzyme between isoleucyl adenylate formation and aminoacylation of tRNA [Fersht, A.R., & Kaethner, M.M. (1976) Biochemistry 15, 818]. The values of the kinetic parameters favor the latter mechanism. The results of this kinetic analysis indicated that the affinity of isoleucyl-tRNA synthetase for Mg.ATP was enhanced upon binding of L-isoleucine and vice versa. It also indicated that the affinity of the enzyme for L-isoleucine is decreased upon binding tRNA and vice versa. The values of dissociation constants calculated for each of the substrates by this study generally compared well with those determined by other authors using a variety of kinetic and equilibrium methods.  相似文献   

9.
E. coli tryptophanyl-tRNA synthetase can form a complex with Blue-dextran Sepharose, in the presence or in the absence of Mg++. In its absence, the complex is dissociated by either ATP or cognate tRNATrp. However, in the presence of Mg++, only tRNATrp can dissociate the complex whereas ATP has no effect. E. coli total tRNA or tRNAMet, at the same concentration, cannot displace the synthetase from the complex. It is suggested that the Blue-dextran binds to the synthetase through its tRNA binding domain. This hypothesis is supported by previous findings with polynucleotide phosphorylase showing that Blue-dextran Sepharose can be used in affinity chromatography to recognize a polynucleotide binding site of the protein. The selective elution by its cognate tRNA of Trp-tRNA synthetase bound to Blue-dextran Sepharose provides a rapid and efficient purification of the enzyme. Examples of other synthetases and nucleotidyl transferases are also discussed.  相似文献   

10.
The ileS gene coding for isoleucyl-tRNA synthetase was cloned on a runaway-replication plasmid. From the cells harboring the plasmid, gram quantities of the synthetase were isolated using two column procedures. The synthetase was used for the purification of cognate tRNA. Isoleucine tRNAGAU of greater than 90% purity was easily isolated by taking advantage of a specific complex formation of the synthetase with cognate tRNA.  相似文献   

11.
Pseudomonas aeruginosa tRNA was treated with iodine, CNBr and N-ethylmaleimide, three thionucleotide-specific reagents. Reaction with iodine resulted in extensive loss of acceptor activity by lysine tRNA, glutamic acid tRNA, glutamine tRNA, serine tRNA and tyrosine tRNA. CNBr treatment resulted in high loss of acceptor ability by lysine tRNA, glutamic acid tRNA and glutamine tRNA. Only the acceptor ability of tyrosine tRNA was inhibited up to 66% by N-ethylmaleimide treatment, a reagent specific for 4-thiouridine. By the combined use of benzoylated DEAE-cellulose and DEAE-Sephadex columns, lysine tRNA of Ps. aeruginosa was resolved into two isoaccepting species, a major, tRNA Lys1 and a minor, tRNALys1. Co-chromatography of 14C-labelled tRNALys1 and 3H-labelled tRNALys2 on benzoylated DEAE-cellulose at pH 4.5 gave two distinct, non-superimposable profiles for the two activity peaks, suggesting that they were separate species. The acceptor activity of these two species was inhibited by about 95% by iodine and CNBr. Both the species showed equal response to codons AAA and AAG and also for poly(A) and poly(A1,G1) suggesting that the anticodon of these species was UUU. Chemical modification of these two species by iodine did not inhibit the coding response. The two species of lysine of Ps. aeruginosa are truly redundant in that they are indistinguishable either by chemical modification or by their coding response.  相似文献   

12.
Yeast tRNA-Phe has been cross-linked photochemically to three aminoacyl-tRNA synthetases, yeast phenylalanyl-tRNA synthetase, Escherichia coli isoleucyl-tRNA synthetase, and E. coli valyl-tRNA synthetase. The two non-cognate enzymes are known to interact with tRNA-Phe. In each complex, three regions on the tRNA are found to cross-link. Two of these are common to all of the complexes, while the third is unique to each. Thus, the cognate and non-cognate complexes bear considerable similarity to each other in the way in which the respective enzyme orients on tRNA-Phe, a result which was also established for the complexes of E. coli tRNA-Ile (BUDZIK, G.P., LAM, S.M., SCHOEMAKER, H.J.P., and SCHIMMEL, P.R. (1975) J. Biol. Chem. 250, 4433-4439). The common regions include a piece extending from the 5'-side of the acceptor stem to the beginning of the dihydrouridine helix, and a segment running from the 3' side of the extra loop into the TpsiC helix. These two regions overlap with and include some of the homologous bases found in eight tRNAs aminoacylated by yeast phenylalanyl-tRNA synthetase (ROE, B., SIROVER, M., and DUDOCK, B. (1973) Biochemistry 12, 4146-4153). Although well separated in the primary and secondary structure, these two segments are in close proximity in the crystallographic tertiary structure. In two of the complexes, the third cross-linked fragment is near to the two common ones. The picture which emerges is that the enzymes all interact with the general area in which the two helical branches of the L-shaped tertiary structure fuse together, with additional interactions on other parts of the tRNAas well.  相似文献   

13.
A new way of studying RNA-protein complexes, using neutron small angle scattering in solution, is described and was applied in the case of the system, yeast valyl-tRNA synthetase, interacting with its cognate and non cognate yeast tRNAs. It was shown that, when limited amounts of tRNA (either cognate or non cognate) are added to valyl-tRNA synthetase, a complex consisting of two enzyme molecules and one tRNA molecule is first formed. It is subsequently dissociated to a one to one complex when more tRNA is present in the solution. The association curve shows a maximum for a molecular ratio, enzyme over tRNA, equal to 2.  相似文献   

14.
1. Phenol was effectively removed from aqueous extracts of RNA by chromatography on Sephadex G-50. 2. Elution of tRNA from Sephadex G-50 columns at pH7.6 was shown to remove 91% of the endogenously bound amino acids. 3. tRNA prepared without recourse to ethanolic precipitation was capable of accepting much greater amounts of amino acids than could redissolved samples of precipitated tRNA. 4. Aminoacyl-tRNA synthetase enzymes were partially purified with calcium phosphate gel. Elution of enzymes from the gel at pH6.5 yielded a fraction having phenylalanine- and alanine-charging activity, but no aspartate-, lysine- or proline-charging activity, whereas elution at pH7.6 gave a fraction having aspartate-, lysine- and proline-charging activity but no phenylalanine- or alanine-charging activity. 5. By using partially synthetase enzymes and tRNA eluted from DEAE-Sephadex A-50 columns, 52% of the theoretical maximum of aminoacyl-tRNA synthesis was obtained in vitro.  相似文献   

15.
D Kern  J Lapointe 《Biochemistry》1979,18(26):5809-5818
The binding of the various substrates to Escherichia coli glutamyl-tRNA synthetase has been investigated by using as experimental approaches the binding study under equilibrium conditions and the substrate-induced protection of the enzyme against its thermal inactivation. The results show that ATP and tRNAGlu bind to the free enzyme, whereas glutamate binds only to an enzyme form to which glutamate-accepting tRNAGlu is associated. By use of modified E. coli tRNAsGlu and heterologous tRNAsGlu, a correlation could be established between the ability of tRNAGlu to be aminoacylated by glutamyl-tRNA synthetase and its abilities to promote the [32P]PPi-ATP isotope exchange and the binding of glutamate to the synthetase. These results give a possible explanation for the inability of blutamyl-tRNA synthetase to catalyze the isotope exchange in the absence of amino acid accepting tRNAGlu and for the failure to detect an enzyme-adenylate complex for this synthetase by using the usual approaches. One binding site was detected for each substrate. The specificity of the interaction of the various substrates has been further investigated. Concerning ATP, inhibition studies of the aminoacylation reaction by various analogues showed the existence of a synergistic effect between the adenine and the ribose residues for the interaction of adenosine. The primary recognition of ATP involves the N-1 and the 6-amino group of adenine as well as the 2'-OH group of ribose. This first interaction is then strengthened by the phosphate groups- Inhibition studies by various analogues of glutamate showed a strong decrease in the affinity of this substrate for the synthetase after substitution of the alpha- or gamma-carboxyl groups. The enzyme exhibits a marked tendency to complex tRNAs of other specificities even in the presence of tRNAGlu. MgCl2 and spermidine favor the specific interactions. The influence of monovalent ions and of pH on the interaction between glutamyl-tRNA synthetase and tRNAGlu is similar to those reported for other synthetases not requiring their cognate tRNA to bind the amino acid. Finally, contrary to that reported for other monomeric synthetases, no dimerization of glutamyl-tRNA synthetase occurs during the catalytic process.  相似文献   

16.
Leucyl-transfer ribonucleic acid (tRNA) synthetase was purified 100-fold from extracts of Salmonella typhimurium. The partially purified enzyme had the following K(m) values: leucine, 1.1 x 10(-5)m; adenosine triphosphate, 6.5 x 10(-4)m; tRNA(I) (Leu), 4.1 x 10(-8)m; tRNA(II) (Leu), 4.3 x 10(-8)m; tRNA(III) (Leu), 5.3 x 10(-8)m; and tRNA(IV) (Leu), 2.9 x 10(-8)m. The tRNA(Leu) fractions were isolated from Salmonella bulk tRNA by chromatography on reversed-phase columns and benzoylated diethylaminoethyl cellulose. The enzyme had a pH optimum of 8.5 and an activation energy of 10,400 cal per mole, and was inactivated exponentially at 49.5 C with a first-order rate constant of 0.064 min(-1). Strain CV356 (leuS3 leuABCD702 ara-9 gal-205) was isolated as a mutant resistant to dl-4-azaleucine and able to grow at 27 C but not at 37 C. Extracts of strain CV356 had no leucyl-tRNA synthetase activity (charging assay) when assayed at 27 or 37 C. Temperature sensitivity and enzyme deficiency were caused by mutation in the structural gene locus specifying leucyl-tRNA synthetase. A prototrophic derivative of strain CV356 (CV357) excreted branched-chain amino acids and had high pathway-specific enzyme levels when grown at temperatures where its doubling time was near normal. At growth-restricting temperatures, both amino acid excretion and enzyme levels were further elevated. The properties of strain CV357 indicate that there is only a single leucyl-tRNA synthetase in S. typhimurium.  相似文献   

17.
S X Lin  J P Shi  X D Cheng  Y L Wang 《Biochemistry》1988,27(17):6343-6348
A Blue Sephadex G-150 affinity column adsorbs the arginyl-tRNA synthetase of Escherichia coli K12 and purifies it with high efficiency. The relatively low enzyme content was conveniently purified by DEAE-cellulose chromatography, affinity chromatography, and fast protein liquid chromatography to a preparation with high activity capable of catalyzing the esterification of about 23,000 nmol of arginine to the cognate tRNA per milligram of enzyme within 1 min, at 37 degrees C, pH 7.4. The turnover number is about 27 s-1. The purification was about 1200-fold, and the overall yield was more than 30%. The enzyme has a single polypeptide chain of about Mr 70,000 and binds arginine and tRNA with 1:1 stoichiometry. For the aminoacylation reaction, the Km values at pH 7.4, 37 degrees C, for various substrates were determined: 12 microM, 0.9 mM, and 2.5 microM for arginine, ATP, and tRNA, respectively. The Km value for cognate tRNA is higher than those of most of the aminoacyl-tRNA synthetase systems so far reported. The ATP-PPi exchange reaction proceeds only in the presence of arginine-specific tRNA. The Km values of the exchange at pH 7.2, 37 degrees C, are 0.11 mM, 2.9 mM, and 0.5 mM for arginine, ATP, and PPi, respectively, with a turnover number of 40 s-1. The pH dependence shows that the reaction is favored toward slightly acidic conditions where the aminoacylation is relatively depressed.  相似文献   

18.
Yeast arginyl-tRNA synthetase and aspartyl-tRNA synthetase like nucleotidyl transferases previously investigated interact with the Blue-Dextran-Sepharose affinity ligand through their tRNA binding domain: the enzymes are readily displaced from the affinity column by their cognate tRNAs but not by ATP or a mixture of ATP and the cognate amino acid in contrast to other aminoacyl-tRNA synthetases. In the absence of Mg++, the arginyl-tRNA synthetase can be dissociated from the column by tRNAAsp and tRNAPhe which have been shown to be able to form a complex with the synthetase, but in presence of Mg++ the elution is only obtained by the specific tRNA.The procedure described here can thus be used: (i) to detect polynucleotide binding sites in a protein; (ii) to estimate the relative affinities of different tRNAs for a purified synthetase; (iii) to purify an aminoacyl-tRNA synthetase by selective elution with the cognate tRNA.  相似文献   

19.
Polyacrylamide gel electrophoresis at pH 8.3 was used to detect and quantitate the formation of the yeast tyrosyl-tRNA synthetase (an alpha 2-type enzyme) complex with its cognate tRNA. Electrophoretic mobility of the complex is intermediate between the free enzyme and free tRNA; picomolar quantities can be readily detected by silver staining and quantitated by densitometry of autoradiograms when [32P]tRNA is used. Two kinds of complexes of Tyr-tRNA synthetase with yeast tRNA(Tyr) were detected. A slower-moving complex is formed at ratios of tRNA(Tyr)/enzyme less than or equal to 0.5; it is assigned the composition tRNA.(alpha 2)2. At higher ratios, a faster-moving complex is formed, approaching saturation at tRNA(Tyr)/enzyme = 1; any excess of tRNA(Tyr) remains unbound. This complex is assigned the composition tRNA.alpha 2. The slower, i.e. tRNA.(alpha 2)2 complex, but not the faster complex, can be formed even with non-cognate tRNAs. Competition experiments show that the affinity of the enzyme towards tRNA(Tyr) is at least 10-fold higher than that for the non-cognate tRNAs. ATP and GTP affect the electrophoretic mobility of the enzyme and prevent the formation of tRNA.(alpha 2)2 complexes both with cognate and non-cognate tRNAs, while neither tyrosine, as the third substrate of Tyr tRNA synthetase, nor AMP, AMP/PPi, or spermidine, have such effects. Hence, the ATP-mediated formation of the alpha 2 structure parallels the increase in specificity of the enzyme towards its cognate tRNA.  相似文献   

20.
Two threonine-requiring mutants with derepressed expression of the threonine operon were isolated from an Escherichia coli K-12 strain containing two copies of the thr operon. One of them carries a leaky mutation in ilvA (the structural gene for threonine deaminase), which creates an isoleucine limitation and therefore derepression of the thr operon. In the second mutant, the enzymes of the thr operon were not repressed by threonine plus isoleucine; the threonyl-transfer ribonucleic acid(tRNA) synthetase from this mutant shows an apparent Km for threonine 200-fold higher than that of the parental strain. The gene, called thrS, coding for threonyl-tRNA synthetase was located around 30 min on the E. coli map. The regulatory properties of this mutant imply the involvement of charged threonyl-tRNA or threonyl-tRNA synthetase in the regulation of the thr operon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号