首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Estrogen sulfotransferase (EST) is a cytosolic enzyme that catalyzes the sulfoconjugation and inactivation of estrogens using 3'-phosphoadenosine-5'-phosphosulfate (PAPS) as an activated sulfate donor. A finding of undetermined significance in the study of EST has been that the guinea pig EST is able to bind pregnenolone and estradiol with high affinity in the presence of PAP, the reaction by-product of the sulfate donor PAPS. This finding has raised the possibility that EST may have other physiological functions independent of its enzymatic activity as a sulfotransferase. To determine if the PAP-dependent steroid binding activity is a common property shared by other estrogen sulfotransferases, we have expressed the mouse and human EST in bacteria and used the purified protein to address this question. We found that, in the presence of PAP, both recombinant mouse and human EST were able to bind estradiol with high affinity but only the human EST was able to bind pregnenolone. In addition, we show that human but not the mouse EST was also able to bind dehydroepiandrosterone, a property that was not described for the guinea pig EST. Furthermore, we demonstrate that the promiscuity of human EST in steroid binding is mirrored by a correspondingly low substrate specificity in its enzymatic activity as a sulfotransferase. Reversely, the lack of stable binding of pregnenolone and dehydroepiandrosterone by the mouse EST is paralleled by a lack of sulfotransferase activity of this enzyme toward these two steroids. Mutagenesis of mouse EST within a domain critical for PAPS binding abolished both its sulfotransferase and PAP-dependent estrogen binding activity. These data suggest that stable binding of steroids such as pregnenolone or estrogen is not an independent property of estrogen sulfotransferases but rather is related to their catalytic activity.  相似文献   

2.
Sulfotransferases catalyze the transfer of sulfate group from para-nitrophenyl sulfate (pNPS) or 3'-phosphoadenosine-5'-phosphosulfate (PAPS) onto acceptor molecules in the biosynthesis of sulfate esters. Human pathogenic mycobacteria are known to produce numerous sulfated molecules on their cell surface which have been implicated as important mediators in host-pathogen interactions. The open reading frame stf9, a predicted homologue of sulfotransferase in the Mycobacterium avium genomic data, was cloned and over expressed in Escherichia coli. The recombinant STF9 conserved the characteristic PAPS binding motif of sulfotransferase and was purified as a 44?kDa soluble protein which exhibited transfer of sulfate group from pNPS (K (m) 1.34?mM, V (max) 7.56?nmol/min/mg) onto 3'-phosphoadenosine-5'-phosphate (K (m) 0.24?mM, V (max) 10.36?nmol/min/mg). The recombinant STF9 protein was also capable of transferring sulfate group from PAPS onto certain acceptor substrates in E. coli, and showed binding affinity to the PAP-agarose resin, supporting the sulfotransferase activity of the recombinant STF9 protein. This is the first report of molecular evidence for sulfotransferase activity of a protein from M. avium. Mutation of Arg96 to Ala and Glu170 to Ala abolishes sulfotransferase activity, indicating the importance of Arg96 and Glu170 in STF9 activity catalysis.  相似文献   

3.
Sulfotransferases are a large group of enzymes that transfer a sulfonate group from the donor substrate, 3'-phosphoadenosine-5'-phosphosulfate (PAPS)(1), to various acceptor substrates, generating 3'-phosphoadenosine-5'-phosphate (PAP) as a by-product. A universal phosphatase-coupled sulfotransferase assay is described here. In this method, Golgi-resident PAP-specific 3'-phosphatase (gPAPP) is used to couple to a sulfotransferase reaction by releasing the 3'-phosphate from PAP. The released phosphate is then detected using malachite green reagents. The enzyme kinetics of gPAPP have been determined, which allows calculation of the coupling rate, the ratio of product-to-signal conversion, of the coupled reaction. This assay is convenient, as it eliminates the need for radioisotope labeling and substrate-product separation, and is more accurate through removal of product inhibition and correction of the results with the coupling rate. This assay is also highly reproducible, as a linear correlation factor above 0.98 is routinely achievable. Using this method, we measured the Michaelis-Menten constants for recombinant human CHST10 and SULT1C4 with the substrates phenolphthalein glucuronic acid and α-naphthol, respectively. The activities obtained with the method were also validated by performing simultaneous radioisotope assays. Finally, the removal of PAP product inhibition by gPAPP was clearly demonstrated in radioisotope assays.  相似文献   

4.
Bile salt sulfotransferase, the enzyme responsible for the formation of bile salt sulfate esters, was purified extensively from normal human liver. The purification procedure included DEAE-Sephadex chromatography, taurocholate-agarose affinity chromatography, and preparative isoelectrofocusing. The final preparation had a specific activity of 18 nmol min-1 mg protein-1, representing a 760-fold purification from the cytosol fraction with a overall yield of 15%. The human enzyme has a Mr of 67,000 and a pI of 5.2. DEAE-Sephadex chromatography of the cytosol fraction revealed only a single species of activity. The limiting Km for the sulfuryl donor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), is 0.7 microM. The limiting Km for the sulfuryl acceptor, glycolithocholate (GLC), is 2 microM. Reciprocal plots were intersecting. Product inhibition studies established that adenosine 3',5'-diphosphate (PAP) was competitive with PAPS (Ki = 0.2 microM) and noncompetitive with respect to GLC. GLC sulfate was competitive with GLC (Ki = 2.2 microM) and noncompetitive with respect to PAPS. Also, 3-ketolithocholate, a dead-end inhibitor, was competitive with GLC (Ki = 0.6 microM) and noncompetitive with respect to PAPS. Iso-PAP (the 2' isomer of PAP) was competitive with PAPS (Ki = 0.3 microM) and noncompetitive with GLC. The cumulative results of the steady-state kinetics experiments point to a random mechanism for the binding of substrates and release of products. The purified enzyme displays no activity toward estrone, testosterone, or phenol. Among the reactive substrates tested, the Vmax/Km values are in the order GLC greater than 3-beta OH-5-cholenic acid greater than glycochenodeoxycholate greater than glycocholate. p-Chloromercuribenzoate inactivated the enzyme. Either PAPS or GLC protected against inactivation, suggesting the presence of a sulfhydryl group at the active site.  相似文献   

5.
Phenol sulfotransferases (PSTs, EC 2.8.2.1) catalyze sulfonyl group transfer from 3'-phosphoadenosine-5'-phosphosulfate (PAPS) to the hydroxyl oxygen of aromatic acceptor substrates. The structural overlap between PAPS and coenzyme A (CoA) suggested a possible role of this common acyl carrier in modulating PST activity. To test this hypothesis, purified recombinant bovine PST was examined by kinetic and affinity chromatographic approaches. After demonstrating PST enzyme inhibition by CoA, systematic variation of CoA and PAPS concentrations indicated simple competitive inhibition with K(i) = 1. 3 microM. PST bound to CoA-agarose, attached via the pantetheinyl thiol group, was eluted with PAP but not by 2-naphthol. This observation was consistent with the pattern of inhibition. Additional members of the sulfotransferase superfamily, as well as acylated CoAs, should be further investigated.  相似文献   

6.
A phenol sulfotransferase from rat liver (EC 2.8.2.9), expressed inEscherichia colifrom a single cDNA, was purified as two separable but catalytically active proteins. The proteins appeared to be identical to each other and to the natural liver sulfotransferase by comparison of their amino acid constitution, amino-terminal end group, and interaction with a polyclonal antibody raised against the liver enzyme. Each of the recombinant forms, α and β, catalyzed the sulfuryl group transfer from 4-nitrophenylsulfate to an acceptor phenol, a reaction in which 3′-phospho-adenosine 5′-phosphate (PAP) is a necessary intermediate. Only form β, however, catalyzes the physiological transfer of a sulfuryl group from 3′-phosphoadenosine 5′-phosphosulfate (PAPS) to the free phenol. Evidence is presented that sulfotransferase α, but not β, has 1 mol of PAP tightly bound per enzyme dimer. The ability to utilize PAPS as a sulfate donor could be altered: form α could be treated and purified as form β to acquire the ability to use PAPS, whereas form β was treated by extended incubation with PAP, lost its ability to use PAPS, and was purified as form α.  相似文献   

7.
Sulfotransferases catalyze the sulfate conjugation of a wide variety of endogenous and exogenous molecules. Human pathogenic mycobacteria produce numerous sulfated molecules including sulfolipids which are well related to the virulence of several strains. The genome of Mycobacterium avium encodes eight putative sulfotransferases (stf1, stf4-stf10). Among them, STF9 shows higher similarity to human heparan sulfate 3-O-sulfotransferase isoforms than to the bacterial STs. Here, we determined the crystal structure of sulfotransferase STF9 in complex with a sulfate ion and palmitic acid at a resolution of 2.6 ?. STF9 has a spherical structure utilizing the classical sulfotransferase fold. STF9 exclusively possesses three N-terminal α-helices (α1, α2, α3) parallel to the 3'-phosphoadenosine-5'-phosphosulfate (PAPS) binding motif. The sulfate ion binds to the PAPS binding structural motif and the palmitic acid molecule binds in the deep cleft of the predicted substrate binding site suggesting the nature of endogenous acceptor substrate of STF9 resembles palmitic acid. The substrate binding site is covered by a flexible loop which may have involvement in endogenous substrate recognition. Based on the mutational study (Hossain et al., Mol Cell Biochem 350:155-162; 2011) and structural resemblance of STF9-sulfate ion-palmitic acid complex to the hHS3OST3 complex with PAP (3'-phosphoadenosine-5'-phosphate) and an acceptor sugar chain, Glu170 and Arg96 are appeared to be catalytic residues in STF9 sulfuryl transfer mechanism.  相似文献   

8.
Sulfation is a widely observed biological reaction conserved from bacterium to human that plays a key role in various biological processes such as growth, development, and defense against adversities. Deficiencies due to the lack of the ubiquitous sulfate donor 3'-phosphoadenosine-5'-phosphosulfate (PAPS) are lethal in humans. A large group of enzymes called sulfotransferases catalyze the transfer reaction of sulfuryl group of PAPS to the acceptor group of numerous biochemical and xenochemical substrates. Four X-ray crystal structures of sulfotransferases have now been determined: cytosolic estrogen, hydroxysteroid, aryl sulfotransferases, and a sulfotransferase domain of the Golgi-membrane heparan sulfate N-deacetylase/N-sulfotransferase 1. These have revealed the conserved core structure of the PAPS binding site, a common reaction mechanism, and some information concerning the substrate specificity. These crystal structures introduce a new era of the study of the sulfotransferases.  相似文献   

9.
Pi N  Armstrong JI  Bertozzi CR  Leary JA 《Biochemistry》2002,41(44):13283-13288
A novel and efficient enzyme kinetics assay using electrospray ionization mass spectrometry was developed and applied to the bacterial carbohydrate sulfotransferase (NodST). NodST catalyzes the sulfuryl group transfer from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to chitobiose, generating 3'-phosphoadenosine 5'-phosphate (PAP) and chitobiose-6-OSO(3)(-) as products. Traditional spectrophotometric assays are not applicable to the NodST system since no shift in absorption accompanies sulfuryl group transfer. Alternative assays have employed thin-layer chromatography, but this procedure is time-consuming and requires radioactive materials. The ESI-MS assay presented herein requires no chromophoric substrate or product, and the analysis time is very short. The ESI-MS assay is used to determine NodST kinetic parameters, including K(M), V(max), and K(i) (for PAP). In addition, the mode of inhibition for PAP was rapidly determined. The results were in excellent agreement with those obtained from previous assays, verifying the accuracy and reliability of the ESI-MS assay. This unique technique is currently being used to investigate the enzymatic mechanism of NodST and to identify sulfotransferase inhibitors.  相似文献   

10.
Porcine endometrial estrogen sulfotransferase has been isolated and its properties examined. This enzyme only appeared in uteri from ovariectomized gilts which had been primed with estrogen and treated with progesterone. The most stable form of the enzyme was obtained via chromatofocusing of the 100,000 g supernatant from secretory endometrium. A molecular weight of 31 KDa was determined for this sulfotransferase by molecular sieve (Sephadex G-200 Superfine) and disk-gel electrophoresis. The active protein displayed a pI of 6.1, pH optimum of 7.6-7.8 and a requirement of 10 mM Mg2+ for maximum transfer of sulfate from 3'-phosphoadenosine-5'-phosphosulfate (PAPS) to estrone (E1). Km of the reaction was 24 +/- 4.7 microM for PAPS and 24 +/- 9.8 nM for E1 as substrate. Porcine endometrial sulfotransferase thus displayed a much greater affinity for E1 than a similar enzyme previously isolated from bovine adrenals. As has been observed of sulfotransferases from other tissues, an endogenous substrate (presumed to be E1) accompanies the enzyme throughout its purification.  相似文献   

11.
Cytosolic sulfotransferase (SULT)-catalyzed sulfation regulates the activity of bio-signaling molecules and aids in metabolizing hydroxyl-containing xenobiotics. The sulfuryl donor for the SULT reaction is adenosine 3′-phosphate 5′-phosphosulfate (PAPS), while products are adenosine 3′,5′-diphosphate (PAP) and a sulfated alcohol. Human phenol sulfotransferase (SULT1A1) is one of the major detoxifying enzymes for phenolic xenobiotics. The mechanism of SULT1A1-catalyzed sulfation of PAP by pNPS was investigated. PAP was sulfated by para-nitrophenyl sulfate (pNPS) in a concentration-dependent manner. 2-Naphthol inhibited sulfation of PAP, competing with pNPS, while phenol activated the sulfation reaction. At saturating PAP, a ping pong kinetic mechanism is observed with pNPS and phenol as substrates, consistent with phenol intercepting the E–PAPS complex prior to dissociation of PAPS. At high concentrations, phenol competes with pNPS, consistent with formation of the E–PAP–phenol dead-end complex. Data are consistent with the previously reported mechanism for sulfation of 2-naphthol by PAPS, and its activation by pNPS [14]. Overall, data are consistent with release of PAP from E–PAP and PAPS from E–PAPS contributing to rate-limitation in both reaction directions.  相似文献   

12.
3'-Phosphoadenosine-5'-phospho[35S]sulfate (PAP35S) was prepared by incubating ATP and carrier-free H2(35)SO4 with a 100,000g supernatant fraction prepared from chick embryo chondrocytes. The product was partially purified by paper electrophoresis and mixed with unlabeled PAPS to give a solution of PAP35S with a specific activity and a concentration approximating those required for the desired metabolic studies. The product was analyzed by high-performance liquid chromatography on an anion-exchange column to determine the proportion of the 35SO4 cpm and A260 material found in the PAPS and other contaminating nucleotides. The PAP35S was purified further by preparative high-performance liquid chromatography. The exact specific activity of the PAP35S was then determined by using this PAP35S preparation as the SO4 donor in a sulfotransferase reaction using a microsomal preparation from the chick embryo chondrocytes as the enzyme and an 3H-labeled oligosaccharide as the SO4 acceptor. The sulfated oligosaccharide was then isolated and the number of 3H and 35SO4 counts per minute in this product were used to calculate the specific activity of the donor. The features of this generally useful approach for preparing PAP35S of any desired specific activity and concentration are discussed.  相似文献   

13.
Previous work with the bovine phenol sulfotransferase (bSULT1A1, EC ) demonstrated inhibition by CoA that was competitive with respect to the sulfuryl donor substrate, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) (Leach, M., Cameron, E., Fite, N., Stassinopoulos, J., Palmreuter, N., and Beckmann, J. D. (1999) Biochem. Biophys. Res. Commun. 261, 815-819). Here we report that long chain acyl-CoAs are more potent inhibitors of bSULT1A1 and also of human dopamine sulfotransferase (SULT1A3) when compared with unesterified CoA and short chain-length acyl-CoAs. A complex pattern of inhibition was revealed by systematic variation of palmitoyl-CoA, PAPS, and 7-hydroxycoumarin, the acceptor substrate. Convex plots of apparent K(m)/V(max) versus [palmitoyl-CoA] were adequately modeled using an ordered rapid equilibrium scheme with PAPS as the leading substrate and by accounting for the possible binding of two equivalents of inhibitor to the dimeric enzyme. Interestingly, the first K(i) of 2-3 microm was followed by a second K(i) of only 0.01-0.05 microm, suggesting that positive subunit cooperativity enhances binding of long chain acyl-CoAs to this sulfotransferase. Simultaneous interaction of palmitoyl-CoA with both the nucleotide and phenol binding sites is suggested by two experiments. First, the acyl-CoA displaced 7-hydroxycoumarin from the highly fluorescent bSULT1A1.PAP.7-HC complex in a cooperative manner. Second, palmitoyl-CoA prevented the quenching of bSULT1A1 fluorescence observed with pentachlorophenol. Finally, titrations of bSULT1A1-pentachlorophenol complex with palmitoyl-CoA caused the return of protein fluorescence, and the binding of palmitoyl-CoA was highly cooperative (Hill constant of 1.9). Overall, these results suggest a model of sulfotransferase inhibition in which the 3'-phosphoadenosine-5'-diphosphate moiety of CoA docks to the PAPS domain, and the acyl-pantetheine group docks to the hydrophobic phenol binding domain.  相似文献   

14.
The sulfoconjugation of tyrosyl residues is a widespread post-translational modification of biologically active peptides and proteins. In this paper we describe the characterization of a rat liver tyrosylprotein sulfotransferase that is capable of catalyzing the transfer of a sulfate moiety from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to the synthetic polymer, poly-(Glu6,Ala3,Tyr1) (EAY; Mr 47,000) using a simple filter paper assay. Following sucrose density gradient centrifugation and comparison with known subcellular marker enzyme activities, rat liver tyrosylprotein sulfotransferase activity was shown to have a distribution similar to the Golgi enzyme, galactosyltransferase. Using the enriched Golgi preparation, rat liver tyrosylprotein sulfotransferase displayed a pH optimum of 6.7 and required the presence of 20 mM Mn2+ for maximal activity. Co2+ (20 mM) was able to produce 26% of the maximal stimulation observed with Mn2+, whereas other metal ions, such as Mg2+, Ca2+, and Co2+, were not effective in stimulating tyrosylprotein sulfotransferase activity. Whereas tyrosylprotein sulfotransferase activity was observed in the native membrane-bound state, EAY sulfation was maximally enhanced 3-fold when assayed in the presence of Lubrol Px. Under the optimal conditions for assaying the sulfation of EAY by a rat liver enriched Golgi fraction, significant degradation of the sulfate donor, PAPS, was observed. The addition of both NaF and 5'-AMP to the incubation mixture was found to effectively prevent PAPS degradation and increase the amount of product formed in the assay by 10-fold. Using the optimized conditions for the sulfation of EAY by rat liver tyrosylprotein sulfotransferase, membrane-bound sulfotransferase activity was also observed in the crude microsomal pellets of a variety of rat tissues, including lung, pituitary, and cerebellum, as well as in livers from different species.  相似文献   

15.
Mycobacterium tuberculosis ( Mtb) produces a number of sulfur-containing metabolites that contribute to its pathogenesis and ability to survive in the host. These metabolites are products of the sulfate assimilation pathway. CysQ, a 3'-phosphoadenosine-5'-phosphatase, is considered an important regulator of this pathway in plants, yeast, and other bacteria. By controlling the pools of 3'-phosphoadenosine 5'-phosphate (PAP) and 3'-phosphoadenosine 5'-phosphosulfate (PAPS), CysQ has the potential to modulate flux in the biosynthesis of essential sulfur-containing metabolites. Bioinformatic analysis of the Mtb genome suggests the presence of a CysQ homologue encoded by the gene Rv2131c. However, a recent biochemical study assigned the protein's function as a class IV fructose-1,6-bisphosphatase. In the present study, we expressed Rv2131c heterologously and found that the protein dephosphorylates PAP in a magnesium-dependent manner, with optimal activity observed between pH 8.5 and pH 9.5 using 0.5 mM MgCl 2. A sensitive electrospray ionization mass spectrometry-based assay was used to extract the kinetic parameters for PAP, revealing a K m (8.1 +/- 3.1 microM) and k cat (5.4 +/- 1.1 s (-1)) comparable to those reported for other CysQ enzymes. The second-order rate constant for PAP was determined to be over 3 orders of magnitude greater than those determined for myo-inositol 1-phosphate (IMP) and fructose 1,6-bisphosphate (FBP), previously considered to be the primary substrates of this enzyme. Moreover, the ability of the Rv2131c-encoded enzyme to dephosphorylate PAP and PAPS in vivo was confirmed by functional complementation of an Escherichia coli Delta cysQ mutant. Taken together, these studies indicate that Rv2131c encodes a CysQ enzyme that may play a role in mycobacterial sulfur metabolism.  相似文献   

16.
Estrogen sulfotransferase (EST) transfers the sulfate group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to estrogenic steroids. Here we report the crystal structure of human EST (hEST) in the context of the V269E mutant-PAPS complex, which is the first structure containing the active sulfate donor for any sulfotransferase. Superimposing this structure with the crystal structure of hEST in complex with the donor product 3'-phosphoadenosine 5'-phosphate (PAP) and the acceptor substrate 17beta-estradiol, the ternary structure with the PAPS and estradiol molecule, is modeled. These structures have now provided a more complete view of the S(N)2-like in-line displacement reaction catalyzed by sulfotransferases. In the PAPS-bound structure, the side chain nitrogen of the catalytic Lys(47) interacts with the side chain hydroxyl of Ser(137) and not with the bridging oxygen between the 5'-phosphate and sulfate groups of the PAPS molecule as is seen in the PAP-bound structures. This conformational change of the side chain nitrogen indicates that the interaction of Lys(47) with Ser(137) may regulate PAPS hydrolysis in the absences of an acceptor substrate. Supporting the structural data, the mutations of Ser(137) to cysteine and alanine decrease gradually k(cat) for PAPS hydrolysis and transfer activity. Thus, Ser(137) appears to play an important role in regulating the side chain interaction of Lys(47) with the bridging oxygen between the 5'-phosphate and the sulfate of PAPS.  相似文献   

17.
S I Rao  M W Duffel 《Chirality》1991,3(2):104-111
Aryl sulfotransferase IV catalyzes the 3'-phosphoadenosine-5'-phosphosulfate (PAPS)-dependent formation of sulfuric acid esters of benzylic alcohols. Since the benzylic carbon bearing the hydroxyl group can be asymmetric, the possibility of stereochemical control of substrate specificity of the sulfotransferase was investigated with benzylic alcohols. Benzylic alcohols of known stereochemistry were examined as potential substrates and inhibitors for the homogeneous enzyme purified from rat liver. For 1-phenylethanol, both the (+)-(R)- and (-)-(S)-enantiomers were substrates for the enzyme, and the kcat/Km value for the (-)-(S)-enantiomer was twice that of the (+)-(R)-enantiomer. The enzyme displayed an absolute stereospecificity with ephedrine and pseudoephedrine, and with 2-methyl-1-phenyl-1-propanol; that is, only (-)-(1R,2S)-ephedrine, (-)-(1R,2R)-pseudoephedrine, and (-)-(S)-2-methyl-1-phenyl-1-propanol were substrates for the sulfotransferase. In the case of 1,2,3,4-tetrahydro-1-naphthol, only the (-)-(R)-enantiomer was a substrate for the enzyme. Both (+)-(R)-2-methyl-1-phenyl-1-propanol and (+)-(S)-1,2,3,4-tetrahydro-1-naphthol were competitive inhibitors of the aryl sulfotransferase-catalyzed sulfation of 1-naphthalenemethanol. Thus, the configuration of the benzylic carbon bearing the hydroxyl group determined whether these benzylic alcohols were substrates or inhibitors of the rat hepatic aryl sulfotransferase IV. Furthermore, benzylic alcohols such as (+)-(S)-1,2,3,4-tetrahydro-1-naphthol represent a new class of inhibitors for the aryl sulfotransferase.  相似文献   

18.
A new assay procedure for phenol sulfotransferase which employs [35S]-3'-phosphoadenosine-5'-phosphosulfate as a sulfate donor and a variety of phenols as sulfate acceptors was developed. The appearance of the 35S-sulfated products or the disappearance of the [35S]-3'-phosphoadenosine-5'-phosphosulfate are determined simultaneously by chromatography of the assay incubation mixtures on Ecteola-cellulose columns, eluting with an NH4HCO3 step gradient. Various acidic, neutral, and basic phenols can be employed as substrates for phenol sulfotransferase using this procedure.  相似文献   

19.
A 3' -phosphoadenosine 5' -phosphosulfate (PAPS):chondroitin sulfate sulfotransferase from chicken embryo epiphyseal cartilage, which was partially purified, exhibited a molecular mass of 150 kDa. The enzymatic sulfation of totally desulfated chondroitin was activated up to 12-fold by protamine while the sulfation of partially sulfated chondroitin was activated only 3-fold. Protamine increased the affinity of the enzyme for PAPS about 4-fold when partially desulfated chondroitin was used as sulfate acceptor. The S 0.5 for the totally desulfated chondroitin was not affected by protamine, while high PAPS concentration slightly increased the affinity of the enzyme for the same sulfate acceptor. The possible role of these substances in the regulation of the sulfation of chondroitin sulfate is discussed.  相似文献   

20.
It has previously been demonstrated that rabbit tracheal epithelial cells in primary culture undergo terminal differentiation at confluence to yield cornified cells much in analogy to epidermal keratinocytes and that one biochemical marker of this process seems to be the accumulation of cholesterol sulfate by the cells. The current work addresses the possible causes of this accumulation. Our studies show that the stimulation of cholesterol sulfate is paralleled by an increased activity of the biosynthetic enzyme cholesterol sulfotransferase. Squamous differentiated cells exhibited 20- to 30- fold higher levels of this enzyme activity than that in undifferentiated cells. As with other markers of squamous cell differentiation, the increase in cholesterol sulfotransferase can be prevented by the inclusion of retinoids in the cell culture medium. Inhibition of sulfotransferase levels can be observed at concentration of retinoic acid as low as 10(-11) M. The enzyme activity is optimal at pH 7 in buffers containing 0.2 M NaCl and 0.01% Triton X-100. Apparent Michaelis constants for the substrates 3'-phosphoadenosine-5'-phosphosulfate and cholesterol are 1 microM and 0.6 mM, respectively. Our results indicate that the increase in cholesterol sulfotransferase is the proximate cause for the accumulation of cholesterol sulfate in rabbit tracheal epithelial cells during squamous cell differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号