首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: Bacteriorhodopsin (bR) from Halobacterium salinarum is a proton pump that converts the energy of light into a proton gradient that drives ATP synthesis. The protein comprises seven transmembrane helices and in vivo is organized into purple patches, in which bR and lipids form a crystalline two-dimensional array. Upon absorption of a photon, retinal, which is covalently bound to Lys216 via a Schiff base, is isomerized to a 13-cis,15-anti configuration. This initiates a sequence of events - the photocycle - during which a proton is transferred from the Schiff base to Asp85, followed by proton release into the extracellular medium and reprotonation from the cytoplasmic side. RESULTS: The structure of bR in the ground state was solved to 1.9 A resolution from non-twinned crystals grown in a lipidic cubic phase. The structure reveals eight well-ordered water molecules in the extracellular half of the putative proton translocation pathway. The water molecules form a continuous hydrogen-bond network from the Schiff-base nitrogen (Lys216) to Glu194 and Glu204 and includes residues Asp85, Asp212 and Arg82. This network is involved both in proton translocation occurring during the photocycle, as well as in stabilizing the structure of the ground state. Nine lipid phytanyl moieties could be modeled into the electron-density maps. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis of single crystals demonstrated the presence of four different charged lipid species. CONCLUSIONS: The structure of protein, lipid and water molecules in the crystals represents the functional entity of bR in the purple membrane of the bacteria at atomic resolution. Proton translocation from the Schiff base to the extracellular medium is mediated by a hydrogen-bond network that involves charged residues and water molecules.  相似文献   

2.
High-resolution X-ray crystallographic studies of bacteriorhodopsin have tremendously advanced our understanding of this light-driven ion pump during the last 2 years, and emphasized the crucial role of discrete internal water molecules in the pump cycle. In the extracellular region an extensive three-dimensional hydrogen-bonded network of protein residues and seven water molecules leads from the buried retinal Schiff base via water 402 and the initial proton acceptor Asp85 to the membrane surface. Near Lys216 where the retinal binds, transmembrane helix G contains a pi-bulge that causes a non-proline kink. The bulge is stabilized by hydrogen bonding of the main chain carbonyl groups of Ala215 and Lys216 with two buried water molecules located in the otherwise very hydrophobic region between the Schiff base and the proton donor Asp96 in the cytoplasmic region. The M intermediate trapped in the D96N mutant corresponds to a late M state in the transport cycle, after protonation of Asp85 and release of a proton to the extracellular membrane surface, but before reprotonation of the deprotonated retinal Schiff base. The M intermediate from the E204Q mutant corresponds to an earlier M, as in this mutant the Schiff base deprotonates without proton release. The structures of these two M states reveal progressive displacements of the retinal, main chain and side chains induced by photoisomerization of the retinal to 13-cis,15-anti, and an extensive rearrangement of the three-dimensional network of hydrogen-bonded residues and bound water that accounts for the changed pK(a)s of the Schiff base, Asp85, the proton release group and Asp96. The structure for the M state from E204Q suggests, moreover, that relaxation of the steric conflicts of the distorted 13-cis,15-anti retinal plays a critical role in the reprotonation of the Schiff base by Asp96. Two additional waters now connect Asp96 to the carbonyl of residue 216, in what appears to be the beginning of a hydrogen-bonded chain that would later extend to the retinal Schiff base. Based on the ground state and M intermediate structures, models of the molecular events in the early part of the photocycle are presented, including a novel model which proposes that bacteriorhodopsin pumps hydroxide (OH(-)) ions from the extracellular to the cytoplasmic side.  相似文献   

3.
The contribution of proton release from the so-called proton release group to the microsecond B2 photocurrent from bacteriorhodopsin (bR) oriented in polyacrylamide gels was determined. The fraction of the B2 current due to proton release was resolved by titration of the proton release group in M. At pH values below the pKa of the proton release group in M, the proton release group cannot release its proton during the first half of the bacteriorhodopsin photocycle. At these pH values, the B2 photocurrent is due primarily to translocation of the Schiff base proton to Asp85. The B2 photocurrent was measured in wild-type bR gels at pH 4.5-7.5, in 100 mM KCl/50 mM phosphate. The B2 photocurrent area (proportional to the amount of charge moved) exhibits a pH dependence with a pKa of 6.1. This is suggested to be the pKa of the proton release group in M; the value obtained is in good agreement with previous results obtained by examining photocycle kinetics and pH-sensitive dye signals. In the mutant Glu204Gln, the B2 photocurrent of the mutant membranes was pH independent between pH 4 and 7. Because the proton release group is incapacitated, and early proton release is eliminated in the Glu204Gln mutant, this supports the idea that the pH dependence of the B2 photocurrent in the wild type reflects the titration of the proton release group. In wild-type bacteriorhodopsin, proton release contributes approximately half of the B2 area at pH 7.5. The B2 area in the Glu204Gln mutant is similar to that in the wild type at pH 4.5; in both cases, the B2 current is likely due only to movement of the Schiff base proton to Asp85.  相似文献   

4.
Zadok U  Asato AE  Sheves M 《Biochemistry》2005,44(23):8479-8485
The retinal protein protonated Schiff base linkage plays a key role in the function of bacteriorhodopsin (bR) as a light-driven proton pump. In the unphotolyzed pigment, the Schiff base (SB) is titrated with a pK(a) of approximately 13, but following light absorption, it experiences a decrease in the pK(a) and undergoes several alterations, including a deprotonation process. We have studied the SB titration using retinal analogues which have intrinsically lower pK(a)'s which allow for SB titrations over a much lower pH range. We found that above pH 9 the channel for the SB titration is perturbed, and the titration rate is considerably reduced. On the basis of studies with several mutants, it is suggested that the protonation state of residue Glu204 is responsible for the channel perturbation. We suggest that above pH 12 a channel for the SB titration is restored probably due to titration of an additional protein residue. The observations may imply that during the bR photocycle and M photointermediate formation the rate of Schiff base protonation from the bulk is decreased. This rate decrease may be due to the deprotonation process of the "proton-releasing complex" which includes Glu204. In contrast, during the lifetime of the O intermediate, the protonated SB is exposed to the bulk. Possible implications for the switch mechanism, and the directionality of the proton movement, are discussed.  相似文献   

5.
Protein crystallography provides the structure of a protein, averaged over all elementary cells during data collection time. Thus, it has only a limited access to diffusive processes. This article demonstrates how molecular dynamics simulations can elucidate structure-function relationships in bacteriorhodopsin (bR) involving water molecules. The spatial distribution of water molecules and their corresponding hydrogen-bonded networks inside bR in its ground state (G) and late M intermediate conformations were investigated by molecular dynamics simulations. The simulations reveal a much higher average number of internal water molecules per monomer (28 in the G and 36 in the M) than observed in crystal structures (18 and 22, respectively). We found nine water molecules trapped and 19 diffusive inside the G-monomer, and 13 trapped and 23 diffusive inside the M-monomer. The exchange of a set of diffusive internal water molecules follows an exponential decay with a 1/e time in the order of 340 ps for the G state and 460 ps for the M state. The average residence time of a diffusive water molecule inside the protein is approximately 95 ps for the G state and 110 ps for the M state. We have used the Grotthuss model to describe the possible proton transport through the hydrogen-bonded networks inside the protein, which is built up in the picosecond-to-nanosecond time domains. Comparing the water distribution and hydrogen-bonded networks of the two different states, we suggest possible pathways for proton hopping and water movement inside bR.  相似文献   

6.
D Xu  M Sheves    K Schulten 《Biophysical journal》1995,69(6):2745-2760
Molecular dynamics simulations have been carried out to study the M412 intermediate of bacteriorhodopsin's (bR) photocycle. The simulations start from two simulated structures for the L550 intermediate of the photocycle, one involving a 13-cis retinal with strong torsions, the other a 13,14-dicis retinal, from which the M412 intermediate is initiated through proton transfer to Asp-85. The simulations are based on a refined structure of bR568 obtained through all-atom molecular dynamics simulations and placement of 16 waters inside the protein. The structures of the L550 intermediates were obtained through simulated photoisomerization and subsequent molecular dynamics, and simulated annealing. Our simulations reveal that the M412 intermediate actually comprises a series of conformations involving 1) a motion of retinal; 2) protein conformational changes; and 3) diffusion and reconfiguration of water in the space between the retinal Schiff base nitrogen and the Asp-96 side group. (1) turns the retinal Schiff base nitrogen from an early orientation toward Asp-85 to a late orientation toward Asp-96; (2) disconnects the hydrogen bond network between retinal and Asp-85 and tilts the helix F of bR, enlarging bR's cytoplasmic channel; (3) adds two water molecules to the three water molecules existing in the cytoplasmic channel at the bR568 stage and forms a proton conduction pathway. The conformational change (2) of the protein involves a 60 degrees bent of the cytoplasmic side of helix F and is induced through a break of a hydrogen bond between Tyr-185 and a water-side group complex in the counterion region.  相似文献   

7.
Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 13-cis configuration. The initial changes are localized near the protein's active site and a key water molecule is disordered. This water molecule serves as a keystone for the ground state of bR since, within the framework of the complex counter ion, it is important both for stabilizing the structure of the extracellular half of the protein, and for maintaining the high pKa of the Schiff base (the primary proton donor) and the low pKa of Asp85 (the primary proton acceptor). Subsequent structural rearrangements propagate out from the active site towards the extracellular half of the protein, with a local flex of helix C exaggerating an early movement of Asp85 towards the Schiff base, thereby facilitating proton transfer between these two groups. Other coupled rearrangements indicate the mechanism of proton release to the extracellular medium. On the cytoplasmic half of the protein, a local unwinding of helix G near the backbone of Lys216 provides sites for water molecules to order and define a pathway for the reprotonation of the Schiff base from Asp96 later in the photocycle. A steric clash of the photoisomerized retinal with Trp182 in helix F drives an outward tilt of the cytoplasmic half of this helix, opening the proton transport channel and enabling a proton to be taken up from the cytoplasm. Although bR is the first integral membrane protein to have its catalytic mechanism structurally characterized in detail, several key results were anticipated in advance of the structural model and the general framework for vectorial proton transport has, by and large, been preserved.  相似文献   

8.
Recent 3-D structures of several intermediates in the photocycle of bacteriorhodopsin (bR) provide a detailed structural picture of this molecular proton pump in action. In this review, we describe the sequence of conformational changes of bR following the photoisomerization of its all-trans retinal chromophore, which is covalently bound via a protonated Schiff base to Lys216 in helix G, to a 13-cis configuration. The initial changes are localized near the protein's active site and a key water molecule is disordered. This water molecule serves as a keystone for the ground state of bR since, within the framework of the complex counter ion, it is important both for stabilizing the structure of the extracellular half of the protein, and for maintaining the high pK(a) of the Schiff base (the primary proton donor) and the low pK(a) of Asp85 (the primary proton acceptor). Subsequent structural rearrangements propagate out from the active site towards the extracellular half of the protein, with a local flex of helix C exaggerating an early movement of Asp85 towards the Schiff base, thereby facilitating proton transfer between these two groups. Other coupled rearrangements indicate the mechanism of proton release to the extracellular medium. On the cytoplasmic half of the protein, a local unwinding of helix G near the backbone of Lys216 provides sites for water molecules to order and define a pathway for the reprotonation of the Schiff base from Asp96 later in the photocycle. A steric clash of the photoisomerized retinal with Trp182 in helix F drives an outward tilt of the cytoplasmic half of this helix, opening the proton transport channel and enabling a proton to be taken up from the cytoplasm. Although bR is the first integral membrane protein to have its catalytic mechanism structurally characterized in detail, several key results were anticipated in advance of the structural model and the general framework for vectorial proton transport has, by and large, been preserved.  相似文献   

9.
Bacteriorhodopsin, a light-driven proton pump found in the purple membrane of Halobacterium salinarum, exhibits purple at neutral pH but its color is sensitive to pH. Here, structures are reported for an acid blue form and an alkaline purple form of wild-type bacteriorhodopsin. When the P622 crystal prepared at pH 5.2 was acidified with sulfuric acid, its color turned to blue with a pKa of 3.5 and a Hill coefficient of 2. Diffraction data at pH 2-5 indicated that the purple-to-blue transition accompanies a large structural change in the proton release channel; i.e. the extracellular half of helix C moves towards helix G, narrowing the proton release channel and expelling a water molecule from a micro-cavity in the vicinity of the retinal Schiff base. In this respect, the acid-induced structural change resembles the structural change observed upon formation of the M intermediate. But, the acid blue form contains a sulfate ion in a site(s) near Arg82 that is created by re-orientations of the carboxyl groups of Glu194 and Glu204, residues comprising the proton release complex. This result suggests that proton uptake by the proton release complex evokes the anion binding, which in turn induces protonation of Asp85, a key residue regulating the absorption spectrum of the chromophore. Interestingly, a pronounced structural change in the proton release complex was also observed at high pH; i.e. re-orientation of Glu194 towards Tyr83 was found to take place at around pH 10. This alkaline transition is suggested to be accompanied by proton release from the proton release complex and responsible for rapid formation of the M intermediate at high pH.  相似文献   

10.
The pKa values of ionizable groups that lie between the active site region of bacteriorhodopsin (bR) and the extracellular surface of the protein are reported. Glu-204 is found to have an elevated pKa in the resting state of bR, suggesting that it corresponds to the proton-releasing group in bR. Its elevated pKa is predicted to be due in part to strong repulsive interactions with Glu-9. Following trans-cis isomerization of the retinal chromophore and the transfer of a proton to Asp-85, polar groups on the protein are able to interact more strongly with the ionized state of Glu-204, leading to a substantial reduction of its pKa. This suggests a general mechanism for proton release in which isomerization and subsequent charge separation initially produce a new electrostatic balance in the active site of bR. Here it is proposed that those events in turn drives a conformational change in the protein in which the ionized state of Glu-204 can be stabilized through interactions with groups that were previously inaccessible. Whether these groups should be identified with polar moieties in the protein, bound waters, or Arg-82 is an important mechanistic question whose elucidation will require further study.  相似文献   

11.
Numerical calculations of the free energy of the first electron transfer in genetically modified reaction centers from Rhodobacter (Rb.) sphaeroides and Rb. capsulatus were carried out from pH 5 to 11. The multiconformation continuum electrostatics (MCCE) method allows side chain, ligand, and water reorientation to be embedded in the calculations of the Boltzmann distribution of cofactor and amino acid ionization states. The mutation sites whose effects have been modeled are L212 and L213 (the L polypeptide) and two in the M polypeptide, M43(44) and M231(233) in Rb. capsulatus (Rb. sphaeroides). The results of the calculations were compared to the experimental data, and very good agreement was found especially at neutral pH. Each mutation removes or introduces ionizable residues, but the protein maintains a net charge close to that in native RCs through ionization changes in nearby residues. This reduces the effect of mutation and makes the changes in state free energy smaller than would be found in a rigid protein. The state energy of QA-QB and QAQB- states have contributions from interactions among the residues as well as with the quinone which is ionized. For example, removing L213Asp, located in the QB pocket, predominantly changes the free energy of the QA-QB state, where the Asp is ionized in native RCs rather than the QAQB- state, where it is neutral. Side chain, hydroxyl, and water rearrangements due to each of the mutations have also been calculated showing water occupancy changes during the QA- to QB electron transfer.  相似文献   

12.
In order to understand how isomerization of the retinal drives unidirectional transmembrane ion transport in bacteriorhodopsin, we determined the atomic structures of the BR state and M photointermediate of the E204Q mutant, to 1.7 and 1.8 A resolution, respectively. Comparison of this M, in which proton release to the extracellular surface is blocked, with the previously determined M in the D96N mutant indicates that the changes in the extracellular region are initiated by changes in the electrostatic interactions of the retinal Schiff base with Asp85 and Asp212, but those on the cytoplasmic side originate from steric conflict of the 13-methyl retinal group with Trp182 and distortion of the pi-bulge of helix G. The structural changes suggest that protonation of Asp85 initiates a cascade of atomic displacements in the extracellular region that cause release of a proton to the surface. The progressive relaxation of the strained 13-cis retinal chain with deprotonated Schiff base, in turn, initiates atomic displacements in the cytoplasmic region that cause the intercalation of a hydrogen-bonded water molecule between Thr46 and Asp96. This accounts for the lowering of the pK(a) of Asp96, which then reprotonates the Schiff base via a newly formed chain of water molecules that is extending toward the Schiff base.  相似文献   

13.
Solid-state 13C NMR spectra were employed to characterize the protonation state of tyrosine in the light-adapted (bR568) and M states of bacteriorhodopsin (bR). Difference spectra (isotopically labeled bR minus natural-abundance bR) were obtained for [4'-13C]Tyr-labeled bR, regenerated with [14-13C]retinal as an internal marker to identify the photocycle states. The [14-13C]retinal has distinct chemical shifts for bR555, for bR568, and for the M intermediate generated and thermally trapped at pH 10 in the presence of 0.3 M KCl or 0.5 M guanidine. Previous work has demonstrated that tyrosine and tyrosinate are easily distinguished on the basis of the chemical shift of the 4'-13C label and that both NMR signals are detectable in dark-adapted bR, although the tyrosinate signal is only present at pH values greater than 12. In the present work, we show that neither the light-adapted form of bR prepared at pH 7 or 10 nor the M state thermally trapped at -80 degrees C in 0.3 M KCl pH 10, or in 0.5 M guanidine pH 10, shows any detectable tyrosinate. In addition, after the M samples were briefly warmed (approximately 30 s), no tyrosinate was observed. However, small (1-2 ppm) changes in the structure or dispersion in the Tyr peak were observed in the M state phototrapped by either method. These changes were reversible when the sample was warmed, although on a time scale slower than the relaxation of the retinal back to the bR568 conformer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Protein stability and function relies on residues being in their appropriate ionization states at physiological pH. In situ residue pK(a)s also provides a sensitive measure of the local protein environment. Multiconformation continuum electrostatics (MCCE) combines continuum electrostatics and molecular mechanics force fields in Monte Carlo sampling to simultaneously calculate side chain ionization and conformation. The response of protein to charges is incorporated both in the protein dielectric constant (epsilon(prot)) of four and by explicit conformational changes. The pK(a) of 166 residues in 12 proteins was determined. The root mean square error is 0.83 pH units, and >90% have errors of <1 pH units whereas only 3% have errors >2 pH units. Similar results are found with crystal and solution structures, showing that the method's explicit conformational sampling reduces sensitivity to the initial structure. The outcome also changes little with protein dielectric constant (epsilon(prot) 4-20). Multiconformation continuum electrostatics titrations show coupling of conformational flexibility and changes in ionization state. Examples are provided where ionizable side chain position (protein G), Asn orientation (lysozyme), His tautomer distribution (RNase A), and phosphate ion binding (RNase A and H) change with pH. Disallowing these motions changes the calculated pK(a).  相似文献   

15.
Johnson ET  Parson WW 《Biochemistry》2002,41(20):6483-6494
The effects of charge-charge interactions on the midpoint reduction potential (E(m)()) of the primary electron donor (P) in the photosynthetic reaction center of Rhodobacter sphaeroides were investigated by introducing mutations of ionizable amino acids at selected sites. The mutations were designed to alter the electrostatic environment of P, a bacteriochlorophyll dimer, without greatly affecting its structure or molecular orbitals. Two arginine residues at homologous positions in the L and M subunits [residues (L135) and (M164)], Asp (L155), Tyr (L164), and Cys (L247) were changed independently. Arginine (L135) was replaced by Lys, Leu, Gln, or Glu; Arg (M164), by Leu or Glu; Asp (L155), by Asn; Tyr (L164), by Phe; and Cys (L247), by Lys or Asp. The R(L135)E/C(L247)K double mutant also was made. The shift in the E(m)() of P/P(+) was measured in each mutant and was compared with the effect predicted by electrostatics calculations using several different computational approaches. A simple distance-dependent dielectric screening factor reproduced the effects remarkably well. By contrast, microscopic methods that considered the reaction field in the protein and solvent but did not include explicit counterions overestimated the changes in the E(m)() considerably. Including counterions for the charged residues reduced the calculated effects of the mutations in molecular dynamics calculations. The results show that electrostatic interactions of P with ionizable amino acid residues are strongly screened, and suggest that counterions make major contributions to this screening. The screening also could reflect penetration of water or other relaxations not taken into account because of incomplete sampling of configurational space.  相似文献   

16.
Arg(82) is one of the four buried charged residues in the retinal binding pocket of bacteriorhodopsin (bR). Previous studies show that Arg(82) controls the pK(a)s of Asp(85) and the proton release group and is essential for fast light-induced proton release. To further investigate the role of Arg(82) in light-induced proton pumping, we replaced Arg(82) with histidine and studied the resulting pigment and its photochemical properties. The main pK(a) of the purple-to-blue transition (pK(a) of Asp(85)) is unusually low in R82H: 1.0 versus 2.6 in wild type (WT). At pH 3, the pigment is purple and shows light and dark adaptation, but almost no light-induced Schiff base deprotonation (formation of the M intermediate) is observed. As the pH is increased from 3 to 7 the M yield increases with pK(a) 4.5 to a value approximately 40% of that in the WT. A transition with a similar pK(a) is observed in the pH dependence of the rate constant of dark adaptation, k(da). These data can be explained, assuming that some group deprotonates with pK(a) 4.5, causing an increase in the pK(a) of Asp(85) and thus affecting k(da) and the yield of M. As the pH is increased from 7 to 10.5 there is a further 2.5-fold increase in the yield of M and a decrease in its rise time from 200 &mgr;s to 75 &mgr;s with pK(a) 9. 4. The chromophore absorption band undergoes a 4-nm red shift with a similar pK(a). We assume that at high pH, the proton release group deprotonates in the unphotolyzed pigment, causing a transformation of the pigment into a red-shifted "alkaline" form which has a faster rate of light-induced Schiff base deprotonation. The pH dependence of proton release shows that coupling between Asp(85) and the proton release group is weakened in R82H. The pK(a) of the proton release group in M is 7.2 (versus 5.8 in the WT). At pH < 7, most of the proton release occurs during O --> bR transition with tau approximately 45 ms. This transition is slowed in R82H, indicating that Arg(82) is important for the proton transfer from Asp(85) to the proton release group. A model describing the interaction of Asp(85) with two ionizable residues is proposed to describe the pH dependence of light-induced Schiff base deprotonation and proton release.  相似文献   

17.
M Nina  B Roux    J C Smith 《Biophysical journal》1995,68(1):25-39
The light-driven proton pump, bacteriorhodopsin (bR) contains a retinal molecule with a Schiff base moiety that can participate in hydrogen-bonding interactions in an internal, water-containing channel. Here we combine quantum chemistry and molecular mechanics techniques to determine the geometries and energetics of retinal Schiff base-water interactions. Ab initio molecular orbital calculations are used to determine potential surfaces for water-Schiff base hydrogen-bonding and to characterize the energetics of rotation of the C-C single bond distal and adjacent to the Schiff base NH group. The ab initio results are combined with semiempirical quantum chemistry calculations to produce a data set used for the parameterization of a molecular mechanics energy function for retinal. Using the molecular mechanics force field the hydrated retinal and associated bR protein environment are energy-minimized and the resulting geometries examined. Two distinct sites are found in which water molecules can have hydrogen-bonding interactions with the Schiff base: one near the NH group of the Schiff base in a polar region directed towards the extracellular side, and the other near a retinal CH group in a relatively nonpolar region, directed towards the cytoplasmic side.  相似文献   

18.
Ionizable residues play essential roles in proteins, modulating protein stability, fold and function. Asp, Glu, Arg, and Lys make up about a quarter of the residues in an average protein. Multi-conformation continuum electrostatic (MCCE) calculations were used to predict the ionization states of all acidic and basic residues in 490 proteins. Of all 36,192 ionizable residues, 93.5% were predicted to be ionized. Thirty-five percent have lost 4.08 kcal/mol solvation energy (DeltaDeltaG(rxn)) sufficient to shift a pK(a) by three pH units in the absence of other interactions and 17% have DeltaDeltaG(rxn) sufficient to shift pK(a) by five pH units. Overall 85% of these buried residues (DeltaDeltaG(rxn)>5DeltapK units) are ionized, including 92% of the Arg, 86% of the Asp, 77% of the Glu, and 75% of the Lys. Ion-pair interactions stabilize the ionization of both acids and bases. The backbone dipoles stabilize anions more than cations. The interactions with polar side-chains are also different for acids and bases. Asn and Gln stabilize all charges, Ser and Thr stabilize only acids while Tyr rarely stabilize Lys. Thus, hydroxyls are better hydrogen bond donors than acceptors. Buried ionized residues are more likely to be conserved than those on the surface. There are 3.95 residues buried per 100 residues in an average protein.  相似文献   

19.
A wealth of information has been gathered during the past decades that water molecules do play an important role in the structure, dynamics, and function of bacteriorhodopsin (bR) and purple membrane. Light-induced structural alterations in bR as detected by X-ray and neutron diffraction at low and high resolution are discussed in relationship to the mechanism of proton pumping. The analysis of high resolution intermediate structures revealed photon-induced rearrangements of water molecules and hydrogen bonds concomitant with conformational changes in the chromophore and the protein. These observations led to an understanding of key features of the pumping mechanism, especially the vectoriality and the different modes of proton translocation in the proton release and uptake domain of bR. In addition, water molecules influence the function of bR via equilibrium fluctuations, which must occur with adequate amplitude so that energy barriers between conformational states can be overcome.  相似文献   

20.
《BBA》2020,1861(10):148239
Cytochrome c Oxidase (CcO) is the terminal electron acceptor in aerobic respiratory chain, reducing O2 to water. The released free energy is stored by pumping protons through the protein, maintaining the transmembrane electrochemical gradient. Protons are held transiently in a proton loading site (PLS) that binds and releases protons driven by the electron transfer reaction cycle. Multi-Conformation Continuum Electrostatics (MCCE) was applied to crystal structures and Molecular Dynamics snapshots of the B-type Thermus thermophilus CcO. Six residues are identified as the PLS, binding and releasing protons as the charges on heme b and the binuclear center are changed: the heme a3 propionic acids, Asp287, Asp372, His376 and Glu126B. The unloaded state has one proton and the loaded state two protons on these six residues. Different input structures, modifying the PLS conformation, show different proton distributions and result in different proton pumping behaviors. One loaded and one unloaded protonation states have the loaded/unloaded states close in energy so the PLS binds and releases a proton through the reaction cycle. The alternative proton distributions have state energies too far apart to be shifted by the electron transfers so are locked in loaded or unloaded states. Here the protein can use active states to load and unload protons, but has nearby trapped states, which stabilize PLS protonation state, providing new ideas about the CcO proton pumping mechanism. The distance between the PLS residues Asp287 and His376 correlates with the energy difference between loaded and unloaded states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号