首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 620 毫秒
1.
Some marine algae can form volatile aldehydes such as n-hexanal, hexenals, and nonenals. In higher plants it is well established that these short-chain aldehydes are formed from C18 fatty acids via actions of lipoxygenase and fatty acid hydroperoxide lyase, however, the biosynthetic pathway in marine algae has not been fully established yet. A brown alga, Laminaria angustata, forms relatively higher amounts of C6- and C9-aldehydes. When linoleic acid was added to a homogenate prepared from the fronds of this algae, formation of n-hexanal was observed. When glutathione peroxidase was added to the reaction mixture concomitant with glutathione, the formation of n-hexanal from linoleic acid was inhibited, and oxygenated fatty acids accumulated. By chemical analyses one of the major oxygenated fatty acids was shown to be (S)-13-hydroxy-(Z, E)-9, 11-octadecadienoic acid. Therefore, it is assumed that n-hexanal is formed from linoleic acid via a sequential action of lipoxygenase and fatty acid hydroperoxide lyase (HPL), by an almost similar pathway as the counterpart found in higher plants HPL partially purified from the fronds has a rather strict substrate specificity, and only 13-hydroperoxide of linoleic acid, and 15-hydroperoxide of arachidonic acid are the essentially suitable substrates for the enzyme. By surveying various species of marine algae including Phaeophyta, Rhodophyta and Chlorophyta it was shown that almost all the marine algae have HPL activity. Thus, a wide distribution of the enzyme is expected.  相似文献   

2.
Mosses have substantial amounts of long chain C20 polyunsaturated fatty acids, such as arachidonic and eicosapentaenoic acid, in addition to the shorter chain C18 α-linolenic and linoleic acids, which are typical substrates of lipoxygenases in flowering plants. To identify the fatty acid substrates used by moss lipoxygenases, eight lipoxygenase genes from Physcomitrella patens were heterologously expressed in Escherichia coli, and then analyzed for lipoxygenase activity using linoleic, α-linolenic and arachidonic acids as substrates. Among the eight moss lipoxygenases, only seven were found to be enzymatically active in vitro, two of which selectively used arachidonic acid as the substrate, while the other five preferred α-linolenic acid. Based on enzyme assays using a Clark-type oxygen electrode, all of the active lipoxygenases had an optimum pH at 7.0, except for one with highest activity at pH 5.0. HPLC analyses indicated that the two arachidonic acid lipoxygenases form (12S)-hydroperoxy eicosatetraenoic acid as the main product, while the other five lipoxygenases produce mainly (13S)-hydroperoxy octadecatrienoic acid from α-linolenic acid. These results suggest that mosses may have both C20 and C18 based oxylipin pathways.  相似文献   

3.
Deuterated isotopomers of 7alpha- and (25R,S)-26-hydroxycholesterol, internal standards for in vivo determination of the two biosynthetic pathways of bile acids formation from cholesterol, were prepared from [2,2,3,4,4,6-2H(6)]-cholesterol and (20S)-[7,7,21,21-2H(4)]-3beta-(tert-butyldimethylsilyl)oxy-20-methylpregna-5-en-21-ol, respectively.  相似文献   

4.
Barthet VJ 《Phytochemistry》2008,69(2):411-417
cis-Vaccenic acid or cis-11-octadecenoic acid, a C18:1 (n-7) isomer of oleic acid (C18:1 (n-9)) has been found in several oilseeds. It is synthesized from palmitic acid (C16:0) via production of C16:1 (n-7) by a Delta9 desaturase and elongation by an elongase giving C18:1 (n-7). In this study, the fatty acid composition of 12 Brassica species was analyzed by GC-FID and confirmed by GC-MS. All species contained C18:1 (n-7), C20:1 (n-7) and C22:1 (n-7) fatty acid isomers, suggesting that C18:1 (n-7) was elongated. The levels of these fatty acids varied according to the species. C18:1(n-7)) represented from 0.4% to 3.3% of the total relative fatty acid contents of the seeds. The contents of C20:1(n-7) and C22:1(n-7) levels were lower than C18:1(n-7) contents; the relative fatty acid composition varied from 0.02% to 1.3% and from below the limit of detection to 1.3% for C20:1 (n-7) and C22:1 (n-7), respectively. The ratios of (n-7)/(n-9) ranged from 2.8% to 16.7%, 0.6% to 29.5% and 0% to 2.6% for C18:1, C20:1 and C22:2, respectively. Using statistical similarities or differences of the C18:1 (n-7)/(n-9) ratios for chemotaxonomy, the surveyed species could be arranged into three groups. The first group would include Brassica napus, B. rapa, and B. tournefortii with Eruca sativa branching only related to B. napus. The second group would include B. tournefortii, Raphanus sativus and Sinapis alba. The last group would include B. juncea, B. carinata and B. nigra with no similarity/relationship between them and between the other species. Results suggested that the level of C20:1 (n-7) influenced the levels of all monounsaturated fatty acids with chain length higher than 20 carbons. On the other hand, palmitoleic acid (C16:1) levels, C16:1 being the parent of all (n-7) fatty acids, had no statistically significant correlation with the content of any of the fatty acids of the (n-7) or (n-9) family.  相似文献   

5.
The freshwater green microalga Parietochloris incisa is the richest known plant source of the polyunsaturated fatty acid (PUFA), arachidonic acid (20:4omega6, AA). While many microalgae accumulate triacylglycerols (TAG) in the stationary phase or under certain stress conditions, these TAG are generally made of saturated and monounsaturated fatty acids. In contrast, most cellular AA of P. incisa resides in TAG. Using various inhibitors, we have attempted to find out if the induction of the biosynthesis of AA and the accumulation of TAG are codependent. Salicylhydroxamic acid (SHAM) affected a growth reduction that was accompanied with an increase in the content of TAG from 3.0 to 6.2% of dry weight. The proportion of 18:1 increased sharply in all lipids while that of 18:2 and its down stream products, 18:3omega6, 20:3omega6 and AA, decreased, indicating an inhibition of the Delta12 desaturation of 18:1. Treatment with the herbicide SAN 9785 significantly reduced the proportion of TAG. However, the proportion of AA in TAG, as well as in the polar lipids, increased. These findings indicate that while there is a preference for AA as a building block of TAG, the latter can be produced using other fatty acids, when the production of AA is inhibited. On the other hand, inhibiting TAG construction did not affect the production of AA. In order to elucidate the possible role of AA in TAG we have labeled exponential cultures of P. incisa kept at 25 degrees C with [1-14C]arachidonic acid and cultivated the cultures for another 12 h at 25, 12 or 4 degrees C. At the lower temperatures, labeled AA was transferred from TAG to polar lipids, indicating that TAG of P. incisa may have a role as a depot of AA that can be incorporated into the membranes, enabling the organism to quickly respond to low temperature-induced stress.  相似文献   

6.
The first total syntheses for the (Z)-15-methyl-10-hexadecenoic acid and the (Z)-13-methyl-8-tetradecenoic acid were accomplished in seven steps and in 31-32% overall yields. The (trimethylsilyl)acetylene was the key reagent in both syntheses. It is proposed that the best synthetic strategy towards monounsaturated iso methyl-branched fatty acids with double bonds close to the omega end of the acyl chain is first acetylide coupling of (trimethylsilyl)acetylene to a long-chain bifunctional bromoalkane followed by a second acetylide coupling to a short-chain iso bromoalkane, since higher yields are thus obtained. Spectral data is also presented for the first time for these two unusual fatty acids with potential as biomarkers and as topoisomerase I inhibitors.  相似文献   

7.
Intermediates of the aldehyde biosynthesis in Thalassiosira rotula are investigated. Use of labeled precursors and cell preparations proves production of 2E,4Z-octadienal from 6Z,9Z,12Z-hexadecatrienoic acid (C16:3 omega-4) through the lipoxygenase-dependent intermediate (9S)-9-hydroperoxyhexadeca-6,10,12-trienoic acid. On the contrary, synthesis of 2E,4Z,7Z-decatrienal involves mainly EPA (C20:5 omega-3) by a 11R-lipoxygenase, as suggested by identification of chiral 11R-HEPE (12% e.e.) in the diatom extracts. Consistently with the necessity to have a rapid transport and metabolization of the intermediate hydroperoxides, we show that lipoxygenase and lyase activities are both found in the same subcellular fraction of the microalga.  相似文献   

8.
The 15,000xg supernatant of sonicated rat PMN contains 5-lipoxygenase that converts arachidonic acid to 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and leukotriene A4 and an HPETE peroxidase that catalyzes reduction of the 5-HPETE. The specificity of this HPETE peroxidase for peroxides, reducing agents, and inhibitors has been characterized to distinguish this enzyme from other peroxidase activities. In addition to 5-HPETE, the HPETE peroxidase will catalyze reduction of 15-hydroperoxyeicosatetraenoic acid, 13-hydroperoxyoctadecadienoic acid, and 15-hydroperoxy-8,11,13-eicosatrienoic acid, but not cumene or t-butylhydroperoxides. The HPETE peroxidase accepted 5 of 11 thiols tested as reducing agents. However, glutathione is greater than 15 times more effective than any other thiol tested. Other reducing agents, ascorbate, NADH, NADPH, phenol, p-cresol, and homovanillic acid, were not accepted by HPETE peroxidase. This enzyme is not inhibited by 10 mM KCN, 2 mM aspirin, 2 mM salicylic acid, or 0.5 mM indomethacin. When 5-[14C]HPETE is generated from [14C]arachidonic acid in the presence of unlabeled 5-HPETE and the HPETE peroxidase, the 5-[14C]HETE produced is of much lower specific activity than the [14C]arachidonic acid. This indicates that the 5-[14C]HPETE leaves the active site of 5-lipoxygenase and mixes with the unlabeled 5-HPETE in solution prior to reduction and is a kinetic demonstration that 5-lipoxygenase has no peroxidase activity. Specificity for peroxides, reducing agents, and inhibitors differentiates HPETE peroxidase from glutathione peroxidase, phospholipid-hydroperoxide glutathione peroxidase, a 12-HPETE peroxidase, and heme peroxidases. The HPETE peroxidase could be a glutathione S-transferase selective for fatty acid hydroperoxides.  相似文献   

9.
10.
The 15,000xg supernatant of sonicated rat PMN contains 5-lipoxygenase that converts arachidonic acid to 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and leukotriene A4 and an HPETE peroxidase that catalyzes reduction of the 5-HPETE. The specificity of this HPETE peroxidase for peroxides, reducing agents, and inhibitors has been characterized to distinguish this enzyme from other peroxidase activities. In addition to 5-HPETE, the HPETE peroxidase will catalyze reduction of 15-hydroperoxyeicosatetraenoic acid, 13-hydroperoxyoctadecadienoic acid, and 15-hydroperoxy-8,11,13-eicosatrienoic acid, but not cumene or t-butylhydroperoxides. The HPETE peroxidase accepted 5 of 11 thiols tested as reducing agents. However, glutathione is >15 times more effective than any other thiol tested. Other reducing agents, ascorbate, NADH, NADPH, phenol, p-cresol, and homovanillic acid, were not accepted by HPETE peroxidase. This enzyme is not inhibited by 10 mM KCN, 2 mM aspirin, 2 mM salicylic acid, or 0.5 mM indomethacin. When 5-[14C]HPETE is generated from [14C]arachidonic acid in the presence of unlabeled 5-HPETE and the HPETE peroxidase, the 5-[14C]HETE produced is of much lower specific activity than the [14C]arachidonic acid. This indicates that the 5-[14C]HPETE leaves the active site of 5-lipoxygenase and mixes with the unlabeled 5-HPETE in solution prior to reduction and is a kinetic demonstration that 5-lipoxygenase has no peroxidase activity. Specificity for peroxides, reducing agents, and inhibitors differentiates HPETE peroxidase from glutathione peroxidase, phospholipid-hydroperoxide glutathione peroxidase, a 12-HPETE peroxidase, and heme peroxidases. The HPETE peroxidase could be a glutathione S-transferase selective for fatty acid hydroperoxides.  相似文献   

11.
In vivo administration experiments using stable (13C) and radio (14C) labeled precursors established that the optically active 8-2' linked lignans, (-)-cis-blechnic, (-)-trans-blechnic and (-)-trans-brainic acids, were directly derived from L-phenylalanine, cinnamate, and p-coumarate but not either from tyrosine or acetate. The radiochemical time course data suggest that the initial coupling product is (-)-cis-blechnic acid, which is then apparently converted into both (-)-trans-blechnic and (-)-trans-brainic acids in vivo. These findings provide additional evidence for vascular plant proteins engendering distinct but specific phenolic radical-radical coupling modes, i.e., for full control over phenylpropanoid coupling in vivo, whether stereoselective or regiospecific.  相似文献   

12.
Incubation of linoleic acid with an enzyme preparation from leaves of flax (Linum usitatissimum L.) led to the formation of a divinyl ether fatty acid, i.e. (9Z,11E,1'Z)-12-(1'-hexenyloxy)-9,11-dodecadienoic [(omega5Z)-etheroleic] acid, as well as smaller amounts of 13-hydroxy-9(Z),11(E)-octadecadienoic acid. The 13-hydroperoxide of linoleic acid afforded the same set of products, whereas incubations of alpha-linolenic acid and its 13-hydroperoxide afforded the divinyl ether (9Z,11E,1'Z,3'Z)-12-(1',3'-hexadienyloxy)-9,11-dodecadienoic [(omega5Z)-etherolenic] as the main product. Identification of both divinyl ethers was substantiated by their UV, mass-, (1)H NMR and COSY spectral data. In addition to the 13-lipoxygenase and divinyl ether synthase activities demonstrated by these results, flax leaves also contained allene oxide synthase activity as judged by the presence of endogenously formed (15Z)-cis-12-oxo-10,15-phytodienoic acid in all incubations.  相似文献   

13.
Monosodium urate (MSU) crystals stimulate the production of arachidonic acid metabolites by human neutrophils and platelets. Neutrophils exposed to MSU generated leukotriene B4(LTB4). 6- -LTB4, 12- -6- -LTB4, and 5S, 12S DHETE from endogenous sources of arachidonate. In addition to these metabolites both monohyroxyeicosatetraenoic acids (i.e., 5-HETE) and w-oxidation products (i.e., 20-COOH LTB4) were formed by neutrophils exposed to MSU. Addition of exogenous arachidonic acid led to increased formation of each of these metabolites. When neutrophils were treated with colchicine (10 uM), LTB4 but 5-HETE formation was impaired. (1-14C) Arachidonate-labeled platelets exposed to MSU released (1-14C)-arachidonate. (14C)-12 HETE, (14C)-HHT and (14C)-thromboxane B2. Results indicate that MSU stimulates arachidonic acid metabolism in both human neutrophils and platelets. Moreover, they suggest not only that metabolites of arachidonate may be considered as possible candidates for mediators of inflammation in crystal-associated diseases, but that colchicine blocks the formation of LTB4.  相似文献   

14.
Liu Z  Qin J  Gao C  Hua D  Ma C  Li L  Wang Y  Xu P 《Bioresource technology》2011,102(22):10741-10744
Production of highly pure (2S,3S)-2,3-butanediol ((2S,3S)-2,3-BD) and (3S)-acetoin ((3S)-AC) in high concentrations is desirable but difficult to achieve. In the present study, glucose was first transformed to a mixture of (2S,3S)-2,3-BD and meso-2,3-BD by resting cells of Klebsiella pneumoniae CICC 10011, followed by biocatalytic resolution of the mixture by resting cells of Bacillus subtilis 168. meso-2,3-BD was transformed to (3S)-AC, leaving (2S,3S)-2,3-BD in the reaction medium. Using this approach, 12.5 g l(-1) (2S,3S)-2,3-BD and 56.7 g l(-1) (3S)-AC were produced. Stereoisomeric purity of (2S,3S)-2,3-BD and enantiomeric excess of (3S)-AC was 96.9 and 96.2%, respectively.  相似文献   

15.
Hepoxilins constitute a group of 12S-hydroperoxyeicosatetraenoic acid (12S-HpETE)-derived epoxy-hydroxy fatty acids that have been detected in various cell types and tissues. Although hepoxilin A3 (HXA3) exhibits a myriad of biological activities, its biosynthetic mechanism was not investigated in detail. Here we review the isolation, cloning, and characterization of a leukocyte-type 12S-lipoxygenase (12S-LOX) from rat insulinoma cells RINm5F, which exhibits an intrinsic hepoxilin A3 synthase activity. Confirmation for this observation was achieved by coimmunoprecipitation of HXA3 synthase activity with an anti-leukocyte 12S-LOX antibody, preparation of recombinant rat 12S-LOX enzyme from RINm5F cells, and assay of HXA3 synthase activity therein. Site-directed mutagenesis studies performed on rat 12S-LOX showed that 12-lipoxygenating enzyme species exhibit a strong HXA3 synthase activity that is impaired when the positional specificity of arachidonic acid is altered in favor of 15-lipoxygenation. Inasmuch as cellular glutathione peroxidases (cGPx and PHGPx) and HXA3 synthase compete for the same substrate 12S-HpETE, it can be proposed that the overall activity of glutathione peroxidases, representing the overall peroxide tone, finely tunes the rate of HXA3 formation.  相似文献   

16.
We have been interested in the possibility that arachidonic acid or one of its 12-lipoxygenase metabolites may function as a retrograde messenger in long-term potentiation (LTP) in the dentate gyrus of the hippocampus. One criterion required of a retrograde messenger is that it stimulates presynaptic changes. Here, two possible presynaptic actions of arachidonic acid and its 12-lipoxygenase metabolites, 12-hydroxyeicosatetraenoic acid (HETE) and 12-hydroperoxyeicosatetraenoic acid (HPETE), are examined. We report that arachidonic acid, HETE, and HPETE significantly increase both K(+)-stimulated release of [3H]glutamate and [3H]inositol labelling of inositol phosphates in synaptosomes, whereas other biologically important fatty acids (oleic, palmitic, and stearic) failed to induce a similar response. The findings of these experiments are consistent with the hypothesis that arachidonic acid, HETE, or HPETE may play the role of a retrograde messenger in LTP.  相似文献   

17.
A biosynthetic pathway for the production of (S)-3-hydroxybutyric acid (S3HB) from glucose was established in recombinant Escherichia coli by introducing the beta-ketothiolase gene from Ralstonia eutropha H16, the (S)-3-hydroxybutyryl-CoA dehydrogenase gene from R. eutropha H16, or Clostridium acetobutylicum ATCC824, and the 3-hydroxyisobutyryl-CoA hydrolase gene from Bacillus cereus ATCC14579. Artificial operon consisting of these genes was constructed and was expressed in E. coli BL21 (DE3) codon plus under T7 promoter by isopropyl beta-D: -thiogalactoside (IPTG) induction. Recombinant E. coli BL21 (DE3) codon plus expressing the beta-ketothiolase gene, the (S)-3-hydroxybutyryl-CoA dehydrogenase gene, and the 3-hydroxyisobutyryl-CoA hydrolase gene could synthesize enantiomerically pure S3HB to the concentration of 0.61 g l(-1) from 20 g l(-1) of glucose in Luria-Bertani medium. Fed-batch cultures of recombinant E. coli BL21 (DE3) codon plus were carried out to achieve higher titer of S3HB with varying induction time and glucose concentration during fermentation. Protein expression was induced by addition of 1 mM IPTG when cell concentration reached 10 and 20 g l(-1) (OD(600) = 30 and 60), respectively. When protein expression was induced at 60 of OD(600) and glucose was fed to the concentration of 15 g l(-1), 10.3 g l(-1) of S3HB was obtained in 38 h with the S3HB productivity of 0.21 g l(-1)h(-1). Lowering glucose concentration to 5 g l(-1) and induction of protein expression at 30 of OD(600) significantly reduced final S3HB concentration to 3.7 g l(-1), which also resulted in the decrease of the S3HB productivity to 0.05 g l(-1)h(-1).  相似文献   

18.
The reaction of (13S,9Z,11E)-13-hydroxy-9,11-octadecadienoic acid (1a), one of the major peroxidation products of linoleic acid and an important physiological mediator, with the Fenton reagent (Fe(2+)/EDTA/H(2)O(2)) was investigated. In phosphate buffer, pH 7.4, the reaction proceeded with >80% substrate consumption after 4h to give a defined pattern of products, the major of which were isolated as methyl esters and were subjected to complete spectral characterization. The less polar product was identified as (9Z,11E)-13-oxo-9,11-octadecadienoate (2) methyl ester (40% yield). Based on 2D NMR analysis the other two major products were formulated as (11E)-9,10-epoxy-13-hydroxy-11-octadecenoate (3) methyl ester (15% yield) and (10E)-9-hydroxy-13-oxo-10-octadecenoate (4) methyl ester (10% yield). Mechanistic experiments, including deuterium labeling, were consistent with a free radical oxidation pathway involving as the primary event H-atom abstraction at C-13, as inferred from loss of the original S configuration in the reaction products. Overall, these results provide the first insight into the products formed by oxidation of 1a with the Fenton reagent, and hint at novel formation pathways of the hydroxyepoxide 3 and hydroxyketone 4 of potential (patho)physiological relevance in settings of oxidative stress.  相似文献   

19.
We report the production of two very long chain polyunsaturated fatty acids, arachidonic acid (AA) and eicosapentaenoic acid (EPA), in substantial quantities in a higher plant. This was achieved using genes encoding enzymes participating in the omega3/6 Delta8 -desaturation biosynthetic pathways for the formation of C20 polyunsaturated fatty acids. Arabidopsis thaliana was transformed sequentially with genes encoding a Delta9 -specific elongating activity from Isochrysis galbana, a Delta8 -desaturase from Euglena gracilis and a Delta5 -desaturase from Mortierella alpina. Instrumental in the successful reconstitution of these C20 polyunsaturated fatty acid biosynthetic pathways was the I. galbana C18-Delta9 -elongating activity, which may bypass rate-limiting steps present in the conventional Delta6 -desaturase/elongase pathways. The accumulation of EPA and AA in transgenic plants is a breakthrough in the search for alternative sustainable sources of fish oils.  相似文献   

20.
The absolute configuration of the alpha-methylbutyryl residue in (4R,5S,7S,8S,9S,10R,11R,2'S)-7-angeloyloxy-9-hydroxy-8-(alpha-methylbutyryloxy)-longipin-2-en-L-one and (4R,5S,7S,8R,10R,11R,2'S)-7-angeloyloxy-8-(alpha-methylbutyryloxy)- longipin-2-en-L-one was determined by chemical correlation with (S)-(+)-benzyl alpha-methylbutyrate prepared from authentic (S)-(+)-alpha-methylbutyric acid. Both compounds were isolated from the hexane extracts of roots of Stevia pilosa Lag. together with four other longipinene derivatives. The developed correlation method is useful to ascertain the chirality of natural alpha-methylbutyryl esters found in nature and to reinforce the hypotheses on the biogenetic origin of these residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号