首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
During chromatin replication and nucleosome assembly, newly synthesized histone H4 is acetylated before it is deposited onto DNA, then deacetylated as assembly proceeds. In a previous study (Perry and Annunziato, Nucleic Acids Res. 17, 4275 [1989]) it was shown that when replication occurs in the presence of sodium butyrate (thereby inhibiting histone deacetylation), nascent chromatin fails to mature fully and instead remains preferentially sensitive to DNaseI, more soluble in magnesium, and depleted of histone H1 (relative to mature chromatin). In the following report the relationships between chromatin replication, histone acetylation, and H1-mediated nucleosome aggregation were further investigated. Chromatin was replicated in the presence or absence of sodium butyrate; isolated nucleosomes were stripped of linker histone, reconstituted with H1, and treated to produce Mg(2+)-soluble and Mg(2+)-insoluble chromatin fractions. Following the removal of H1, all solubility differences between chromatin replicated in sodium butyrate for 30 min (bu-chromatin) and control chromatin were lost. Reconstitution with H1 completely restored the preferential Mg(2+)-solubility of bu-chromatin, demonstrating that a reduced capacity for aggregation/condensation is an inherent feature of acetylated nascent nucleosomes; however, titration with excess H1 caused the solubility differences to be lost again. Moreover, when the core histone N-terminal "tails" (the sites of acetylation) were removed by trypsinization prior to reconstitution, H1 was unable to reestablish the altered solubility of chromatin replicated in butyrate. Thus, the core histone "tails," and the acetylation thereof, not only modulate H1-mediated nucleosome interactions in vitro, but also strongly influence the ability of H1 to differentiate between new and old nucleosomes. The data suggest a possible mechanism for the control of H1 deposition and/or chromatin folding during nucleosome assembly.  相似文献   

2.
The belief that histone H1 interacts primarily with DNA in chromatin and much less with the protein component has led to numerous studies of artificial H1-DNA complexes. This review summarizes and discusses the data on different aspects of the interaction between the linker histone and naked DNA, including cooperativity of binding, preference for supercoiled DNA, selectivity with respect to base composition and nucleotide sequence, and effect of H1 binding on the conformation of the underlying DNA. The nature of the interaction, the structure of the complexes, and the role histone H1 exerts in chromatin are also discussed.  相似文献   

3.
The distribution of histone H1 subfractions in chromatin subunits.   总被引:3,自引:2,他引:3       下载免费PDF全文
Rat liver chromatin was digested with micrococcal nuclease to various extents and fractionated into nucleosomes, di and trimers of nucleosomes on an isokinetic sucrose gradient. In conditions under which degradation of linker DNA within the particles was limited, the electrophoretic analysis of the histone content showed that the overall content of H1 histone increased from nucleosomes to higher order oligomers. Moreover, the histone H1 subfractions were found unevenly distributed among the chromatin subunits, one of them, H1--3 showing most variation. A more regular distribution of these subfractions was found in subunits obtained from a more extended digestion level of chromatin. It is suggested that the H1 subfractions differ in the protection they confer upon DNA.  相似文献   

4.
Histone H1o: its location in chromatin.   总被引:1,自引:2,他引:1       下载免费PDF全文
  相似文献   

5.
6.
7.
Linker histone H1 plays an important role in chromatin folding in vitro. To study the role of H1 in vivo, mouse embryonic stem cells null for three H1 genes were derived and were found to have 50% of the normal level of H1. H1 depletion caused dramatic chromatin structure changes, including decreased global nucleosome spacing, reduced local chromatin compaction, and decreases in certain core histone modifications. Surprisingly, however, microarray analysis revealed that expression of only a small number of genes is affected. Many of the affected genes are imprinted or are on the X chromosome and are therefore normally regulated by DNA methylation. Although global DNA methylation is not changed, methylation of specific CpGs within the regulatory regions of some of the H1 regulated genes is reduced. These results indicate that linker histones can participate in epigenetic regulation of gene expression by contributing to the maintenance or establishment of specific DNA methylation patterns.  相似文献   

8.
We investigated the functional role of the Leishmania histone H1 and demonstrate for the first time that addition of histone H1 has a strong effect on microccocal digestion, chromatin condensation of parasite nuclei and that its overexpression can modulate parasite infectivity in vivo.  相似文献   

9.
10.
Chromatin in isolated rat liver nuclei was compared with chromatin in (i) nuclei depleted of H1 by acid extraction; (ii) nuclei treated at pH 3.2 (without removal of H1), and (iii) depleted nuclei following reassociation of H1. Electron microscopy and digestion by DNase I, micrococcal nuclease and endogenous Ca/Mg endonuclease were used for this comparative examination. Electron micrographs of H1-depleted nuclei showed a dispersed and finely granular appearance. The rate of DNA cleavage by micrococcal nuclease or DNase I was increased several-fold after H1 removal. Discretely sized intermediate particles produced by Ca/Mg endonuclease in native nuclei were not observed in digests of depleted nuclei. Digestion by micrococcal nuclease to chromatin particles soluble in 60 mM NaCl buffer appeared not to be affected in depleted nuclei. When nuclei were treated at pH 3.2, neither the appearance of chromatin in electron micrographs nor the mode or rate of nuclease digestion changed appreciably. Following reassociation of H1 to depleted nuclei, electron micrographs demonstrated the reformation of compacted chromatin, but the lower rate of DNA cleavage in native nuclei was not restored. Further, H1 reassociation produced a significant decrease in the solubility of nuclear chromatin cleaved by micrococcal nuclease or Ca/Mg endonuclease. In order to evaluate critically the reconstitution of native chromatin from H1-depleted chromatin we propose the use of digestion by a variety of nucleases in addition to an electron microscopic examination.  相似文献   

11.
12.
13.
Incorporation of radioactive alanine into chromatin-bound subfractions of H1 histone was studied in HeLa cells synchronized by the double thymidine block technique. The subfractions were resolved into three chromatographic peaks by Biorex-70. In the period 5-7 h after release from the thymidine block, peaks I and III showed twice as much incorporation as they did in the period 1-3 h after release, whereas peak II showed three times the incorporation at 5-7 h that it did at 1- 3 h. Thus, the H1-histone subfraction in peak II appears in chromatin somewhat later in S phase than do the subfractions in Peaks I and III.  相似文献   

14.
Y J Jin  R D Cole 《FEBS letters》1985,182(2):455-458
Non-uniform distribution of H1 histone in bovine thymus chromatin was demonstrated previously. Two classes of chromatin differ in aggregation properties and histone content. The class aggregatable by physiological saline is enriched in H1, especially H1ab, the variant known to be most powerful in condensing DNA. Now, the distribution of H1 subtypes is reported for brain chromatin, where H1ab and H1c were distributed as in thymus. In contrast, H1(0) preferred neither the aggregatable chromatin nor the aggregation-resistant class. It is suggested that H1(0) is uniformly distributed with regard to euchromatin and heterochromatin, whereas H1 is concentrated in heterochromatin.  相似文献   

15.
Histone H1 binds to linker DNA between nucleosomes, but the dynamics and biological ramifications of this interaction remain poorly understood. We performed single-molecule experiments using magnetic tweezers to determine the effects of H1 on naked DNA in buffer or during chromatin assembly in Xenopus egg extracts. In buffer, nanomolar concentrations of H1 induce bending and looping of naked DNA at stretching forces below 0.6 pN, effects that can be reversed with 2.7-pN force or in 200 mM monovalent salt concentrations. Consecutive tens-of-nanometer bending events suggest that H1 binds to naked DNA in buffer at high stoichiometries. In egg extracts, single DNA molecules assemble into nucleosomes and undergo rapid compaction. Histone H1 at endogenous physiological concentrations increases the DNA compaction rate during chromatin assembly under 2-pN force and decreases it during disassembly under 5-pN force. In egg cytoplasm, histone H1 protects sperm nuclei undergoing genome-wide decondensation and chromatin assembly from becoming abnormally stretched or fragmented due to astral microtubule pulling forces. These results reveal functional ramifications of H1 binding to DNA at the single-molecule level and suggest an important physiological role for H1 in compacting DNA under force and during chromatin assembly.  相似文献   

16.
17.
The nuclear magnetic resonance (NMR) spectrum of chromatin at ionic strengths below about 0.5 M may be attributed solely to its histone H1 component. The effect of various ions and urea on the complex has been investigated using NMR and confirm that the contraction of the complex on increase of ionic strength is largely due to electrostatic interactions. A detailed study of the H1 - DNA complex has also been undertaken. The behaviour of H1 in the two cases is virtually identical, implying that in chromatin the H1 is complexed with the DNA rather than with the other histones. Microcalorimetric measurements reveal that the binding of H1 to DNA is athermic or involves a heat of reaction which is very small indeed.  相似文献   

18.
19.
20.
Crosslinking of histone H1 molecules to each other and to the core histones with bifunctional reagents in mouse liver nuclei and chromatin was compared with that under the conditions of random 'contacts' between these molecules. The patterns of crosslinking of the H1 subfractions (H1A, H1B, and H10) to each other in nuclei, chromatin and in solution at different ionic strengths due to random collisions were essentially the same. Moreover, the contacts between the H1 molecules were qualitatively the same in nuclei, chromatin and in solution also at the level of the chymotryptic halves of the H1 molecules. The contacts between the H1 molecules and the core histones in nuclei were similar to those obtained in chromatin at 70 mM NaCl, when H1 molecules readily migrate, and at 0.6 M NaCl, when H1 molecules are dissociated from chromatin. We conclude that spatial arrangement of H1 subfractions and mutual orientation of H1 molecules in isolated nuclei are random-like at least in terms of cross-linking. The static and dynamic models of histone H1 binding to chromatin compatible with the known data are considered. Although unequivocal verification of the models is not possible at present, the dynamic models do correspond better to recent data on the location of the histone H1 in nuclei and chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号