首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Sarcoid granulomas metabolized 25-hydroxyvitamin D3 to two unidentified metabolites during invitro incubation. A two-step high pressure liquid chromatography system revealed two unique elution positions of these sarcoid-derived metabolites that exactly comigrated with the elution positions of 5(Z)-19-nor-10-oxo-25(OH)D3 and 5(E)-19-nor-10-oxo-25(OH)D3, respectively. These unique metabolites did not bind specifically to a protein receptor for 1,25(OH)2D3.  相似文献   

2.
The intestinal nuclear receptor for lα,25-dihydroxyvitamin D3 has been utilized to determine the ability of vitamin D-active sterols to compete with this hormone at the molecular level. 25-Hydroxyvitamin D3 and lα-hydroxyvitamin D3 must be present in 150 and 450 times the concentration respectively of lα,25-dihydroxyvitamin D3, invitro, to displace the physiologic hormone. These data indicate that: i) superphysiologic levels of 25-hydroxyvitamin D3 may simulate lα,25-dihydroxyvitamin D3 and act directly on isolated target organs and ii) the biologic potency observed for low doses of lα-hydroxyvitamin D3, invivo, is probably the result of 25-hidroxylation of the lα-derivative to form lα,25-dihydroxyvitamin D3.  相似文献   

3.
The primary culture of kidney cells from vitamin D deficient chicks is described. After four days in culture the cells reach confluency and retain their ability to metabolize 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3. Addition of one unit of bovine parathyroid hormone to the culture medium for 48 hours prior to assay had no effect on the cells' ability to produce 1,25-dihydroxy vitamin D3, whereas after 24 hours in the presence of 5×10?8M 1,25-dihydroxyvitamin D3 the cells produced not this metabolite, but 24,25-dihydroxyvitamin D3. This cell culture system will allow the investigation of the regulation of renal 25-hydroxyvitamin D3 metabolism under controlled in vitro conditions.  相似文献   

4.
A new metabolite of vitamin D3 has been isolated in pure form from incubations of rat kidney homogenates with 25-hydroxyvitamin D3 [25-OH-D3]. It was identified as 23,25-dihydroxy-24-oxo-vitamin D3 [23,25(OH)2-24-oxo-D3] by means of ultraviolet absorption spectrophotometry and mass spectrometry. Also, 25-OH-D3-26,23-lactone and 24R,25-dihydroxyvitamin D3 were obtained from the same incubation mixtures. The enzyme activity responsible for the conversion of 25-OH-D3 to 23,25(OH)2-24-oxo-D3 was induced by perfusion of the kidneys invitro with 50 nM 1,25-dihydroxyvitamin D3 [1,25(OH)2D3].  相似文献   

5.
Vitamin D3-deficient chick kidney microsomes invitro metabolize 25-hydroxy-[26(27)-methyl-3H]-vitamin D3 to yet structurally unidentified polar metabolites previously designated MIC-I and MIC-II. Kidney microsomes of vitamin D3-repleted chicks could not be demonstrated to produce these metabolites when 3H was the radioactive isotope in positions C-26 and C-27 of the substrate. However, when 25-hydroxy-[26,27-14C]-vitamin D3 was the radioactive substrate, MIC-I and MIC-II production was independent of the vitamin D3 status of the chicks. These results suggest that under conditions of vitamin D3-sufficiency, there is augmented sequential kidney metabolism of 25-hydroxyvitamin D3 to products with modified side-chains involving C-26 and/or C-27. It is possible that this metabolism is responsible for the regulation of kidney cellular concentrations of 25-hydroxyvitamin D3.  相似文献   

6.
Vitamin D3-deficient chick kidney microsomes in vitro metabolize 25-hydroxyvitamin D3 to two polar metabolites by a pathway which may involve side-chain modification. Molecular oxygen and a source of reduced nicotinamide adenine dinucleotide phosphate are required for this metabolism. Kidney cytosol obtained from deficient chicks or kidney microsomes of vitamin D3-repleted chicks do not metabolize 25-hydroxyvitamin D3. The two products are tentatively designated MIC-I and MIC-II.  相似文献   

7.
24-Nor-25-hydroxyvitamin D3, an analog of 25-hydroxyvitamin D3, has been chemically synthesized in six steps. This steroid was tested in chicks, in vivo, for its ability to generate the classic vitamin D mediated responses of stimulation of intestinal calcium transport and bone calcium mobilization. Although the 24-nor-25-OH-vitamin D3 itself exhibited no biological activity in these assays, the analog was found to inhibit the normal responses produced by a physiological dose of vitamin D3. These results suggest that 24-nor-25-OH-vitamin D3 may satisfy certain requirements expected of a calciferol “anti-vitamin.”  相似文献   

8.
Specific binding of 1α,25-dihydroxyvitamin D3 to macromolecular components of small intestinal nuclei and cytosol is demonstrated. The nuclear 1α,25-dihydroxyvitamin D3 complex can be extracted from chromatin by 0.3 M KCl and sediments at 3.7S in sucrose density gradients. The cytoplasmic 1α,25-dihydroxyvitamin D3-binding components also sediment at 3.7S, identically to the nuclear complex under the ultracentrifugation procedures employed.Macromolecular binding components with a high affinity for 25-hydroxyvitamin D3 (Kd = 4.5 × 10−9 M) were also identified in intestinal cytosol which differ from the 1α,25-hydroxyvitamin D3 receptor in that: 1) they sediment at 5–6S in sucrose gradients, 2) they are observed in organs other than the intestine, and 3) while they do bind 1α,25-dihydroxyvitamin D3 at higher concentrations than 25-hydroxyvitamin D3, they are not observed to transfer either 25-hydroxyvitamin D3 or 1α,25-dihydroxyvitamin D3 to the nucleus, in vitro.  相似文献   

9.
23S,25-Dihydroxyvitamin D3 was isolated from the plasma of vitamin D3-toxic pigs. An ultraviolet absorbance spectrum confirmed its purity. The configuration of the 23-hydroxyl group was determined to be S by comparison of the natural product with synthetic 23R,25- and 23S,25-dihydroxyvitamin D3 by high-pressure liquid chromatography. The affinity of both 23S,25- and 23R,25-dihydroxyvitamin D3 for the plasma vitamin D binding protein was similar to vitamin D3. Thus, with respect to the plasma vitamin D binding protein, 23S,25-dihydroxyvitamin D3 is the least potent, naturally-occurring, dihydroxylated vitamin D3 metabolite known.  相似文献   

10.
Two synthetic routes to 3-deoxy-1α-hydroxyvitamin D3, an analog of 1α,25-dihydroxyvitamin D3, are described. One involved the six-step conversion of 1α,2α-epoxy-6,6-ethylenedioxy-5α-cholestan-3- one to 1α-acetoxycholest-5-ene, whereas, in the second, the same intermediate was prepared from 1α-hydroxycholesterol. Conversion of the Δ5-sterol to the required 5,7-diene was accomplished most efficiently via 7-keto and 7-tosylhydrazone intermediates. Bioassay of 3-deoxy-1α-hydroxyvitamin D3 in the rat establishes that the analog can fulfill all common vitamin D functions including stimulation of intestinal calcium transport, mobilization of calcium and phosphate from bone, stimulation of growth, and calcification of bone. Direct comparison indicates the compound to have 120 to 150 of the activity of 1α-hydroxyvitamin D3, but it acts with a time course indistinguishable from the latter.  相似文献   

11.
The activity of renal 25-hydroxyvitamin D3(25-OH-D3)-1α- and 24-hydroxylase and the plasma concentrations of vitamin D metabolites were investigated in relation to the ovulatory cycle in egg-laying hens. The time after ovulation was estimated from the position of the egg in the oviduct and the dry weight of the egg-shell. The invitro renal 25-OH-D3-1α-hydroxylase activity was significantly enhanced 14–16 hr after ovulation, whereas 25-OH-D3-24-hydroxylase activity remained unchanged. The plasma level of 1α,25-dihydroxyvitamin D [1α,25-(OH)2-D] was also increased 14–16 hr after ovulation in accord with the enhancement of the renal 1α-hydroxylase activity. The plasma level of 24,25-dihydroxyvitamin D did not change during the ovulatory cycle. These results strongly suggest that 1α,25-(OH)2-D3 production in the kidney varies in a circadian rhythm during the ovulatory cycle in egg-laying hens.  相似文献   

12.
Metabolism of 25-hydroxyvitamin D3 (25-OH-D3) in pregnancy was investigated invitro in New Zealand White rabbits fed a rabbit chow. Kidney homogenates from pregnant mothers and fetuses were separately incubated with [3H]-25-OH-D3. The homogenates from fetuses produced significant amounts of [3H]-1α,25-dihydroxyvitamin D3 [1α,25-(OH)2-D3] from its precursor, while those from mothers predominantly produced [3H]-24,25-dihydroxyvitamin D3 [24,25-(OH)2-D3]. The identity of the radioactive metabolites produced from [3H]-25-OH-D3 was established by periodate cleavage and comigration with synthetic 1α,25-(OH)2-D3 or 24,25-(OH)2-D3 on high pressure liquid chromatography. These results clearly indicate that the fetal kidney is at least one of the sites of 1α,25-(OH)2-D3 synthesis in pregnancy.  相似文献   

13.
1,25-Dihydroxyvitamin D3 administration to vitamin D-deficient rats suppresses accumulation of 1,25-dihydroxy-[3α-3H]vitamin D3 and stimulates accumulation of 24,25-dihydroxy-[3α-33H]vitamin D3 from 25-hydroxy-[3α-3H]vitamin D3 equally well in the presence and absence of parathyroid glands. These results demonstrate that this regulatory action is not mediated by the parathyroid glands and support conclusions from invitro studies that this represents a direct action of 1,25-dihydroxyvitamin D3.  相似文献   

14.
Previous studies have demonstrated that unoccupied 1,25-dihydroxyvitamin D3 receptors are associated with crude chromatin under hypotonic conditions invitro. The data presented herein show that unoccupied 1,25-dihydroxyvitamin D3 receptors appear to be associated with chromatin prior to solubilization by dilution/homogenization in both high and low salt buffers. Additionally the unoccupied receptors are recovered nearly quantitatively from purified nuclei. These results suggest that unoccupied 1,25-dihydroxyitamin D3 receptors may be localized within nuclei invivo.  相似文献   

15.
C A Frolik  H F DeLuca 《Steroids》1975,26(5):683-685
A protein containing fraction that will bind 1,25-dihydroxyvitamin D3 both invivo and invitro has been solubilized from the nuclear-debris fraction of rat intestinal mucosa and purified 15-fold.  相似文献   

16.
Kidney homogenates from chicks fed a vitamin D-deficient diet for 10 days and supplemented with 6.5 nmol of vitamin D3 48 hr prior to sacrifice metabolized invitro [3H]-25-hydroxyvitamin D3 (25-OH-D3) to 24,25-dihydroxyvitamin D3 [24,25-(OH)2-D3] and 3 other metabolites (peaks A, C and E). When the homogenates were incubated with purified [3H]-24,25-(OH)2-D3, 3 similar metabolites (peaks A′, C′ and E′) were produced. On high pressure liquid chromatography, peaks A, C and E migrated to exactly the same respective positions as peaks A′, C′ and E′. Kidney homogenates from D-deficient chicks failed to produce these metabolites from [3H]-25-OH-D3 or [3H]-24,25-(OH)2-D3. These results strongly suggest that the new metabolites reported here are synthesized via 24,25-(OH)2-D3 in the kidney of chicks supplemented with vitamin D3.  相似文献   

17.
Vitamin D-like steroids added to the culture medium induce a specific calcium-binding protein (CaBP) in embryonic chick duodenum maintained in organ culture. This system provides a biologically relevant assay, i.e., a physiological response in a principle target organ, for the study of the relative biopotency of vitamin D metabolites and analogs. A number of fluoro analogs of vitamin D3 (D3) and its metabolites were assayed in the present study. Analogs fluorinated in the lα position (1α-F-D3) or in both the 1α and 25 positions (1α,25-F2-D3) were markedly more potent than vitamin D3 itself although 1α,25-F2-D3 was only 17th as potent as 1α-F-D3. The 25-fluoro analog (25-F-D3) was a very weak inducer; only 145th as potent as vitamin D3. The 25-fluoro analog of 1α-hydroxyvitamin D3 (1α-OH-25-F-D3) was less potent than its nonfluorinated counterpart. Although 25-fluorination reduced biopotency in all other analogs tested, 24R-OH-25-F-D3 was about 15 times more potent than 24R,25-(OH)2-D3. Of considerable interest was the effect of difluorination at the 24-carbon position: both 24,24-F2-25-OH-D3 and 24,24-F2-1α,25-(OH)2-D3 were about four times as potent as their nonfluorinated counterparts. The 24,24-F2-1α,25-(OH)2-D3 is, therefore, the most potent vitamin D3 analog yet tested in this system i.e., it is four times more potent than the most potent naturally occurring vitamin D3 metabolite, 1α,25-(OH)2-D3.  相似文献   

18.
Synthetic leukotriene B4 (LTB4) and its ω-oxidation products, 20 OH-LT4 and 20 COOH-LTB4, were tested for their ability to induce the aggregation of rat neutrophils invitro, to contract the guinea pig parenchymal strip invitro and to cause vascular permeability changes in rabbit skin invivo. 20 OH-LTB4 had 10, 100 and 20% of the activity of LTB4 in the neutrophil aggregation, parenchymal strip and vascular permeability assays respectively. 20 C00H-LTB4 was inactive invivo and showed <1% of the activity of LTB4invitro. These results show that while ω-oxidation is a route for biological inactivation of LTB4, 20 OH-LTB4 still retains significant biological activity.  相似文献   

19.
The zymosan particles induced a time-dependent release of the chloride-dependent arginine aminopeptidase from rat peritoneal macrophages during invitro incubations. Intraperitoneal injections of zymosan, a streptococcal cell preparation and a Micrococcu-suspension caused the release of the chloride-activated arginine aminopeptidase into the peritoneal fluid. The arginine aminopeptidases obtained both from the cell cultivation media and the peritoneal washes were partly purified. The enzymes were similar with regard to the following properties: chloride activation with an optimum at physiological concentrations; strong inhibition by 10?6M p-chloromercuribenzoate; similar elution properties and preferential hydrolysis of mainly the N-L-aminoacyl-2-naphthylamines of arginine and lysine. The chloride-activated arginine aminopeptidase released into the media in invitro conditions was inactivated in contrast to the enzyme released into the peritoneal fluid as a result of the intraperitoneal injections. The timing of the release of the chloride-activated arginine aminopeptidase both in and invitro suggests that the enzyme plays a role in the initial phases of inflammation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号