首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parenchymal and non-parenchymal cells were isolated from adult rat liver that had been fully regenerated after a 70% partial hepatectomy. The characteristics of the parenchymal cell preparations from regenerated rat liver indicated that they were a homogeneous population and comparable with parenchymal cells isolated from intact liver. The parenchymal cells from regenerated adult rat liver contain glucokinase, hexokinase, pyruvate kinase type I and aldolase B. The non-parenchymal cells contain hexokinase, pyruvate kinase type III and aldolase B. When cells were isolated at different times of the day from rats on controlled feeding schedules, variation of tyrosine aminotransferase activity and liver glycogen content were observed in the parenchymal cells in keeping with the reported diurnal oscillations found in whole liver extracts. When parenchymal cells were isolated from rats 48 and 72h after partial hepatectomy, different isoenzyme patterns were observed. These cells appeared to synthesize pyruvate kinase type III, a function that was assigned previously to non-parenchymal cells or to foetal rat liver hepatocytes.  相似文献   

2.
Parenchymal and non-parenchymal cells were isolated from the livers of control, starved, Zn2+-injected and Cd2+-injected rats. Parenchymal cells were prepared by differential centrifugation after perfusion of the liver with collagenase. Non-parenchymal cells were separated from parenchymal cells by unit-gravity sedimentation and differential centrifugation. Yields of 2 x 10(8) non-parenchymal cells with greater than 95% viability and less than 0.2% contamination with parenchymal cells were obtained without exposing cells to Pronase. Metallothioneins-I and -II were identified in parenchymal cells and non-parenchymal cells from Zn2+-treated rats. The metallothionein contents of parenchymal cells, non-parenchymal cells and intact liver were quantified by a competitive 203Hg-binding assay. Administration of heavy-metal salts significantly increased the metallothionein content of both cell populations, although the concentration of the protein was approx. 2.5-fold greater in parenchymal cells than in non-parenchymal cells. Overnight starvation increased the metallothionein content of parenchymal cells without altering that of non-parenchymal cells. The potential significance of this differential response by different liver cell types with regard to the influence of Zn2+ on stress-mediated alterations in hepatic metabolism is discussed.  相似文献   

3.
The activities of five glycolipid-glycosyltransferases, GL2, GM3, GM2, GM1, and GD1a synthase, were determined in a cell-free system with homogenate protein of total rat liver, isolated hepatocytes, Kupffer cells, and sinusoidal endothelial cells. In rat liver parenchymal and nonparenchymal cells ganglioside synthases were distributed differently. Compared to hepatocytes, Kupffer cells expressed a nearly sevenfold greater activity of GM3 synthase, but only 14% of GM2, 19% of GM1, and 67% of GD1a synthase activity. Sinusoidal endothelial cells expressed a pattern of enzyme activities quite similar to that of Kupffer cells with the exception of higher GM2 synthase activity. Activity of GL2 synthase was distributed unifromly in parenchymal and nonparenchymal cells of rat liver, but differed by sex. It was 1 to 2 orders of magnitude below that of all the other ganglioside synthases investigated. The results indicate GL2 synthase regulates the total hepatic ganglioside content, and hepatocytes but not nonparenchymal liver cells have high enzymatic capacities to form a-series gangliosides more complex than GM3.  相似文献   

4.
(1) Parenchymal and non-parenchymal cells were isolated from rat liver. The characteristics of acid lipase activity with 4-methylumbelliferyl oleate as substrate and acid cholesteryl esterase activity with cholesteryl[1-14C]oleate as substrate were investigated. The substrates were incorporated in egg yolk lecithin vesicles and assays for total cell homogenates were developed, which were linear with the amount of protein and time. With 4-methylumbelliferyl oleate as substrate, both parenchymal and non-parechymal cells show maximal activities at acid pH and the maximal activity for non-parenchymal cells is 2.5 times higher than for parenchymal cells. It is concluded that 4-methylumbelliferyl oleate hydrolysis is catalyzed by similar enzyme(s) in both cell types. (2) With cholesteryl[1-14C]oleate as substrate both parenchymal and non-parenchymal cells show maximal activities at acid pH and the maximal activity for non-parenchymal cells is 11.4 times higher than for parenchymal cells. It is further shown that the cholesteryl ester hydrolysis in both cell types show different properties. (3) The high activity and high affinity of acid cholesteryl esterase from non-parenchymal cells for cholesterol oleate hydrolysis as compared to parenchymal cells indicate a relative specialization of non-parenchymal cells in cholesterol ester hydrolysis. It is concluded that non-parenchymal liver cells in cholesterol ester hydrolysis. It is concluded that non-parenchymal liver cells possess the enzymic equipment to hydrolyze very efficiently internalized cholesterol esters, which supports the suggestion that these cell types are an important site for lipoprotein catabolism in liver.  相似文献   

5.
Synthesis of ganglioside GD1b from ganglioside GD2 was demonstrated using Golgi membranes isolated from rat liver. Competition experiments using gangliosides GA2, GM2 and GD2 as substrates, and as mutual inhibitors for ganglioside galactosyltransferase activity in preparations of Golgi vesicles derived from rat liver, suggested that galactosyl transfer to these three compounds, leading to gangliosides GA1, GM1a and GD1b respectively, is catalyzed by one enzyme. These results strengthen the hypothesis that the main site for the regulation of ganglioside biosynthesis occurs within the reaction sequence LacCer----GA3----GD3----GT3.  相似文献   

6.
Liver gangliosides of different animal species were analyzed. Bony fish liver contained a major ganglioside that migrated faster than GM3 on thin-layer chromatography (TLC). This ganglioside was identified to be GM4 (NeuAc) by methods including product analysis after sialidase treatment and negative-ion electrospray ionization (ESI)-mass spectrometry (MS). The presence of GM4 (NeuGc) in fish liver was also demonstrated. The main ganglioside band of bovine liver consisted of two different molecular species, i.e. GD1a (NeuAc/NeuAc) and GD1a (NeuAc/NeuGc). Major gangliosides of liver tissue exhibited a distinct phylogenetic profile; GM4 was expressed mainly in lower animals such as bony fish and frog liver, whereas mammalian liver showed ganglioside patterns with smaller proportions of monosialo ganglioside species. While c-series gangliosides were consistently expressed in lower animals, they were found only in mammalian liver of particular species. No apparent trend was observed between the concentration of liver gangliosides and the phylogenetic stage of animals. The present study demonstrates the species-specific expression of liver gangliosides.  相似文献   

7.
1. Hepatic uptake of low-density lipoprotein (LDL) in parenchymal cells and non-parenchymal cells was studied in control-fed and cholesterol-fed rabbits after intravenous injection of radioiodinated native LDL (125I-TC-LDL) and methylated LDL (131I-TC-MetLDL). 2. LDL was taken up by rabbit liver parenchymal cells, as well as by endothelial and Kupffer cells. Parenchymal cells, however, were responsible for 92% of the hepatic LDL uptake. 3. Of LDL in the hepatocytes, 89% was taken up via the B,E receptor, whereas 16% and 32% of the uptake of LDL in liver endothelial cells and Kupffer cells, respectively, was B,E receptor-dependent. 4. Cholesterol feeding markedly reduced B,E receptor-mediated uptake of LDL in parenchymal liver cells and in Kupffer cells, to 19% and 29% of controls, respectively. Total uptake of LDL in liver endothelial cells was increased about 2-fold. This increased uptake is probably mediated via the scavenger receptor. The B,E receptor-independent association of LDL with parenchymal cells was not affected by the cholesterol feeding. 5. It is concluded that the B,E receptor is located in parenchymal as well as in the non-parenchymal rabbit liver cells, and that this receptor is down-regulated by cholesterol feeding. Parenchymal cells are the main site of hepatic uptake of LDL, both under normal conditions and when the number of B,E receptors is down-regulated by cholesterol feeding. In addition, LDL is taken up by B,E receptor-independent mechanism(s) in rabbit liver parenchymal, endothelial and Kupffer cells. The non-parenchymal liver cells may play a quantitatively important role when the concentration of circulating LDL is maintained at a high level in plasma, being responsible for 26% of hepatic uptake of LDL in cholesterol-fed rabbits as compared with 8% in control-fed rabbits. The proportion of hepatic LDL uptake in endothelial cells was greater than 5-fold higher in the diet-induced hypercholesterolaemic rabbits than in controls.  相似文献   

8.
Short-term and long-term (greater than 7 months) cultured astrocytes from 14-day-old rat brain were analyzed for ganglioside content. Analysis of the extracted gangliosides by HPTLC revealed that ganglioside GM1 was absent in 35 days and 235 days cultured astrocytes, and that the predominant ganglioside was GM3, showing a double band in both cases. A small amount of the disialogangliosides (GD3, GD1a) was also detected. More than 70% of radioactivities into ganglioside fractions by cultured astrocytes, in the presence of N-[3H]-acetylmannosamine, appeared in ganglioside GM3. The upper band component of GM3 increased 60% in long-term astrocyte cultures compared to 35-day-old cultures. Also, an increased GD3 content in long-term astrocyte cultures was detected. These results suggest that the increase of GD3 and upper band GM3 in long-term cultured astrocytes might be related to the appearance of small processes showing strong reactivity against GFAP and vimentin during astrocyte-subculture.  相似文献   

9.
We examine here the delivery of gangliosides from the perfused rat liver into the perfusate. One hour after the administration of [3H]GM1 to recirculating perfused livers, almost 80% of the perfusate radioactive gangliosides were recovered associated to the HDL fraction. This fraction was relatively enriched in radioactive GD1a. The pattern of endogenous gangliosides from perfused livers, rat serum and perfusates were very different: GM3 was the main liver ganglioside, GM1 and GD1a were the most abundant in perfusates being GM3 almost absent; GM3, GM1 and GD1a were present in rat serum in similar proportions. Using a non-recirculating perfusion protocol, radioactive gangliosides were found in the HDL fraction since 15 minutes after the administration of [3H]GM1. These results suggest that rat liver supplies the perfusates with some gangliosides and that they are associated to HDL. These facts arise the possibility that the liver is one of the source of serum gangliosides.  相似文献   

10.
1. Intact and pure parenchymal and non-parenchymal cells were isolated from rat liver. The specific activities of several mitochondrial enzymes were determined in both parenchymal and non-parenchymal cell homogenates to characterize the mitochondria in these liver cell types. 2.In general the activities of mitochondrial enzymes were lower in non-parenchymal liver cells than in parenchymal cells. The specific activity of pyruvate carboxylase in non-parenchymal cells expressed as the percentage of that in parenchymal cells was onlu 2% for glutamate dehydrogenase 4.3% and for cytochrome c oxidase 79.4%. Monoamine oxidase, as an exception, has an equal specific activity in both cell types. 3. The activity ratio of pyruvate carboxylase at 10 mM pyruvate over 0.1 mM pyruvate is 3.35 for parenchymal cells and 1.50 for non-parenchymal cells. This indicates that non-parenchymal liver cells only contain the high affinity form of pyruvate carboxylase in contrast to parenchymal cells. 4. The ratio of glycerol-3-phosphate cytochrome c reductase over succinate cytochrome c reductase activity differs from parenchymal (0.01) and non-parenchymal cells (0.10). This might indicate that the glycerol-3-phosphate shuttle, which is important for the transport of reduction equivalents for cytosol to mitochondria is relatively more active in non-parenchymal cells than in parenchymal cells. 5. The activity pattern of mitochondrial enzymes in parenchymal and non-parenchymal cell homogenates indicates that these cell types contain different types of mitochondria. The presence of these different cell types in liver will therefore contribute to the heterogeneity of isolated rat liver mitochondria in which the mitochondria from non-parenchymal cells might be considered as "non-gluconeogenic".  相似文献   

11.
1. Parenchymal cells have been prepared from mouse liver by enzymic and mechanical means. 2. The dry weights, protein and DNA contents of these cells have been determined. 3. Mouse liver ;M-' and ;L-type' pyruvate kinases have been prepared free of contamination with each other; their kinetic properties have been examined and a method has been developed for their assay in total liver homogenates. 4. Recoveries of phosphoglycerate kinase, lactate dehydrogenase and phosphofructokinase in enzymically prepared cells indicate that little, if any, cytoplasmic protein is lost during preparation. 5. Parenchymal cells exhibit a very substantial increase in the activity ratio of glucokinase to hexokinase over that in total liver homogenate; in three out of eight experiments, hexokinase activity was undetectable. 6. ;L-type' pyruvate kinase alone occurs in the parenchymal cell. Non-parenchymal cells are characterized by the presence of ;M-type' activity only. 7. Parenchymal cells contain both glucose 6-phosphatase and fructose 1,6-diphosphatase. The non-parenchymal fraction appears to contain fructose 1,6-diphosphatase, but is devoid of glucose 6-phosphatase. 8. No aldolase A was detectable in the whole liver. Aldolase B occurs in both parenchymal and non-parenchymal tissue. 9. Parenchymal cells prepared by mechanical disruption of mouse liver with 20% polyvinyl alcohol exhibit a similar enzyme profile to those prepared enzymically. 10. The methodology involved in the preparation of isolated liver cells is discussed. The importance of the measurement of several parameters as criteria for establishing the viability of parenchymal cells is stressed. 11. The metabolic implications of the results in the present study are discussed.  相似文献   

12.
Gangliosides in rat kidney were analyzed for their composition, regional distribution, and developmental changes. Renal tissue from 7-week-old rats showed a GM3-dominant pattern with GD3 and several minor ganglioside components including GM4, GM2, GD1a, and an unknown ganglioside (ganglioside X). The tissue also contained c-series gangliosides that included GT3 as the main component with GT2 in a lesser amount. Ganglioside analysis of cortical and medullary regions of renal tissue suggested the restricted localization of some gangliosides. While GM4 and GD3 were enriched in the cortical region, GM2 was distributed mainly in the medullary area. Renal gangliosides showed unique developmental profiles during a period from Embryonic Day 20 (E20) to 7 weeks postnatal. The content of renal gangliosides increased from E20, reached the highest around Postnatal Day 1, and thereafter, decreased rapidly to the adult level. The ratio of N-glycolylneuraminic acid to total sialic acids in gangliosides tended to change in inverse proportion to the amount of total sialic acids. The composition of major gangliosides in renal tissues shifted from GD3-dominant to GM3-dominant patterns with advancing ages. While GM1 was expressed only at early stages of the development, GM4, GM2, and ganglioside X appeared after Postnatal Day 3. The expression of c-series gangliosides was less affected through the period examined. These results suggest that gangliosides may be implicated with development and function of rat kidney.  相似文献   

13.
A procedure was developed for the cultivation of cells derived from the cerebral hemispheres of the 21-day old rat. Approximately 98 percent of the cells in a 10 day culture are astrocytes that contain glial fibrillary acidic protein. Analysis of the extracted gangliosides by thin layer chromatography revealed that ganglioside GM1 was absent and that the predominant ganglioside was GM3. Very small amounts of the polysialogangliosides GD1a, GD1b, and GT1b were detected. The concentration of gangliosidic NeuNAc per mg protein in these astrocytes was only 3 percent that observed in the 5 day culture of a mixed cell preparation from newborn rat brain. Immunohistochemical and histochemical studies were performed on the mixed cell population of the minced tissue of 21-day old rat brain prior to cultivation. Astrocytes did not stain for hyaluronectin. These cells also did not provide a positive staining reaction for ganglioside GM1 utilizing the antiganglioside GM1 peroxidase-antiperoxidase procedure and the biotinylated choleragen-avidin-peroxidase procedure. These two histochemical methods for ganglioside GM1 also did not stain astrocytes that had been cultured for 5 days. Oligodendroglial cells, which were also present in the uncultured 21-day-old minced brain tissue, stained positively for ganglioside GM1 and hyaluronectin. Hyaluronectin had previously been shown to be a marker for oligodendroglia. Oligodendroglial cells which were present in the 5 day cultures of 21-day old brain tissue also provided a positive reaction for ganglioside GM1. It is concluded that ganglioside GM1 is absent in astroglia. The presence of small amounts of polysialogangliosides in the "pure" astrocyte preparation is discussed.  相似文献   

14.
Gangliosides are ubiquitous membrane components in mammalian cells and are suggested to play important roles in various cell functions, such as cell-cell recognition, differentiation and transmembrane signalling. Ovaries have been shown to contain GM3 as a major ganglioside. To study GM3 distribution during gonadotropin stimulation in the hypophysectomized rat ovary, ovarian sections and cultured granulosa cells were stained with specific monoclonal antibody against GM3. Interstitial cells of follicles of immature hypophysectomized rat ovary expressed ganglioside GM3. Theca cells of early antral follicles but not primary follicles expressed GM3. No granulosa cells of these follicles expressed GM3. When a surge dose of FSH/LH was injected, Graafian follicles were formed and GM3 expression was detected in granulosa cells of these follicles. After ovulation, cumulus cells kept expressing GM3 in the ampulla region of ovulated oviduct. The follicles did not show GM3 expression in their granulosa cells after an ovulatory dose of FSH/LH. At 48 h after in vitro culture with FSH/LH of granulosa cells from preantral follicles, GM3 was expressed to a detectable extent on the outer part of the granulosa layer. Finally, at 72 h after culture, all granulosa cells became positive to anti-GM3 antibody. These data suggest that the expression of ganglioside GM3 in the hypophysectomized rat ovary is spatiotemporally regulated by FSH/LH during follicular development and ovulation.  相似文献   

15.
Rat stomach gangliosides were purified and their distribution in the different tissue compartments was established. Three major monosialogangliosides were found: GM3, GM1, and a ganglioheptaosylceramide carrying a blood group B determinant. This latter structure was characterized by exoglycosidase degradation, immunostaining with a monoclonal anti-blood group B antibody on thin layer chromatogram, permethylation analysis, electron-impact mass spectrometry of the permethylated-reduced and trimethylsilylated molecule, and 1H NMR spectroscopy of the native ganglioside. It was found to be (Formula: see text) i.e. a GM1 structure substituted with the blood group B determinant and was called B-GM1. A similar structure has been previously identified in precancerous rat liver and chemically induced rat hepatoma (Holmes, E. H., and Hakomori, S. (1982) J. Biol. Chem. 257, 7698-7703). Fucosyl-GM1 was also detected as a minor ganglioside in rat gastric mucosa. The ganglioside profile was modified during the postnatal development. The contribution of GM3 and GD3, which accounted for 95% of the ganglioside sialic acid at birth, decreased during the first 3 weeks of life. GM1, fucosyl-GM1, and B-GM1 were not detected at birth. The concentration of the fucogangliosides increased during the 2nd and 3rd weeks after birth, was stable during the 4th week and then decreased, whereas that of GM1 increased steadily between 6 days and 2 months of age. B-GM1, which has been defined as a tumor-associated ganglioside in the rat liver, was found to be a developmentally regulated antigen of the normal rat stomach.  相似文献   

16.
A metabolic recycling of N-acetylgalactosamine (GalNAc), liberated from exogenous GM2 ganglioside [nomenclature of Svennerholm (1964) J. Lipid Res. 5, 145-155; IUPAC-IUB recommendations (1977) Lipids 12, 455-468], is demonstrated in rat liver. After the injection of a GM2 ganglioside isotopically radiolabelled on the terminal GalNAc residue ([GalNAc-3H]GM2), the liver retained a large amount of radioactivity distributed among: (1) a glycoprotein/glycosaminoglycan fraction, (2) a ganglioside fraction; and (3) a free-sugar fraction. Furthermore, volatile radioactivity was also found. The relative incorporation in the above fractions was time-dependent. The glycoprotein/glycosaminoglycan fraction contained radioactivity that was located on the GalNAc and GlcNAc residues. The ganglioside fraction was composed of two main families: gangliosides formed by a recycling of the liberated GalNAc, and gangliosides derived by direct utilization of the administered GM2. The free-sugar fraction contained mainly GalNAc. We suggest that GalNAc, after being released in the course of intra-lysosomal ganglioside catabolism, crosses the lysosomal membrane and passes into the cytosol, where the part not degraded is re-utilized for the biosynthesis of the different glycoconjugate classes.  相似文献   

17.
The capacity of the homogenates from human liver, rat parenchymal cells, rat non-parenchymal cells and total rat liver for the breakdown of human and rat high density lipoprotein (HDL) and human low density lipoprotein (LDL) was determined. Human HDL was catabolized by human liver, in contrast to human LDL, the protein degradation of which was low or absent. Human and rat HDL were catabolized by both the rat parenchymal and non-parenchymal cell homogenates with, on protein base, a 10-times higher activity in the non-parenchymal liver cells. This implies that more than 50% of the total liver capacity for HDL protein degradation is localized in these cell types. Human LDL degradation in the rat could only be detected in the non-parenchymal cell homogenates. These findings are discussed in view of the function of HDL and LDL as carriers for cholesterol.  相似文献   

18.
Using a sucrose density gradient fractionation of a highly purified Golgi apparatus from rat liver, we determined the sub-Golgi distribution of CMP-NeuAc:GM3 ganglioside alpha 2----8sialyltransferase (GM3-SAT) and CMP-NeuAc:GT1b ganglioside alpha 2----8sialyltransferase (GT1b-SAT), in comparison with that of the other glycosyltransferase activities involved in ganglioside biosynthesis. While GM3-SAT was recovered in several density fractions, GT1b-SAT was mainly found on less dense sub-Golgi membranes; this indicates that these two activities are physically separate. Moreover, with regard to the monosialo pathway, CMP-NeuAc:lactosylceramide alpha 2----3sialyltransferase, UDP-GalNAc:GM3 ganglioside beta 1----4N-acetylgalactosaminyltransferase, UDP-Gal:GM2 ganglioside beta 1----3galactosyltransferase, and CMP-NeuAc:GM1 ganglioside alpha 2----3sialyltransferase were resolved from more dense to less dense fractions, respectively. In the disialo pathway, UDP-GalNAc:GD3 ganglioside beta 1----4N-acetylgalactosaminyltransferase, UDP-Gal:GD2 ganglioside beta 1----3galactosyltransferase and CMP-NeuAc:GD1b ganglioside alpha 2----3sialyltransferase co-distributed with the corresponding activities of the monosialo pathway. These last results indicate that many Golgi glycosyltransferases involved in ganglioside biosynthesis are localized in the order in which they act.  相似文献   

19.
In this study we show that the ganglioside content and pattern of human skin fibroblasts change along the process of cell subculture progression by varying the cell density.GM3, GD3 and GD1a were components of the total cell ganglioside mixtures extracted from cells, but GD1a was in all the extracts a minor component or very scant. Other gangliosides present in traces were not characterised. The fibroblast ganglioside content of 52 pools of cells obtained from 5 different cell lines cultured at variable cell density ranged from 2.0 to 13.1 nmoles per mg of cell protein. The molar ratio between GM3 and GD3 varied from 418 to 0.6 in the ganglioside mixtures, as determined by densitometric quantitative analysis after thin layer chromatographic separation.Both the ganglioside content and the GM3/GD3 molar ratio were constant along several passages of subculture progression performed by plating cells collected at confluence. Instead, when the subculture progression was performed by plating cells collected at a few days after reaching confluence, a progressive increase of the ganglioside content was observed. GD3 increased proportionally more than GM3 so that a progressive decrease of the ratio between GM3 and GD3 was observed. In some experiments, GD3 was very scant at the beginning of the progression, while it was near 30% after 5 passages under these conditions. The progressive increase of GD3 along the high density cell population subculture progression was associated to a moderate increase of the mRNA GD3 synthase. Published in 2003.  相似文献   

20.
1. Female non-pregnant rats were intramuscularly injected with pentazocine for 3 months. Liver showed a statistically significant (P less than 0.05) increase in its ganglioside content after the pentazocine treatment; in addition, no changes were found in the kidney ganglioside content. 2. We have also found changes in the ganglioside pattern of these rats after the pentazocine injection. The GM1 and GD1b liver content was decreased (P less than 0.05) in parallel with an increase (P less than 0.05) in GD3 and GT1b content; kidney showed a decrease (P less than 0.05) in GM1, GD1a and GD1b content and an increase (P less than 0.05) in GM4, GD2, GT1b and GQ content. 3. Female pregnant rats were also injected with pentazocine from the first to the nineteenth day of the gestation period. The total ganglioside content of liver and kidneys from mothers and their newborns did not show statistically significant differences after the treatment. 4. Mothers showed a decrease (P less than 0.05) in the GM1 content of liver and an increase (P less than 0.05) in the GT1b content of liver and GM1, GD3 and GD1a content of kidney. Only the GM3 content from kidney was increased (P less than 0.001). 5. Newborns showed minor changes in their ganglioside pattern. GT1b content from liver and GD2 and GQ content from kidneys were decreased (P less than 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号