首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
Using nucleotide sequences from jumping and linking NotI libraries of human chromosome 3, 94 NotI-STS markers for 72 individual NotI clones were developed. The positions of the NotI-STS markers and their order on the chromosome were determined by a combination of RH-mapping (our data), contig mapping, cytogenetic mapping, and in silico mapping. Comparison of NotI-STS DNAs with human genome sequences revealed two gaps in the regions 3p21.33 (marker NL1-256) and 3p21.31 (NL3-005), and a segmental duplication. Identical DNA fragments were found in the regions 12q and 3p22–21.33 (marker NL3-007). In the 3q28–q29 region (marker NLM-084), a fragment was detected whose identical copies were also present on chromosomes 1, 2, 15, and 19. For 69 NotI-STSs, significant homologies to nucleotide sequences of 70 genes and 2 cDNAs were detected (with homologies in NotI-STS 5′- and 3′-terminal sequences being taken into account). An association between NotI-STSs and genes is confirmed by a strong correlation between the density distributions of genes and NotI-STS markers on the map of human chromosome 3. Our results indicate that the NotI map may be regarded as a gene map of human chromosome 3. Thus, NotI-STSs are applicable as gene markers.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 4, 2005, pp. 687–701.Original Russian Text Copyright © 2005 by Sulimova, Rakhmanaliev, Klimov, Kompaniytsev, Udina, Zabarovsky, Kisselev.  相似文献   

2.
Ten DNA markers were localized in the human genome by a screening procedure against the radiation hybrid somatic cell panel (GeneBridge 4 RH Panel) using polymerase chain reaction (RH mapping method). DNA markers were developed to nucleotide sequences adjacent to NotI sites of human chromosome 3 (NotI-STS markers) and also to nucleotide sequences of human cDNA (EST markers). Three EST markers mapped (B10164, S16R and 18F5R) were localized in the human genome for the first time. Marker B10164 was found to be homologous to the nucleotide sequence of the BASP1 gene coding a major receptor protein. Markers S16R and 18F5R presumably tagged new genes, because no homologies were revealed among the nucleotide sequences presented in the databases. For four NotI-STS, more precise localization on human chromosome 3 was determined. On the basis of the data obtained, the NotI map may be integrated with other types of physical maps of human chromosome 3. RH mapping with a standard commercial panel of radiation hybrid somatic cells provided a chance to integrate the data obtained into international databases and existing integrated human chromosomal maps.  相似文献   

3.
Sequence tagged sites generated for 60 NotI clones (NotI-STSs) from human chromosome 3-specific NotI-jumping and NotI-linking libraries were physically located using PCR screening of a radiation hybrid (RH) GeneBridge4 panel. The NotI map of chromosome 3 was generated using these RH-mapping data and those obtained earlier by FISH and sequencing of the corresponding NotI clones. The sequences of the NotI clones showed significant homologies with known genes and/or ESTs for 58 NotI-STSs (97%). These 58 NotI clones displayed 91-100% identity to 54 genes and 23 cDNA/EST clones. One known and two hypothetical protein-coding genes were localized for the first time and nine cDNA clones (unknown genes) were also carefully mapped only in this work. Three newly mapped genes are histone gene H1X (NR1-BK20C) and genes for hypothetical proteins THC1032178 and THC1024604 (NL1-243).  相似文献   

4.
Physical mapping of unique nucleotide sequences on identified rice chromosomes   总被引:10,自引:0,他引:10  
A physical mapping method for unique nucleotide sequences on specific chromosomal regions was developed combining objective chromosome identification and highly sensitive fluorescence in situ hybridisation (FISH). Four unique nucleotide sequences cloned from rice genomic DNAs, varying in size from 1.3 to 400 kb, were mapped on a rice chromosome map. A yeast artificial chromosome (YAC) clone with a 399 kb insert of rice genomic DNA was localised at the distal end of the long arm of rice chromosome (1q2.1) and a bacterial artificial chromosome (BAC) clone (180 kb) containing the rice leaf blast-resistant gene (Pi-b) was shown to occur at the distal end of the long arm of chromosome 2 (2q2.1). A cosmid (35 kb) with the resistance gene (Xa-21) against bacterial leaf blight was mapped on the interstitial region of the long arm on chromosome 11 (11q1.3). Furthermore a single RFLP marker, 1.29 kb in size, was mapped successfully to the distal region of the long arm of rice chromosome 4 (4q2.1). For precise localisation of the nucleotide sequences within the chromosome region, image analyses were effective. The BAC clone was localised to the specific region, 2q2.1:96.16, by image analysis. The result was compared with the known location of the BAC clone on the genetic map and the consistency was confirmed. The effectiveness and reliability in physically mapping nucleotide sequences on small plant chromosomes achieved by the FISH method using a variety of probes was unequivocally demonstrated.  相似文献   

5.
One of the larger contiguous blocks of mouse–human genomic homology includes the proximal portion of mouse chromosome 7 and the long arm of human chromosome 19. Previous studies have demonstrated the close relationship between the two regions, but have also indicated significant rearrangements in the relative orders of homologous mouse and human genes. Here we present the genetic locations of the homologs of 42 human chromosome 19q markers in the mouse, with an emphasis on genes also included in the human chromosome 19 physical map. Our results demonstrate that despite an overall inversion of sequences relative to the centromere, apparent “transpositions” of three gene-rich segments, and a local inversion of markers mapping near the 19q telomere, gene content, order, and spacing are remarkably well conserved throughout the lengths of these related mouse and human regions. Although most human 19q markers have remained genetically linked in mouse, one small human segment forms a separate region of homology between human chromosome 19q and mouse chromosome 17. Three of the four rearrangements of mouse versus human 19q sequences involve segments that are located directly adjacent to each other in 19q13.3–q13.4, suggesting either the coincident occurrence of these events or their common association with unstable DNA sequences. These data permit an unusually in-depth examination of this large region of mouse–human genomic homology and provide an important new tool to aid in the mapping of genes and associated phenotypes in both species.  相似文献   

6.
To facilitate mapping of the cystic fibrosis locus (CF) and to isolate the corresponding gene, we have screened a flow-sorted chromosome 7-specific library for additional DNA markers in the 7q31-q32 region. Unique ("single-copy") DNA segments were selected from the library and used in hybridization analysis with a panel of somatic cell hybrids containing various portions of human chromosome 7 and patient cell lines with deletion of this chromosome. A total of 258 chromosome 7-specific single-copy DNA segments were identified, and most of them localized to subregions. Fifty three of these corresponded to DNA sequences in the 7q31-q32 region. Family and physical mapping studies showed that two of the DNA markers, D7S122 and D7S340, are in close linkage with CF. The data also showed that D7S122 and D7S340 map between MET and D7S8, the two genetic markers known to be on opposite sides of CF. The study thus reaffirms the general strategy in approaching a disease locus on the basis of chromosome location.  相似文献   

7.
We have extended our mapping effort on human chromosome 11 to encompass a total of 262 DNA markers, which have been mapped into 24 intervals on chromosome 11; 123 of the markers reveal RFLPs. These clones are scattered throughout the chromosome, although some clustering occurs in R-positive bands (p15.1, p11.2, q13, and q23.3). Fifty-two of the markers were found to contain DNA sequences conserved in Chinese hamster, and some of these 52 also cross-hybridized with DNA from other mammals and/or chicken. As the length of chromosome 11 is estimated at nearly 130 cM, the average distance between RFLP markers is roughly 1 cM. The large panel of DNA markers on our map should contribute to investigations of hereditary diseases on this chromosome, and it will also provide reagents for constructing either fine-scale linkage and physical maps or contig maps of cosmids or yeast artificial chromosomes.  相似文献   

8.
Summary The physical localization of sequences homologous to three cloned genes was determined by in situ hybridization to metaphase chromosomes. Previous work had assigned the skeletal myosin heavy chain gene cluster (Myh), the functional locus for the cellular tumor antigen p53 (Trp53-1), and the cellular homologue of the viral erb-B oncogene (Erbb) toMus musculus chromosome 11 (MMU11). Our results provide regional assignments ofMyh andTrp53-1 to chromosome bands B2C, and ofErbb to bands A1A4. Taken together with in situ mapping of three other loci on MMU 11 (Hox-2 homeobox-containing gene cluster, theSparc protein, and theColla-1 collagen gene), which have been reported elsewhere, these data allowed us to construct a physical map of MMU11 and to compare it with the linkage map of this chromosome. The map positions of the homologous genes on human chromosomes suggest evolutionary relationships of distinct regions of MMU11 with six different human chromosome arms: 1p, 5q, 7p, 16p, 17p, and 17q. The delineation of conserved chromosome regions has important implications for the understanding of karyotype evolution in mammalian species and for the development of animal models of human genetic diseases.  相似文献   

9.
We generated a sequence-ready BAC/PAC contig spanning approximately 5.5 Mb on porcine chromosome 6q1.2, which represents a very gene-rich genome region. STS content mapping was used as the main strategy for the assembly of the contig and a total of 6 microsatellite markers, 53 gene-related STS and 116 STS corresponding to BAC and PAC end sequences were analyzed. The contig comprises 316 BAC and PAC clones covering the region between the genes GPI and LIPE. The correct contig assembly was verified by RH-mapping of STS markers and comparative mapping of BAC/PAC end sequences using BLAST searches. The use of microsatellite primer pairs allowed the integration of the physical maps with the genetic map of this region. Comparative mapping of the porcine BAC/PAC contig with respect to the gene-rich region on the human chromosome 19q13.1 map revealed a completely conserved gene order of this segment, however, physical distances differ somewhat between HSA19q13.1 and SSC6q1.2. Three major differences in DNA content between human and pig are found in two large intergenic regions and in one region of a clustered gene family, respectively. While there is a complete conservation of gene order between pig and human, the comparative analysis with respect to the rodent species mouse and rat shows one breakpoint where a genome segment is inverted.  相似文献   

10.
Double-color fluorescence in situ hybridization was performed on chicken chromosomes using seven unique clones from the human chromosome 3-specific NotI linking libraries. Six of them (NL1-097, NL2-092, NL2-230, NLM-007, NLM-118, and NLM-196) were located on the same chicken microchromosome and NL1-290 on another. Two chicken microchromosome GGA15-specific BAC clones, JE024F14 containing the IGVPS gene and JE020G17 containing the ALDH1A1 gene, were cytogenetically mapped to the same microchromosome that carried the six NotI linking clones, allowing identification of this chromosome as GGA15. Two GGA14-specific clones, JE027C23 and JE014E08 containing the HBA gene cluster, were co-localized on the same microchromosome as NL1-290, suggesting that this chromosome was GGA14. The results indicated that the human chromosomal region HSA3q13-->q23 is likely to be orthologous to GGA15 and GGA14. The breakpoint of evolutionary conservation of human and chicken chromosomes was detected on HSA3q13.3-->q23 between NL1-290, on the one hand, and six other NotI clones, on the other hand. Considering the available chicken-human comparative mapping data, another breakpoint appears to exist between the above NotI loci and four other genes, TFRC, EIF4A2, SKIL and DHX36 located on HSA3q24-->qter and GGA9. Based on human sequences within the NotI clones, localization of the six new chicken coding sequences orthologous to the human/rodent genes was suggested to be on GGA15 and one on GGA14. Microchromosomal location of seven NotI clones from the HSA3q21 T-band region can be considered as evidence in support of our hypothesis about the functional analogy of mammalian T-bands and avian microchromosomes.  相似文献   

11.
We present herein a bovine chromosome 24 (BTA24) radiation hybrid (RH) map using 40 markers scored on a panel of 90 RHs. Of these markers, 29 loci were ordered with odds of at least 1000:1 in a framework map. An average retention frequency of 17.4% was observed, with relatively higher frequencies near the centromere. The length of the comprehensive map was 640 centiray5000 (cR5000) with an average marker interval of approximately 17.3 cR5000. The observed locus order is generally consistent with currently published bovine linkage and physical maps. Nineteen markers were either Type I loci or closely associated with expressed sequences and thus could be used to compare the BTA24 RH map with human mapping information. All genes located on BTA24 were located on human chromosome 18, and previously reported regions of conserved synteny were extended. The comparative data revealed the presence of at least six conserved regions between these chromosomes.  相似文献   

12.
A quantitative trait locus (QTL) for ovulation rate on chromosome 3 that peaks at 36 cM has been identified in a Meishan-White composite resource population with an additive effect of 2.2 corpora lutea. As part of an effort to identify the responsible gene(s), typing of additional genes on the INRA-University of Minnesota porcine radiation hybrid (IMpRH) map of SSC3 and comparative analysis of gene order was conducted. We placed 52 known genes and expressed sequence tags, two BAC-end sequences and one microsatellite (SB42) on a framework map that fills gaps on previous RH maps. Data were analysed for two-point and multipoint linkage with the IMpRH mapping tool and were submitted to the IMpRH database (http://imprh.toulouse.inra.fr/). Gene order was confirmed for 42 loci residing in the QTL region (spanning c. 17 Mb of human sequence) by using the high-resolution IMpRH2 panel. Carthagène (http://www.inra.fr/internet/departments/MIA/T/CarthaGene) was used to estimate multipoint marker distance and order using all public markers on SSC3 in the IMpRH database and those typed in this study. For the high-resolution map, only data for markers typed in both panels were used. Comparative analysis of human and porcine maps identified conservation of gene order for SSC3q and multiple blocks of conserved segments for SSC3p, which included six distinct segments of HSA7 and two segments of HSA16. The results of this study allow significant refinement of the SSC3p region that contains an ovulation rate QTL.  相似文献   

13.
E Schurr  E Skamene  K Morgan  M L Chu  P Gros 《Genomics》1990,8(3):477-486
We have investigated the degree of synteny between the long arm (q) of human chromosome 2 and the proximal portion of mouse chromosome 1. To define the limits of synteny, we have determined whether mouse homologs of seven human genes mapping to chromosome 2q cosegregated with anchor loci on mouse chromosome 1. The loci investigated were NEB/Neb, ELN/Eln, COL3A1/Col3a1, CRYG/Len-2, FN1/Fn-1, VIL/Vil, and COL6A3/Col6a3. Ren-1,2 and Acrg were included as two proximal mouse chromosome 1 anchor loci. The segregation of restriction fragment length polymorphisms at these loci was analyzed in the progeny of Mus spretus x C57BL/6J hybrids backcrossed to the C57BL/6J inbred strain. We found that five of the structural protein loci and the two anchor loci form a linkage group on proximal murine chromosome 1. The proposed gene order of this group of linked markers is centromere - Col3a1 - Len-2-Fn-1-Vil-Acrg-Col6a3-Ren1,2. Neb and Eln are linked neither to each other nor to any other marker on proximal mouse chromosome 1. Therefore, the mouse loci Col3a1 and Col6a3 are identified as flanking markers of the linkage group of structural protein loci. The estimated genetic map distances are Col3a1-13.3 cM-Len-2-3.4 cM-Fn-1-3.8 cM-Vil-9.6 cM-Acrg-2.1 cM-Col6a3-18.3 cM-Ren1,2. The available map information for human chromosome 2q markers and mouse chromosome 1 markers presented here tentatively identifies Col3a1 and Col6a3 as the border markers that define the limits of the syntenic chromosome segment. The order of mouse genes on chromosome 1 and their human homologs on chromosome 2q also appears to be conserved, suggesting that mapping of murine genes on the conserved segment may be useful to predict gene order in man.  相似文献   

14.
15.
We have constructed a high-resolution cytogenetic map with 168 DNA markers, including 90 RFLP markers for human chromosome 11. The cosmid clones were mapped by fluorescence in situ suppression hybridization, in which discrete fluorescent signals can be detected directly on prometaphase R-banded chromosomes. Although these cosmid clones were distributed throughout the chromosome, they had some tendency to localize in the regions of R-positive band, such as 11p15, 11p11.2, 11q13, 11q23, and 11q25. Since these regions of chromosome 11 are considered to contain genes responsible for certain genetic diseases, cancer breakpoints involved in chromosome rearrangements, and tumor-suppressor genes, this high-resolution cytogenetic map will contribute to the molecular characterization of such genes. This map will also provide many landmarks essential for construction of the complete physical map with contigs of cosmid and YAC clones.  相似文献   

16.
17.

Background

Tetraploid cotton contains two sets of homologous chromosomes, the At- and Dt-subgenomes. Consequently, many markers in cotton were mapped to multiple positions during linkage genetic map construction, posing a challenge to anchoring linkage groups and mapping economically-important genes to particular chromosomes. Chromosome-specific markers could solve this problem. Recently, the genomes of two diploid species were sequenced whose progenitors were putative contributors of the At- and Dt-subgenomes to tetraploid cotton. These sequences provide a powerful tool for developing chromosome-specific markers given the high level of synteny among tetraploid and diploid cotton genomes. In this study, simple sequence repeats (SSRs) on each chromosome in the two diploid genomes were characterized. Chromosome-specific SSRs were developed by comparative analysis and proved to distinguish chromosomes.

Results

A total of 200,744 and 142,409 SSRs were detected on the 13 chromosomes of Gossypium arboreum L. and Gossypium raimondii Ulbrich, respectively. Chromosome-specific SSRs were obtained by comparing SSR flanking sequences from each chromosome with those from the other 25 chromosomes. The average was 7,996 per chromosome. To confirm their chromosome specificity, these SSRs were used to distinguish two homologous chromosomes in tetraploid cotton through linkage group construction. The chromosome-specific SSRs and previously-reported chromosome markers were grouped together, and no marker mapped to another homologous chromosome, proving that the chromosome-specific SSRs were unique and could distinguish homologous chromosomes in tetraploid cotton. Because longer dinucleotide AT-rich repeats were the most polymorphic in previous reports, the SSRs on each chromosome were sorted by motif type and repeat length for convenient selection. The primer sequences of all chromosome-specific SSRs were also made publicly available.

Conclusion

Chromosome-specific SSRs are efficient tools for chromosome identification by anchoring linkage groups to particular chromosomes during genetic mapping and are especially useful in mapping of qualitative-trait genes or quantitative trait loci with just a few markers. The SSRs reported here will facilitate a number of genetic and genomic studies in cotton, including construction of high-density genetic maps, positional gene cloning, fingerprinting, and genetic diversity and comparative evolutionary analyses among Gossypium species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1265-2) contains supplementary material, which is available to authorized users.  相似文献   

18.
At present, the density of genes on the bovine maps is extremely limited and current resolution of the human-bovine comparative map is insufficient for selection of candidate genes controlling many economic traits of interest in dairy cattle. This study describes the chromosomal mapping of 10 selected gene-associated markers to bovine linkage and radiation hybrid maps to improve the breakpoint resolution in the human-bovine comparative map near two previously identified quantitative trait loci for the linear type trait, dairy form. Two regions of conserved synteny not previously described are reported between the telomeric region of bovine chromosome 27 (BTA27) and human chromosome 3 (HSA3) p24 region and between the HSA4q34.1 region and BTA8. These data increase the number of genes positioned on the bovine gene maps, refine the human-bovine comparative map, and should improve the efficiency of candidate gene selection for the dairy form trait in cattle.  相似文献   

19.
The Marshfield comprehensive genetic maps are frequently used for linkage and association studies, however, for some regions of these maps the marker order has low level of likelihood ratio support. In order to investigate the level of statistical support and the accuracy of the genetic maps compared to sequence-based physical maps, two approximately 30 cM autosomal regions were selected. The first region was selected from chromosome 3 and consisted predominately of draft sequence. The second region was selected from chromosome 21 and consisted of finished sequence data. The physical order of these markers was based upon their position on Celera (CEL) and Human Genome Project-Santa Cruz (HGP-sc) sequence-based physical maps. The chromosome 3 and 21 regions contained 100 and 61 markers, respectively, on the Marshfield genetic map. The genetic and physical map order was consistent for 88.9 and 89.2% of the markers in the region on chromosome 3 and 21, respectively. Using a novel scoring criterion to assess inconsistent marker order between genetic and physical maps, it was determined that the physical order was likely the correct order for 3.3 and 7.1% of the markers in the chromosome 3 and 21 regions, respectively. To increase the accuracy of the order of markers selected for fine mapping a method is presented which combines information from genetic and sequence-based physical maps.  相似文献   

20.
We have performed linkage analysis in a large French-Acadian kindred segregating one form of autosomal dominant Charcot-Marie-Tooth disease (CMTD) (type IA) using 17 polymorphic DNA markers spanning human chromosome 17 and demonstrate linkage to several markers in the pericentromeric region, including DNA probes pA10-41, EW301, S12-30, pTH17.19, c11-2B, and p11-2c11.5. Linkage of markers pA10-41 and EW301 to CMTD type IA has been reported elsewhere. Four new markers, 1516, 1517, 1541, and LL101, which map to chromosome 17 have been identified. The marker 1516 appears to be closely linked to the CMTD locus on chromosome 17 as demonstrated by a maximum lod score of 3.42 at theta (recombination fraction) = 0. This marker has been mapped to 17p11.2 using a somatic cell hybrid constructed from a patient with Smith-Magenis syndrome [46,XY, del(17)(p11.2p11.2)]. A lod score of 6.16 has been obtained by multipoint linkage analysis with 1516 and two markers from 17q11.2, pTH17.19, and c11-2B. The markers 1517 and 1541 have been mapped to 17p12-17q11.2 and demonstrate maximum lod scores of 2.35 and 0.63 at recombination values of .1 and .2, respectively. The marker LL101 has been mapped to 17p13.105-17p13.100 and demonstrates a maximum lod score of 1.56 at a recombination value of .1. Our study confirms the localization of CMTD type IA to the pericentromeric region of chromosome 17.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号