首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
It is well documented that the enzymatic active site of Helicobacter pylori urease is present in the beta-subunit. An important sequence of 135 amino acids of the beta-subunit was determined from the structure of H. pylori urease and by a homology-based study of the urease of other bacteria and plants. The sequence (UreB) was expressed in Escherichia coli as a recombinant fusion protein with glutathione-S-transferase (GST). Seventeen monoclonal antibodies, UA-1-17, were produced using the UreB-GST as the immunogen. The obtained monoclonal antibodies showed a high specificity to UreB, and some of the MAbs cross-reacted with Jack bean urease. About 70% of the established MAbs displayed an inhibitory effect on the enzymatic activity of the urease. Among them, UA-15 MAb could reduce the activity by 53% and it immunologically binds to the bacterium infecting the human stomach mucosa. The antiserum induced by immunization with a recombinant UreB-GST into rabbits displayed a specific binding to mucosal surfaces of the human stomach infected with the pathogen H. pylori. Moreover, the antiserum suppressed the enzymatic activity of H. pylori urease, while the purified H. pylori urease could not induce such an antiserum.  相似文献   

2.
Catalytic antibodies capable of digesting crucial proteins of pathogenic bacteria have long been sought for potential therapeutic use. Helicobacter pylori urease plays a crucial role for the survival of this bacterium in the highly acidic conditions of human stomach. The HpU-9 monoclonal antibody (mAb) raised against H. pylori urease recognized the alpha-subunit of the urease, but only slightly recognized the beta-subunit. However, when isolated both the light and the heavy chains of this antibody were mostly bound to the beta-subunit. The cleavage reaction catalyzed by HpU-9 light chain (HpU-9-L) followed the Michaelis-Menten equation with a K(m) of 1.6 x 10(-5) m and a k(cat) of 0.11 min(-1), suggesting that the cleavage reaction was enzymatic. In a cleavage test using H. pylori urease, HpU-9-L efficiently cleaved the beta-subunit but not the alpha-subunit, indicating that the degradation by HpU-9-L had a specificity. The cleaved peptide bonds in the beta-subunit were L121-A122, E124-G125, S229-A230, Y241-D242, and M262-A263. BSA was hardly cleaved by HpU-9-L, again indicating the digestion by HpU-9-L was specific. In summary, we succeeded in the preparation of a catalytic antibody light chain capable of specifically digesting the beta-subunit of H. pylori urease.  相似文献   

3.
Following genetic immunization of laying ducks with a plasmid expressing Helicobacter pylori UreB (large subunit of urease), IgY against UreB were obtained from egg yolks. These polyclonal and monospecific IgY antibodies are of higher-titer and specifically recognize recombinant H. pylori urease purified from Escherichia coli. To our knowledge this is the first report describing generation of IgY antibodies directed against antigens of H. pylori by DNA-based immunization.  相似文献   

4.
Urease activity is vital for gastric colonization by Helicobacter species, such as the animal pathogen Helicobacter felis. Here it is demonstrated that H. felis expresses two independent, and distinct urease systems. H. felis isolate CS1 expressed two proteins of 67 and 70 kDa reacting with antibodies to H. pylori urease. The 67-kDa protein was identified as the UreB urease subunit, whereas the N-terminal amino acid sequence of the 70-kDa protein displayed 58% identity with the UreB protein and was tentatively named UreB2. The gene encoding the UreB2 protein was identified and located in a gene cluster named ureA2B2. Inactivation of ureB led to complete absence of urease activity, whereas inactivation of ureB2 resulted in decreased urease activity. Although the exact function of the UreA2B2 system is still unknown, it is conceivable that UreA2B2 may contribute to pathogenesis of H. felis infection through a yet unknown mechanism.  相似文献   

5.
Two characteristic monoclonal antibodies (HpU-2 and -18) out of 26 monoclonal antibodies (HpU-1 approximately 26) produced against Helicobacter pylori (H. pylori) urease showed a strong inhibitory effect against the enzymatic activity of the urease. Epitope mapping about some monoclonal antibodies of the HpU-series inhibiting enzymatic activity was performed by using a surface plasmon resonance apparatus and by digesting H. pylori urease with trypsin, followed by mass spectroscopy. The sequences of the epitopes recognized by HpU-2 and -18 were SVELIDIGGNRRIFGFNALVDR (22 mer) and IFGFNALVDR (10 mer), respectively. The former sequence is present as a part of a loop structure at a position close to the C-terminal of the alpha-subunit of H. pylori urease, although it has been suggested that the active site of the urease resides in the beta-subunit. The above peptide (22 mer) was chemically synthesized in a linear and cyclic form, and its conjugate with BSA was immunized in rabbits. The resultant serum induced by the linear form could specifically bind to H. pylori infecting human gastric mucosa. These results suggest that the above sequence (22 mer) must be an important epitope, although it locates in the alpha-subunit but not in the beta-subunit.  相似文献   

6.
To determine whether a protective immune response could be elicited by oral delivery of a recombinant live bacterial vaccine, Helicobacter pylori urease subunit B (UreB) was expressed for extracellular expression in food-grade bacterium Lactococcus lactis . The UreB-producing strains were then administered orally to mice, and the immune response to UreB was examined. Orally vaccinated mice produced a significant UreB-specific serum immunoglobulin G (IgG) response. Specific anti-UreB IgA responses could be detected in the feces of mice immunized with the secreting lactococcal strain. Mice vaccinated orally were significantly protected against gastric Helicobacter infection following a challenge with H. pylori strain SS1. In conclusion, mucosal vaccination with L. lactis expressing UreB produced serum IgG and UreB-specific fecal IgA, and prevented gastric infection with H. pylori .  相似文献   

7.
Synthesis of active Klebsiella aerogenes urease requires four accessory proteins to generate, in a GTP-dependent process, a dinuclear nickel active site with the metal ions bridged by a carbamylated lysine residue. The UreD and UreF accessory proteins form stable complexes with urease apoprotein, comprised of UreA, UreB, and UreC. The sites of protein-protein interactions were explored by using homobifunctional amino group-specific chemical cross-linkers with reactive residues being identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) of tryptic peptides. On the basis of studies of the UreABCD complex, UreD is capable of cross-linking with UreB Lys(9), UreB Lys(76), and UreC Lys(401). Furthermore UreD appears to be positioned over UreC Lys(515) according to decreased reactivity of this residue compared with its reactivity in UreD-free apoprotein. Several UreB-UreC and UreC-UreC cross-links also were observed within this complex; e.g. UreB Lys(76) with the UreC amino terminus, UreB Lys(9) with UreC Lys(20), and UreC Lys(515) with UreC Lys(89). These interactions are consistent with the proximate surface locations of these residues observed in the UreABC crystal structure. MALDI-TOF MS analyses of UreABCDF are consistent with a cross-link between the UreF amino terminus and UreB Lys(76). On the basis of an unexpected cross-link between UreB Lys(76) and UreC Lys(382) (distant from each other in the UreABC structure) along with increased side chain reactivities for UreC Lys(515) and Lys(522), UreF is proposed to induce a conformational change within urease that repositions UreB and potentially could increase the accessibility of nickel ions and CO(2) to residues that form the active site.  相似文献   

8.
Isogenic urease-negative mutants of Helicobacter pylori were constructed by allelic replacement. A region of cloned H. pylori DNA containing the structural urease genes (ureA and ureB) was disrupted by insertion of a mini-Tn3-Km transposon. Electrotransformation of H. pylori cells with kanamycin-ureB-disrupted derivative plasmids resulted in isolation of kanamycin-resistant H. pylori transformants. Competence for electrotransformation appeared to be restricted to certain wild-type H. pylori isolates; only 1 isolate (of 10 tested) was consistently transformed. Two of the kanamycin-resistant H. pylori transformants were further studied and shown to be urease negative. Southern hybridization analyses demonstrated that the urease-negative mutants had been constructed by allelic exchange involving simultaneous replacement of the ureB gene with the kanamycin-ureB-disrupted copy and loss of the vector. Immunoblot studies of whole-cell extracts of the isogenic ureB mutants with anti-H. pylori sera indicated the absence of a polypeptide with an apparent molecular mass of 61 kDa; thus, the mutants no longer synthesized the UreB product. Generation of stable, genetically engineered urease mutants of H. pylori will be useful for addressing the role of urease in the pathogenesis of H. pylori infection.  相似文献   

9.
Two mononuclear copper(II) complexes, [Cu(C(15)H(16)NO(2))(2)] (1) and [Cu(C(6)H(9)N(2)O(4))(2)·3H(2)O] (2·3H(2)O), were synthesised and structurally characterised by single-crystal X-ray analysis. The copper(II) atom adopts a square-planar environment in complex 1, while the geometry in 2·3H(2)O could be described as the distorted square pyramidal. Complexes 1 and 2·3H(2)O were evaluated for their inhibitory activities against Helicobacter pylori (H. pylori) urease in vitro. They both were found to have strong inhibitory activities against H. pylori urease comparable to that of acetohydroxamic acid (AHA). A docking simulation was performed to position 2 into the H. pylori urease active site to determine the probable binding conformation.  相似文献   

10.
Urease from Klebsiella aerogenes is composed of three subunits (UreA-UreB-UreC) that assemble into a (UreABC)(3) quaternary structure. UreC harbors the dinuclear nickel active site, whereas the functions of UreA and UreB remain unknown. UreD and UreF accessory proteins previously were suggested to reposition UreB and increase the level of exposure of the nascent urease active site, thus facilitating metallocenter assembly. In this study, cells were engineered to separately produce (UreAC)(3) or UreB, and the purified proteins were characterized. Monomeric UreB spontaneously binds to the trimeric heterodimer of UreA and UreC to form (UreABC*)(3) apoprotein, as shown by gel filtration chromatography, integration of electrophoretic gel band intensities, and mass spectrometry. Similar to the authentic urease apoprotein, the active enzyme is produced by incubation of (UreABC*)(3) with Ni(2+) and bicarbonate. Conversely, UreBΔ1-19, lacking the 19-residue potential hinge and tether to UreC, does not form a complex with (UreAC)(3) and yields negligible levels of the active enzyme when incubated under activation conditions with (UreAC)(3). Comparison of activities and nickel contents for (UreAC)(3), (UreABC*)(3), and (UreABC)(3) samples treated with Ni(2+) and bicarbonate and then desalted indicates that UreB facilitates efficient incorporation of the metal into the active site and protects the bound metal from chelation. Amylose resin pull-down studies reveal that MBP-UreD (a fusion of maltose binding protein with UreD) forms complexes with (UreABC)(3), (UreAC)(3), and UreB in vivo, but not in vitro. By contrast, MBP-UreD does not form an in vivo complex with UreBΔ1-19. The soluble MBP-UreD-UreF-UreG complex binds in vitro to (UreABC)(3), but not to (UreAC)(3) or UreB. Together, these data demonstrate that UreB facilitates the interaction of urease with accessory proteins during metallocenter assembly, with the N-terminal hinge and tether region being specifically required for this process. In addition to its role in urease activation, UreB enhances the stability of UreC against proteolytic cleavage.  相似文献   

11.
目的:建立幽门螺杆菌(Helicobacter pylori,Hp)小鼠感染模型。方法:建立Hp经口感染SPF级小鼠的动物模型,取小鼠胃粘膜组织,利用PCR技术、尿素酶实验、细菌培养等方法检测接种小鼠,对结果进行判定。结果:Hp可感染C57BL/6小鼠并在小鼠胃部定植。  相似文献   

12.
目的:幽门螺旋杆菌(Hp)尿素酶是Hp重要的定制因子和致病因子,Hp尿素酶活性位点位于Hp尿素酶B亚基(UreB),研发基于UreB的Hp疫苗是一种很有前景的防治Hp感染的策略。方法:主要利用基因克隆技术从幽门螺旋杆菌标准菌株SS1(Hp SS1)获得Hp尿素酶B亚基基因,并构建含有重组Hp尿素酶B亚基(rUreB)基因的重组表达载体pET-rUreB及其重组菌株;重组菌株经蛋白表达和优化后,利用Ni-NTP镍离子亲和层析和DEAE Sepharose FF阴离子交换层析纯化重组尿素酶B亚基(rUreB),并进一步通过腹腔注射免疫BALB/c小鼠,研究rUreB的免疫学性质。结果:通过基因克隆技术成功获得了Hp尿素酶B亚基基因,并成功构建了重组表达载体pET-rUreB及其重组菌株BL21(DE3)/pET-rUreB,经蛋白表达优化及纯化,可获得高纯度(96.5%)的重组蛋白rUreB。重组蛋白rUreB辅以弗氏佐剂腹腔注射免疫BALB/c小鼠,经间接ELISA鉴定小鼠能够产生针对天然Hp尿素酶和UreB的高滴度特异性抗体,且能够显著性抑制Hp尿素酶的活性。结论:重组Hp尿素酶B亚基能够在大肠杆菌表达系统中获得较高水平的表达,具有较高的免疫学特异性,其抗体能够有效抑制Hp尿素酶活性。为研究基于尿素酶的防治Hp感染的Hp疫苗奠定了一定的实验基础。  相似文献   

13.
Short peptides resembling the Helicobacter pylori urease antigen (UreB F8 Ser-Ile-Lys-Glu-Asp-Val-Gln-Phe) with deleted aspartic acid and glutamic acid residues, anchored through a triazine linker via the N-terminal moiety to cellulose plate were prepared. The peptides were used for binding of antibodies from sera of patients with medically confirmed atherosclerosis. Recognition of the peptides was also tested with anti-Jack beans urease antibodies. The important role of a Gly-Gly spacer separating the peptides from the cellulose support was shown. Different patterns of binding of antibodies from H. pylori infected patients and anti-Jack bean urease antibodies were observed only in the case of pentapeptides. The peptide Gly-Gly-Leu-Val-Phe-Lys-Thr was recognized by most of the tested sera.  相似文献   

14.
A multivalent fusion vaccine is a promising option for protection against Helicobacter pylori infection. In this study, UreB414 was identified as an antigenic fragment of urease B subunit (UreB) and it induced an antibody inhibiting urease activity. Immunization with UreB414 partially protected mice from H. pylori infection. Furthermore, a trivalent fusion vaccine was constructed by genetically linking heat shock protein A (HspA), H. pylori adhesin A (HpaA), and UreB414, resulting in recombinant HspA-HpaA-UreB414 (rHHU). Its protective effect against H. pylori infection was tested in BALB/c mice. Oral administration of rHHU significantly protected mice from H. pylori infection, which was associated with H. pylori-specific antibody production and Th1/Th2-type immune responses. The results show that a trivalent fusion vaccine efficiently combats H. pylori infection, and that an antigenic fragment of the protein can be used instead of the whole protein to construct a multivalent vaccine.  相似文献   

15.
Helicobacter pylori urease, a nickel-requiring metalloenzyme, hydrolyzes urea to NH3 and CO2. We sought to identify H. pylori genes that modulate urease activity by constructing pHP8080, a plasmid which encodes both H. pylori urease and the NixA nickel transporter. Escherichia coli SE5000 and DH5alpha transformed with pHP8080 resulted in a high-level urease producer and a low-level urease producer, respectively. An H. pylori DNA library was cotransformed into SE5000 (pHP8080) and DH5alpha (pHP8080) and was screened for cotransformants expressing either lowered or heightened urease activity, respectively. Among the clones carrying urease-enhancing factors, 21 of 23 contained hp0548, a gene that potentially encodes a DNA helicase found within the cag pathogenicity island, and hp0511, a gene that potentially encodes a lipoprotein. Each of these genes, when subcloned, conferred a urease-enhancing activity in E. coli (pHP8080) compared with the vector control. Among clones carrying urease-decreasing factors, 11 of 13 clones contained the flbA (also known as flhA) flagellar biosynthesis/regulatory gene (hp1041), an lcrD homolog. The LcrD protein family is involved in type III secretion and flagellar secretion in pathogenic bacteria. Almost no urease activity was detected in E. coli (pHP8080) containing the subcloned flbA gene. Furthermore, there was significantly reduced synthesis of the urease structural subunits in E. coli (pHP8080) containing the flbA gene, as determined by Western blot analysis with UreA and UreB antiserum. Thus, flagellar biosynthesis and urease activity may be linked in H. pylori. These results suggest that H. pylori genes may modulate urease activity.  相似文献   

16.
17.
Background. Helicobacter pylori survives transient exposure to extreme acid prior to adherence and growth on the gastric epithelium at neutral pH.
Materials and Methods. The effect of pH stress on protein profiles of H. pylori was observed using two-dimensional gel electrophoresis (2-D gels). H. pylori 26695 was grown microaerobically in tryptone-yeast extract broth, 3% fetal bovine serum. Growth in acid alkalinized the medium, whereas growth in base caused acidification. For 2-D gel analysis of protein profiles, cultures were grown in media buffered at pH 5.7 and at pH 7.5.
Results. Under all pH conditions, the most abundant proteins observed were the urease structural subunit UreB and the chaperonin GroEL. Growth in acid significantly increased the abundance of UreB. Thus, urease expression is not completely constitutive, as reported previously, but shows regulation by pH. Another protein observed only at low pH was identified as mammalian apolipoprotein A-I, possibly taken up by H. pylori from bovine serum in the growth medium. This finding, if confirmed, suggests that uptake of high-density lipoprotein from the human host may facilitate acquisition of cholesterol, required for formation of the unique cholesteryl glucosides in the membrane of H. pylori. In growth above pH 7, three stress proteins were induced: GroES (HspA), GroEL (HspB), and the antioxidant AhpC homolog TsaA. In addition, N-terminal sequence analysis identified five additional proteins that had not previously been reported on 2-D gels of H. pylori (FMN, SodB, TrxB, TsaA, and Tsr).
Conclusions. In summary, our 2-D gel study reveals expression of several proteins dependent on growth pH.  相似文献   

18.
Urease is an essential virulence factor and colonization factor for Helicobacter pylori, of which the urease B subunit (UreB) is considered as an excellent vaccine candidate antigen. In previous study, an epitope vaccine with cholera toxin B subunit (CTB) and an epitope (UreB321–339) named CtUBE was constructed and the mice were protected significantly after intragastric vaccination with the CtUBE liposome vaccine. However, the fusion protein CtUBE was expressed as inclusion bodies and was difficultly purified. Besides, the immunogenicity and specificity of the CtUBE vaccine was not investigated in a fairly wide and detailed way. In this study, the fusion peptide CtUBE was reconstructed and expressed as a soluble protein with pectinase signal peptide at the N terminus and the 6-his tag at its C-terminal, and then the immunogenicity, specificity, prophylactic, and therapeutic efficacy of the reconstructed CtUBE (rCtUBE) vaccine were evaluated in BALB/c mice model after purification. The experimental results indicated that mice immunized with rCtUBE could produce comparatively high level of specific antibodies which could respond to natural H. pylori urease, UreB, or the minimal epitope UreB327–334 involved with the active site of urease, and showed effectively inhibitory effect on the enzymatic activity of urease. Besides, oral prophylactic or therapeutic immunization with rCtUBE significantly decreased H. pylori colonization compared with oral immunization with rCTB or PBS, and the protection was correlated with antigen-specific IgG, IgA, and mucosal sIgA antibody responses, and a Th2 cells response. This rCtUBE vaccine may be a promising vaccine candidate for the control of H. pylori infection.  相似文献   

19.
Helicobacter pylori urease requires nickel ions in the enzyme active site for catalytic activity. Nickel ions must, therefore, be actively acquired by the bacterium. NixA (high-affinity nickel transport protein)-deficient mutants of H. pylori retain significant urease activity, suggesting the presence of alternate nickel transporters. Analysis of the nucleotide sequence of the H. pylori genome revealed a homolog of NikD, a component of an ATP-dependent nickel transport system in Escherichia coli. Based on this sequence, a 378-bp DNA fragment was PCR amplified from H. pylori genomic DNA and used as a probe to identify an H. pylori lambda ZAPII genomic library clone that carried these sequences. Four open reading frames of 621, 273, 984, and 642 bp (abcABCD) were revealed by sequencing and predicted polypeptides of 22.7, 9.9, 36.6, and 22.8 kDa, respectively. The 36.6-kDa polypeptide (AbcC) has significant homology (56% amino acid sequence identity) to an E. coli ATP-binding protein component of an ABC transport system, while none of the other putative proteins are significantly homologous to polypeptides in the available databases. To determine the possible contribution of these genes to urease activity, abcC and abcD were each insertionally inactivated with a kanamycin resistance (aphA) cassette and allelic exchange mutants of each gene were constructed in H. pylori UMAB41. Mutation of abcD resulted in an 88% decrease in urease activity to 27 +/- 31 mumol of NH3/min/mg of protein (P < 0.0001), and a double mutant of nixA and abcC resulted in the near abolishment of urease activity (1.1 +/- 1.4 mumol of NH3/min/mg of protein in the double mutant versus 228 +/- 92 mumol of NH3/min/mg of protein in the parent [P < 0.0001]). Synthesis of urease apoenzyme, however, was unaffected by mutations in any of the abc genes. We conclude that the abc gene cluster, in addition to nixA, is involved in production of a catalytically active urease.  相似文献   

20.
The nickel-containing enzymes hydrogenase and urease require accessory proteins in order to incorporate properly the nickel atom(s) into the active sites. The Helicobacter pylori genome contains the full complement of both urease and hydrogenase accessory proteins. Two of these, the hydrogenase accessory proteins HypA (encoded by hypA) and HypB (encoded by hypB), are required for the full activity of both the hydrogenase and the urease enzymes in H. pylori. Under normal growth conditions, hydrogenase activity is abolished in strains in which either hypA (HypA:kan) or hypB (HypB:kan) have been interrupted by a kanamycin resistance cassette. Urease activity in these strains is 40 (HypA:kan)- and 200 (HypB:kan)-fold lower than for the wild-type (wt) strain 43504. Nickel supplementation in the growth media restored urease activity to almost wt levels. Hydrogenase activity was restored to a lesser extent, as has been observed for hyp mutants in other (H(2)-oxidizing) bacteria. Expression levels of UreB (the urease large subunit) were not affected by inactivation of either hypA or hypB, as determined by immunoblotting. Urease activity was not affected by lesions in the genes for either the hydrogenase accessory proteins HypD or HypF or the hydrogenase large subunit structural gene, indicating that the urease deficiency was not caused by lack of hydrogenase activity. When crude extracts of wt, HypA:kan and HypB:kan were separated by anion exchange chromatography, the urease-containing fractions of the mutant strains contained about four (HypA:kan)- and five (HypB:kan)-fold less nickel than did the urease from wt, indicating that the lack of urease activity in these strains results from a nickel deficiency in the urease enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号