首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Previous studies of phenylalanyl-tRNA synthetase expression in Escherichia coli strongly suggested that the pheS, T operon was regulated by a phenylalanine-mediated attenuation mechanism. To investigate the functions of the different segments composing the pheS, T attenuator site, a series of insertion, deletion and point mutations in the pheS, T leader region have been constructed in vitro on a recombinant M13 phage. The effects of these alterations on the regulation of the operon were measured after transferring each mutation onto a lambda phage carrying a pheS, T-lacZ fusion. The behaviours of the various mutants agree with the predictions of the attenuation model. The role of the antiterminator (2-3 pairing) as competitor of the terminator (3-4 pairing) is demonstrated by several mutations affecting the stability of the 2-3 base-pairing. The existence of deletions and point mutations in the 3-4 base-pairing shows that the terminator is essential for both expression level and regulation of the operon. Mutations in the translation initiation site of the leader peptide show that the expression of the leader peptide is essential for attenuation control. However, alteration of the translation initiation rate of the leader peptide derepresses the pheS, T operon, which is the opposite of what is observed with the trp operon. This difference is explained in terms of different translation initiation efficiencies of the leader peptides. Finally, insertion mutations, increasing gradually the distance between the leader peptide stop codon and the first strand of the antiterminator, derepress the pheS, T operon and show that formation of the antiterminator structure is under the control of the translation of the leader peptide.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Tryptophanase (tna) operon expression in Escherichia coli is induced by tryptophan. This response is mediated by features of a 319-base-pair leader region preceding the major structural genes of the operon. Translation of the coding region (tnaC) for a 24-amino-acid leader peptide is essential for induction. We have used site-directed mutagenesis to investigate the role of the single Trp codon, at position 12 in tnaC, in regulation of the operon. Codon 12 was changed to either a UAG or UGA stop codon or to a CGG arginine codon. Induction by tryptophan was eliminated by any of these changes. Studies with suppressor tRNAs indicated that tRNA(Trp) translation of codon 12 in tnaC is essential for induction of the operon. Reduction of tna expression by a miaA mutation supports a role for translation by tRNA(Trp) in regulation of the operon. Frameshift mutations and suppression that allows translation of tnaC to proceed beyond the normal stop codon result in constitutive tna operon expression. Deletion of a potential site for Rho factor utilization just beyond tnaC also results in partial constitutive expression. These studies suggest possible models for tryptophan induction of tna operon expression involving tRNA(Trp)-mediated frame shifting or readthrough at the tnaC stop codon.  相似文献   

14.
15.
To localize the DNA regions responsible for basal-level and induced expression of the tryptophanase (tna) operon of Proteus vulgaris, short deletions were introduced in the 115-bp spacer region separating tnaC, the leader peptide coding region, from tnaA. Deletions were incorporated into a tnaA'-'lacZ reporter construct containing the intact tna promoter-leader region. Expression was examined in Escherichia coli. Deletions that removed 28 to 30 bp from the region immediately following tnaC increased basal-level expression about threefold and allowed threefold induction by 1-methyltryptophan. A deletion removing 34 bp from the distal segment of the leader permitted basal and induced expression comparable to that of the parental construct. The mutant with the largest spacer deletion, 89 bp, exhibited a 30-fold increase in basal-level expression, and most importantly, inducer presence reduced operon expression by ca. 60%. Replacing the tnaC start codon or replacing or removing Trp codon 20 of tnaC of this deletion derivative eliminated inducer inhibition of expression. These findings suggest that the spacer region separating tnaC and tnaA is essential for Rho action. They also suggest that juxtaposition of the tnaC stop codon and the tnaA ribosome binding site in the 89-bp deletion derivative allows the ribosome that has completed translation of tnaC to inhibit translation initiation at the tnaA start codon when cells are exposed to inducer. These findings are consistent with results in the companion article that suggest that inducer allows the TnaC peptide to inhibit ribosome release at the tnaC stop codon.  相似文献   

16.
17.
O Mikuni  K Kawakami  Y Nakamura 《Biochimie》1991,73(12):1509-1516
Mutations in the prfB gene which encodes peptide-chain-release factor 2 of Escherichia coli were defined by DNA sequence analysis. prfB1 and prfB3 substitute lysine and asparagine for glutamate and aspartate at amino acid positions 89 and 143, respectively. Temperature-sensitive mutations, prfB2 and prfB286, each contain the identical substitution of phenylalanine for leucine-328. These mutations suppress UGA but not UAG or UAA. The efficiency of suppression was affected by the neighboring RNA context. The prfB gene encodes a premature UGA stop codon at position 26 and is expressed by +1 frameshifting. The efficiency of natural frameshift was 18% as measured by using the monolysogenic lambda assay vector containing prfB-lacZ fusions, and increased up to 30% in the prfB mutants. These observations can be interpreted as genetic evidence for the autogenous control of RF2 synthesis by frameshifting. Structural and functional organizations of release factors are discussed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号