首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Alvey  S.  Bagayoko  M.  Neumann  G.  Buerkert  A. 《Plant and Soil》2001,231(1):45-54
A more widespread use of cereal/legume rotations has been suggested as a means to sustainably meet increasing food demands in sub-Saharan West Africa. Enhanced cereal yields following legumes have been attributed to chemical and biological factors such as higher levels of mineral nitrogen (Nmin) and arbuscular mycorrhizae (AM) but also to lower amounts of plant parasitic nematodes. This study was conducted under controlled conditions to examine the relative contribution of AM, plant parasitic nematodes and increased nitrogen (N) and phosphorus (P) availability to cereal/legume rotation effects on two West African soils. Sample soils were taken from field experiments at Gaya (Niger) and Fada (Burkina Faso) supporting continuous cereal and cereal/legume rotation systems and analysed for chemical and biological parameters. Average increases in cereal shoot dry matter (DM) of rotation cereals compared with continuous cereals were 490% at Gaya and 550% at Fada. Shoot P concentration of rotation millet was significantly higher than in continuous millet and P uptake in rotation cereals was on average 62.5-fold higher than in continuous cereals. Rotation rhizosphere soils also had higher pH at both sites. For the Fada soil, large increases in Bray1-P and organic P were observed in bulk and rhizosphere soils. Plant parasitic nematodes in roots of continuous cereals were 60–80-fold higher than in those of rotation cereals. In both cropping systems mycorrhizal infection rates were similar at 37 days after sowing (DAS) but at 57 DAS AM infection was 10–15% higher in rotation sorghum than in continuous sorghum. This study provides strong evidence that cereal/legume rotations can enhance P nutrition of cereals through improved soil chemical P availability and microbiologically increased P uptake.  相似文献   

2.
Summary The hydrogenase found in Rhizobium bacteroids is compared with that found in Azotobacter and found, in all respects examined, to be similar. When three host species were inoculated with Rhizobium, strain 311, different amounts of hydrogenase activity were found in Pisum sativum and Vicia bengalensis while the enzyme was absent from nodules of Vicia faba. Of four different strains of Rhizobium examined only two strains possessed the hydrogenase when present in pea root nodules. The role of the hydrogenase in nitrogen fixation is discussed and it is tentatively concluded that the overall efficiency of the nitrogen fixation process is increased by its presence.  相似文献   

3.
Carbonic anhydrase activity (hydration of CO2 was found in homogenates of leaves (116–500 units.mg?1 protein) and root nodules (27–255 units.mg?1 protein) from 8 legume genera inoculated in each case with a host specific Rhizobium. No enzyme, or only trace amounts (2–7 units.mg?1 protein), were detected in root extracts, The enzymatic activity was inhibited in all cases by azide and acetazolamide. The sizes of nodule and leaf carbonic anhydrases, estimated by gel filtration of partially purified preparations from Phaseolus vulgaris, were around 45 000 and 205 000 respectively. These enzymes also differed in sensitivity to inhibitors. More than 99% of the activity present in Vicia faba nodules was recovered as a soluble enzyme and only a trace was located in the isolated bacteroids.  相似文献   

4.
Sinaj  S.  Buerkert  A.  El-Hajj  G.  Bationo  A.  Traoré  H.  Frossard  E. 《Plant and Soil》2001,233(1):71-83
Low phosphorus (P) in acid sandy soils of the West African Sudano-Sahelian zone is a major limitation to crop growth. To compare treatment effects on total dry matter (TDM) of crops and plant available P (P-Bray and isotopically exchangeable P), field experiments were carried out for 2 years at four sites where annual rainfall ranged from 560 to 850 mm and topsoil pH varied between 4.2 and 5.6. Main treatments were: (i) crop residue (CR) mulch at 500 and 2000 kg ha–1, (ii) eight different rates and sources of P and (iii) cereal/legume rotations including millet (Pennisetum glaucum L.), sorghum [Sorghum bicolor (L.) Moench], cowpea (Vigna unguiculata Walp.) and groundnut (Arachis hypogaea L.). For the two Sahelian sites with large CR-induced differences in TDM, mulching did not modify significantly the soils' buffering capacity for phosphate ions but led to large increases in the intensity factor (CP) and quantity of directly available soil P (E 1min). In the wetter Sudanian zone lacking effects of CR mulching on TDM mirrored a decline of E 1min with CR. Broadcast application of soluble single superphosphate (SSP) at 13 kg P ha–1 led to large increases in C P and quantity of E 1min at all sites which translated in respective TDM increases. The high agronomic efficiency of SSP placement (4 kg P ha–1) across sites could be explained by consistent increases in the quantity factor which confirms the power of the isotopic exchange method in explaining management effects on crop growth across the region.  相似文献   

5.
6.
Cell death in the root cortex of cereals was assessed by an inability to detect nuclei, using acridine orangelfluorescence microscopy after fixation and mild acid hydrolysis. Seminal roots were scanned at x 100 magnification and their cortices were considered dead when nuclei were absent from all cell layers except the innermost one, adjacent to the endodermis; this cell layer remains alive long after the rest of the cortex has died. Cortical death of wheat and barley roots occurred in the absence of major pathogens. Cell death started behind the root hair zone of the main root axis, initially in the outermost cell layer of the cortex and then progressively inwards towards the endodermis; however, the cortex remained alive for a distance of c. 800 μm around emerging root laterals. The rate of cortical death was more rapid in wheat than in barley, both under field conditions and in the glasshouse at 20 °C. Thus, field-grown spring wheat (Sicca) showed 50% death of the root cortex in the top 6 cm of first seminal roots after 35 days (growth stage 1–2), whereas spring barley (Julia) showed 50% death of the root cortex after 67 days (growth stage 8). In the glasshouse, the top 9 cm of first seminal roots on 16-day plants showed 55% cortical death in wheat (Cappelle-Desprez) but only 2.5% cortical death in barley (Igri). The same rates of death were found in all subsequent seminal roots. The wheat root cortex died at the same rate in sterile and unsterile conditions, and at the same rate in the presence/absence of Phialophora radicicola Cain var. graminicola Deacon or Aureobasidium bolleyi (Sprague) von Arx. Hence, although P. radicicola and other soil microorganisms may benefit from root cortex death they do not exert biological control of take-all by enhancing or retarding the rate of this process. To study the effects of cortical death on take-all, Gaeumannomyces graminis (Sacc.) Arx & Olivier var. tritici Walker was point-inoculated at the tips and on older (5 and 15 day) regions of wheat seminal roots. After 17 days at 20 °C the fungus had grown to the same extent as runner-hyphae in all cases, but the severity of disease decreased with increasing age of the root cortex prior to inoculation; thus, G. graminis caused most extensive vascular discoloration and most intense vascular blockage in roots inoculated at their tips. Similar experiments on wheat and barley roots inoculated separately with P. radicicola and G. graminis suggest that at least three factors associated with cortical death influence infection by these fungi: (1) initially, cell death may enhance infection because nutrients are made available to the parasites and host resistance within the cortex is reduced; (2) weak parasites and soil saprophytes may colonise dead and dying cortices in competition with G. graminis and P. radicicola and thereby reduce infection by these fungi; (3) changes in the endodermis and adjacent cell layers may be associated with cortical death and may retard invasion of the stele. Future work will seek to establish the relative importance of these factors and extend this study to other cereal host-fungus combinations.  相似文献   

7.
All aerobic biological systems, including N2-fixing root nodules, are subject to O2 toxicity that results from the formation of reactive intermediates such as H2O2 and free radicals of O2. H2O2 may be removed from root nodules in a series of enzymic reactions involving ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase. We confirm here the presence of these enzymes in root nodules from nine species of legumes and from Alnus rubra. Ascorbate peroxidase from soybean nodules was purified to near homogeneity. This enzyme was found to be a hemeprotein with a molecular weight of 30,000 as determined by sodium dodecyl sulfate gel electrophoresis. KCN, NaN3, CO, and C2H2 were potent inhibitors of activity. Nonphysiological reductants such as guaiacol, o-dianisidine, and pyrogallol functioned as substrates for the enzyme. No activity was detected with NAD(P)H, reduced glutathione, or urate. Ascorbate peroxidation did not follow Michaelis-Menten kinetics. The substrate concentration which resulted in a reaction rate of ½ Vmax was 70 micromolar for ascorbate and 3 micromolar for H2O2. The high affinity of ascorbate peroxidase for H2O2 indicates that this enzyme, rather than catalase, is responsible for most H2O2 removal outside of peroxisomes in root nodules.  相似文献   

8.
Cereal yield increases in legume rotations on west African soils were the subject of much recent research aiming at the development of more productive cropping systems for the mainly subsistence-oriented agriculture in this region. However, little has been done to elucidate the possible contribution of soil microbiological factors to these rotation effects. Therefore a pot trial was conducted using legume rotation and continuous cereal soils each from one site in Burkina Faso and two sites in Togo where cropping system experiments had been conducted over 4 yrs. All soils were planted with seedlings of sorghum (Sorghum bicolor L. Moench). From 21 days after sowing onwards relative growth rates in rotation soils were higher than in the continuous cereal soils, resulting in between 69 and 500% higher shoot dry matter of rotation sorghum compared to sorghum growing in continuous cereal soils. Across sites rotation soils were characterized by higher pH, higher microbial N and a lower microbial biomass C/N ratio and, with the exception of one site, a higher fungal biomass in the rhizosphere. The bacterial and eukaryal community structure in the soil, assessed by denaturing gradient gel electrophoresis (DGGE), differed between sites. However, only at one site differed the bacterial and the eukaryal community structure in the rotation soil significantly from that in the continuous cereal soil. Although the results of this study confirmed the marked plant-growth differences between sub-Saharan legume-rotation soils and their continuous cereal counterparts they also showed the difficulties to differentiate possible microbiological causes from their effects.  相似文献   

9.
Growth promotion of maize by legume soils   总被引:4,自引:0,他引:4  
A. Fyson  A. Oaks 《Plant and Soil》1990,122(2):259-266
Maize (Zea mays cv W64A × W182E) was grown in a low nutrient sandy loam. Inoculation with legume soils (4.1% v/v) gave a 3 to 4 fold increase in shoot growth relative to the control after 5 to 8 weeks growth in greenhouse conditions. Plants were routinely irrigated with 1/10 Hoagland solution (with 10mM KNO3). With half strength Hoagland solution (10mM KNO3) there was no clear growth response. This growth response was observed with a variety of legume soils but not with any of the maize soils tested. The response to alfalfa soil was eliminated or much reduced by gamma irradiation (3.6 Mrad) or autoclaving of the inoculum. The bactericide streptomycin had no effect on the growth response whereas the fungicides benomyl and PCNB eliminated it. This suggests that fungi and not bacteria are involved in the growth promotion.  相似文献   

10.
麦蚜是体型小、生活周期短的变温动物,对环境温度尤其是高温的变化十分敏感。气候变暖导致的温度升高是影响麦蚜最直接和最重要的因子。本文综述了国内外有关气候变暖对麦蚜影响的野外观测、预测模型及模拟试验的研究进展。气候变暖将导致麦蚜的主要分布和为害区向高纬度地区转移;气候变暖增加了生长季的有效积温,导致麦蚜始见期、迁飞期、盛虫期等物候发生期提前;温度升高提高了麦蚜的越冬存活率,使温带地区春夏季种群数量增加;处于不同营养级的物种对温度变化的敏感性不尽相同,气候变暖可能影响麦类作物-麦蚜-天敌昆虫多营养级系统的种间互作。麦蚜的耐热性较差,气候变暖导致的高温幅度增加、持续时间延长、夜间最低温升高、极端高温幅度和频率增加等典型特征对其有深刻影响。高温的幅度、持续时间对麦蚜的存活和繁殖有显著的抑制作用;夜间变暖导致麦蚜存活线性下降,进一步恶化了日间高温对蚜虫的不利影响;极端高温事件的幅度和频率影响麦蚜的种群增长参数,不同种类麦蚜对极端高温事件的非对称响应改变了麦蚜种间的相对适合度、时间和空间上的群落结构和物种间的相对优势度。麦蚜可通过爬行和跌落等行为来缓解气候变暖造成的高温胁迫,在研究气候变暖对麦蚜影响的同时,应充分考虑麦蚜对气候变暖的适应和缓冲能力。如何人工模拟气候变暖趋势下温度的变化模式,精巧设计试验反映气候变暖主要特征,开展接近自然界变化的温度模式对麦蚜的影响和麦蚜对环境改变的适应性响应研究,将是未来该领域的主要研究方向。  相似文献   

11.
The root nodules of certain legumes including Medicago truncatula produce >300 different nodule-specific cysteine-rich (NCR) peptides. Medicago NCR antimicrobial peptides (AMPs) mediate the differentiation of the bacterium, Sinorhizobium meliloti into a nitrogen-fixing bacteroid within the legume root nodules. In vitro, NCR AMPs such as NCR247 induced bacteroid features and exhibited antimicrobial activity against S. meliloti. The bacterial BacA protein is critical to prevent S. meliloti from being hypersensitive toward NCR AMPs. NCR AMPs are cationic and have conserved cysteine residues, which form disulfide (S-S) bridges. However, the natural configuration of NCR AMP S-S bridges and the role of these in the activity of the peptide are unknown. In this study, we found that either cysteine replacements or S-S bond modifications influenced the activity of NCR247 against S. meliloti. Specifically, either substitution of cysteines for serines, changing the S-S bridges from cysteines 1-2, 3-4 to 1-3, 2-4 or oxidation of NCR247 lowered its activity against S. meliloti. We also determined that BacA specifically protected S. meliloti against oxidized NCR247. Due to the large number of different NCRs synthesized by legume root nodules and the importance of bacterial BacA proteins for prolonged host infections, these findings have important implications for analyzing the function of these novel peptides and the protective role of BacA in the bacterial response toward these peptides.  相似文献   

12.
Summary Soil was collected from pots that had grown 1,3 or 6 soybean (Glycine max) or Siratro (Macroptillium atropurpureum) crops that had received organic residue returns from each crop.15N-labelled residues were added to half the pots in the experiment and the other half left unamended. Half of each group was then sown to Rhodes grass (Chloris gayana) which was grown, under glasshouse conditions, for 12 weeks.Ten grams of organic matter residues were added to each pot (1.5 kg soil) and the pots subjected to two wetting and drying cycles. At the end of the second wet cycle, soil mineral N values ranged from 6 to 64 ppm in unamended soils and from 19 to 177 ppm in amended soils. These levels generally declined over a 12 week period both in the presence and absence of sown grass.Nitrogen uptake by the grass increased with the number of previous cycles and was higher in Siratro than soybean soils. Recovery of15N by plant growth from the incorporated soybean residues was little effected by previous crop history and averaged 15.4%. On the other hand, Siratro recoveries were 13.7, 42.4 and 55.5% from soils that had grown 1, 3 and 6 previous Siratro crops, respectively.The addition of organic residues stimulated the release of native organic N (positive priming effect) on all soils.These results show that the turnover rate of nitrogen from organic residues can be high and the net result of these additions depends on the nature of the organic residues and the soil system to which they are added. These data emphasise the need to consider the rate of nutrient turnover from organic sources rather than concentrate on the nature and size of the resident nutrient pools.  相似文献   

13.
Comprehensive profiling of microRNAs (miRNAs) from the legume Medicago truncatula reveals the organization of miRNA-based regulatory modules in root biotic interactions.  相似文献   

14.
Tang  C.  Yu  Q. 《Plant and Soil》1999,215(1):29-38
Reports on the effect of organic matter addition on soil pH have been contradictory. This study examined the effect of applying legume residues differing in concentrations of N (4.3-45.5 mg g-1) and excess cations/organic anions (0.22–1.56 mmol g-1) on pH change of five soils differing in initial pH (3.60–5.58 in 0.01 M CaCl2) under sterile and non-sterile conditions. Addition of the legume residues at a level of 1% soil weight increased the pH of all soils by up to 2 units after incubation for 35 and 100 d under non-sterile conditions. Exceptions were the Lancelin (initial pH 5.06) and Kellerberin (pH 5.58) soils with addition of clover roots (excess cations 22 cmol/kg) for 100 d where soil pH decreased by 0.13–0.15 units as compared to the control. The amounts of alkalinity produced in soil correlated positively with concentrations of excess cations and total nitrogen of the added legume residues, and negatively with the initial pH of the soil. When soil was fumigated with chloroform during incubation, similar trends of soil pH changes and alkalinity production, due to legume residues addition, were displayed but the effects of the residue on alkalinity production in the Wodjil and Lancelin soils were much less than under non-sterile conditions. Direct shaking of soil with the residues under sterile conditions increased the amount of alkalinity in the soils with initial pH of 3.60–4.54, but not in the soils with initial pH of 5.06 and 5.58. The maximal alkalinity production was less than one third of that produced in the soil after 100 d of incubation under non-sterile conditions. The results suggest that the direction and the magnitude of pH change depend largely on the concentration of organic anions in the residues, initial soil pH and the degree of residue decomposition. The incorporation of crop residues, especially those with high concentrations of excess cations, is recommended in minimizing soil acidification in farming systems. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Regulators and regulation of legume root nodule development   总被引:26,自引:0,他引:26  
Stougaard J 《Plant physiology》2000,124(2):531-540
  相似文献   

16.
Ascorbic acid (vitamin C) is a major antioxidant and redox buffer, but is also involved in other critical processes of plants. Recently, the hypothesis has been proposed that legume nodules are unable to synthesize ascorbate and have to import it from the shoot or root, thus providing a means by which the plant regulates nodule senescence. The last step of ascorbate biosynthesis in plants is catalyzed by L-galactono-1,4-lactone dehydrogenase (GalLDH). The mRNAs encoding GalLDH and three other enzymes involved in ascorbate biosynthesis are clearly detectable in nodules. Furthermore, an active membrane-bound GalLDH enzyme is present in nodule mitochondria. Biochemical assays on dissected nodules reveal that GalLDH activity and ascorbate are correlated in nodule tissues and predominantly localized in the infected zone, with lower levels of both parameters (relative to the infected tissues) in the apex (87%) and senescent region (43%) of indeterminate nodules and in the peripheral tissues (65%) of determinate nodules. In situ RNA hybridization showed that the GalLDH mRNA is particularly abundant in the infected zone of indeterminate and determinate nodules. Thus, our results refute the hypothesis that ascorbate is not synthesized in nodules and lend support to a previous conclusion that ascorbate in the infected zone is primarily involved in the protection of host cells against peroxide damage. Likewise, the high ascorbate and GalLDH activity levels found in the apex of indeterminate nodules strongly suggest a participation of ascorbate in additional functions during symbiosis, possibly related to cell growth and division and to molecular signaling.  相似文献   

17.
Trypsin inhibitor was extracted from the seed flour of soybean (SB; Glycine max), mung bean (MB; Vigna radiata), cowpea bean (CP; Vigna unguiculata) and adzuki bean (AB; Vigna angularis) using 0.15 M NaCl, followed by heat precipitation at 70 °C. The extract from SB showed the highest specific trypsin inhibitory activity, followed by those from MB, CP and AB, respectively. Based on inhibitory activity staining, molecular weights (MWs) of trypsin inhibitor from SB, MB, CP and AB were 20.1, 14, 10 and 13 kDa, respectively. The SB extract powder (SBEP) containing trypsin inhibitor in the range of 10–100 TIU/g effectively prevented the degradation of γ-, β- and α-chains of collagenolytic proteins of leatherjacket skin subjected to incubation at 50 °C for 30 min. The impact of SBEP on the extraction yield, physical and functional properties of gelatin from leatherjacket skin was investigated. The gelatin extracted in the presence of SBEP contained α1 and α2 chains as the predominant components with some degradation peptides. FTIR spectra indicated the significant loss of molecular order of triple helix and higher degradation was found in gelatin extracted in the absence of SBEP. Gelatin extracted in the presence of SBEP had the higher gel strength (232.8–268.5 g) than that extracted in the absence of SBEP (90.4 g). Higher foam stability (FS) but lower emulsion stability index (ESI) was observed in the former. Therefore, the addition of SBEP effectively prevented the degradation of gelatin from the skin of unicorn leatherjacket, thereby yielding the gelatin with improved gel strength and foam stability.  相似文献   

18.
? Premise of the study: We developed nuclear microsatellite primers to explore the genetic diversity, population genetic structure, and evolutionary history of the fonio (Digitaria exilis), an understudied cereal cultivated in West Africa. ? Methods and Results: We used a microsatellite-enriched library approach to isolate and characterize 38 nuclear primer pairs (31 di-, five tri-, and two tetranucleotide repeats), of which 21 were polymorphic and exhibited a clear pattern in 36 accessions from West Africa. The number of alleles per locus ranged from two to 22, with a mean of 4.71, and expected heterozygosity ranged from 0.03 to 0.93. ? Conclusions: The developed set of 21 polymorphic SSR markers will provide tools for population and evolutionary genetics studies of the cultivated fonio.  相似文献   

19.
Marin  M.  Hallett  P. D.  Feeney  D. S.  Brown  L. K.  Naveed  M.  Koebernick  N.  Ruiz  S.  Bengough  A. G.  Roose  T.  George  T. S. 《Plant and Soil》2022,476(1-2):491-509
Plant and Soil - Recent laboratory studies revealed that root hairs may alter soil physical behaviour, influencing soil porosity and water retention on the small scale. However, the results are not...  相似文献   

20.
Sanginga  N. 《Plant and Soil》2003,252(1):25-39
Nitrogen (N) has been gradually depleted from West African soils and now poses serious threats to food production. Many ways of increasing N supply (e.g. judicious use of inorganic fertilizers and nitrogen-fixing plants) have been tried in West African farming systems. Herbaceous and woody legumes commonly contribute 40–70 kg N ha–1 season. This represents about 30% of the total N applied as residues. Nevertheless and despite repeated demonstrations of the usefulness of green manures in enhancing soil fertility, their practices and adoption are still limited. Promiscuous soyabeans are being used to develop sustainable cropping systems in the moist savannah. Reliable estimates of N2 fixed by soyabeans and their residual N benefits to subsequent cereal crops in the savannah zone of southern Guinea have only infrequently been made. The actual amounts measured varied between 38 and 126 kg N ha–1 assuming that only seeds of soyabeans are removed from the plots, the net N accrual of soil nitrogen ranges between minus 8 kg N ha–1 and plus 47 kg N ha–1 depending on the soyabean cultivar. Residual soyabean N values of 10–24 kg N ha–1 (14–36% of the total N in maize) were obtained in a soyabean-maize rotation. Although cereal yields following legume cultivation have been attributed to greater N accumulation, our data show that the relative increase in maize N was smaller than the relative increase in dry-matter yield. Hence, the increased yields of maize following soybeans are not entirely due to the carry-over of N from soyabean residues (as well as to conservation of soil N) but to other rotational effects as well. It is thus clear that the Nbenefit of grain legumes to non-legumes is small compared to the level of N fertilizer use in more intensive cereal production systems but is nevertheless significant in the context of the low amounts of input in subsistence farming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号