首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased partitioning of carbon (C) to fine roots under elevated [CO2], especially deep in the soil profile, could alter soil C and nitrogen (N) cycling in forests. After more than 11 years of free‐air CO2 enrichment in a Liquidambar styraciflua L. (sweetgum) plantation in Oak Ridge, TN, USA, greater inputs of fine roots resulted in the incorporation of new C (i.e., C with a depleted δ13C) into root‐derived particulate organic matter (POM) pools to 90‐cm depth. Even though production in the sweetgum stand was limited by soil N availability, soil C and N contents were greater throughout the soil profile under elevated [CO2] at the conclusion of the experiment. Greater C inputs from fine‐root detritus under elevated [CO2] did not result in increased net N immobilization or C mineralization rates in long‐term laboratory incubations, possibly because microbial biomass was lower in the CO2‐enriched plots. Furthermore, the δ13CO2 of the C mineralized from the incubated soil closely tracked the δ13C of the labile POM pool in the elevated [CO2] treatment, especially in shallower soil, and did not indicate significant priming of the decomposition of pre‐experiment soil organic matter (SOM). Although potential C mineralization rates were positively and linearly related to total SOM C content in the top 30 cm of soil, this relationship did not hold in deeper soil. Taken together with an increased mean residence time of C in deeper soil pools, these findings indicate that C inputs from relatively deep roots under elevated [CO2] may increase the potential for long‐term soil C storage. However, C in deeper soil is likely to take many years to accrue to a significant fraction of total soil C given relatively smaller root inputs at depth. Expanded representation of biogeochemical cycling throughout the soil profile may improve model projections of future forest responses to rising atmospheric [CO2].  相似文献   

2.
The aims of this study were to determine whether elevated atmospheric CO2 concentration modifies plant organic matter (OM) fluxes to the soil and whether any change in the fluxes can modify soil OM accumulation. Measurements were made in a grazed temperate grassland after almost 4 years exposure to elevated atmospheric CO2 (475 μl l-1) using a Free Air CO2 Enrichment (FACE) facility located in the North Island of New Zealand. Aboveground herbage biomass and leaf litter production were not altered by elevated CO2 but root growth rate, as measured with the ingrowth core method, and root turnover were strongly stimulated by elevated CO2 particularly at low soil moisture contents during summer. Consequently, significantly more plant material was returned to the soil under elevated CO2 leading to an accumulation of coarse (> 1 mm) particulate organic matter (POM) but not of finer POM fractions. The accumulating POM exhibited a lower C/N ratio, which was attributed to the higher proportion of legumes in the pasture under elevated CO2. Only small changes were detected in the size and activity of the soil microbial biomass in response to the POM accumulation, suggesting that higher organic substrate availability did not stimulate microbial growth and activity despite the apparent lower C/N ratio of accumulating POM. As a result, elevated CO2 may well lead to an accumulation of OM in grazed grassland soil in the long term.  相似文献   

3.
The impact of anthropogenic CO2 emissions on climate change may be mitigated in part by C sequestration in terrestrial ecosystems as rising atmospheric CO2 concentrations stimulate primary productivity and ecosystem C storage. Carbon will be sequestered in forest soils if organic matter inputs to soil profiles increase without a matching increase in decomposition or leaching losses from the soil profile, or if the rate of decomposition decreases because of increased production of resistant humic substances or greater physical protection of organic matter in soil aggregates. To examine the response of a forest ecosystem to elevated atmospheric CO2 concentrations, the Duke Forest Free‐Air CO2 Enrichment (FACE) experiment in North Carolina, USA, has maintained atmospheric CO2 concentrations 200 μL L?1 above ambient in an aggrading loblolly pine (Pinus taeda) plantation over a 9‐year period (1996–2005). During the first 6 years of the experiment, forest‐floor C and N pools increased linearly under both elevated and ambient CO2 conditions, with significantly greater accumulations under the elevated CO2 treatment. Between the sixth and ninth year, forest‐floor organic matter accumulation stabilized and C and N pools appeared to reach their respective steady states. An additional C sink of ~30 g C m?2 yr?1 was sequestered in the forest floor of the elevated CO2 treatment plots relative to the control plots maintained at ambient CO2 owing to increased litterfall and root turnover during the first 9 years of the study. Because we did not detect any significant elevated CO2 effects on the rate of decomposition or on the chemical composition of forest‐floor organic matter, this additional C sink was likely related to enhanced litterfall C inputs. We also failed to detect any statistically significant treatment effects on the C and N pools of surface and deep mineral soil horizons. However, a significant widening of the C : N ratio of soil organic matter (SOM) in the upper mineral soil under both elevated and ambient CO2 suggests that N is being transferred from soil to plants in this aggrading forest. A significant treatment × time interaction indicates that N is being transferred at a higher rate under elevated CO2 (P=0.037), suggesting that enhanced rates of SOM decomposition are increasing mineralization and uptake to provide the extra N required to support the observed increase in primary productivity under elevated CO2.  相似文献   

4.
Water repellency is a widespread characteristic of soils that can modify soil moisture content and distribution and is implicated in important processes such as aggregation and carbon sequestration. Repellency arises as a consequence of organic matter inputs; as elevated atmospheric CO2 is known to modify such inputs, we tested the repellency of a grassland soil after 5 years of exposure to elevated CO2 in a free air carbon dioxide enrichment experiment. Using a water droplet penetration time test, we found a significant reduction in repellency at elevated CO2 in samples at field moisture content. As many of the processes potentially influenced by repellency have been shown to be modified at elevated CO2 (e.g. soil aggregation, C sequestration, recruitment from seed), we suggest that further exploration of this phenomenon could enhance our understanding of CO2 effects on ecosystem function. The mechanism responsible for the change in repellency has not been identified.  相似文献   

5.
Increased plant productivity under elevated atmospheric CO2 concentrations might increase soil carbon (C) inputs and storage, which would constitute an important negative feedback on the ongoing atmospheric CO2 rise. However, elevated CO2 often also leads to increased soil moisture, which could accelerate the decomposition of soil organic matter, thus counteracting the positive effects via C cycling. We investigated soil C sequestration responses to 5 years of elevated CO2 treatment in a temperate spring wheat agroecosystem. The application of 13C‐depleted CO2 to the elevated CO2 plots enabled us to partition soil C into recently fixed C (Cnew) and pre‐experimental C (Cold) by 13C/12C mass balance. Gross C inputs to soils associated with Cnew accumulation and the decomposition of Cold were then simulated using the Rothamsted C model ‘RothC.’ We also ran simulations with a modified RothC version that was driven directly by measured soil moisture and temperature data instead of the original water balance equation that required potential evaporation and precipitation as input. The model accurately reproduced the measured Cnew in bulk soil and microbial biomass C. Assuming equal soil moisture in both ambient and elevated CO2, simulation results indicated that elevated CO2 soils accumulated an extra ~40–50 g C m?2 relative to ambient CO2 soils over the 5 year treatment period. However, when accounting for the increased soil moisture under elevated CO2 that we observed, a faster decomposition of Cold resulted; this extra C loss under elevated CO2 resulted in a negative net effect on total soil C of ~30 g C m?2 relative to ambient conditions. The present study therefore demonstrates that positive effects of elevated CO2 on soil C due to extra soil C inputs can be more than compensated by negative effects of elevated CO2 via the hydrological cycle.  相似文献   

6.
The stability of soil organic matter (SOM) pools exposed to elevated CO2 and warming has not been evaluated adequately in long‐term experiments and represents a substantial source of uncertainty in predicting ecosystem feedbacks to climate change. We conducted a 6‐year experiment combining free‐air CO2 enrichment (FACE, 550 ppm) and warming (+2 °C) to evaluate changes in SOM accumulation in native Australian grassland. In this system, competitive interactions appear to favor C4 over C3 species under FACE and warming. We therefore investigated the role of plant functional type (FT) on biomass and SOM responses to the long‐term treatments by carefully sampling soil under patches of C3‐ and C4‐dominated vegetation. We used physical fractionation to quantify particulate organic matter (POM) and long‐term incubation to assess potential decomposition rates. Aboveground production of C4 grasses increased in response to FACE, but total root biomass declined. Across treatments, C : N ratios were higher in leaves, roots and POM of C4 vegetation. CO2 and temperature treatments interacted with FT to influence SOM, and especially POM, such that soil carbon was increased by warming under C4 vegetation, but not in combination with elevated CO2. Potential decomposition rates increased in response to FACE and decreased with warming, possibly owing to treatment effects on soil moisture and microbial community composition. Decomposition was also inversely correlated with root N concentration, suggesting increased microbial demand for older, N‐rich SOM in treatments with low root N inputs. This research suggests that C3–C4 vegetation responses to future climate conditions will strongly influence SOM storage in temperate grasslands.  相似文献   

7.
Warming temperatures and increasing CO2 are likely to have large effects on the amount of carbon stored in soil, but predictions of these effects are poorly constrained. We elevated temperature (canopy: +2.8 °C; soil growing season: +1.8 °C; soil fallow: +2.3 °C) for 3 years within the 9th–11th years of an elevated CO2 (+200 ppm) experiment on a maize–soybean agroecosystem, measured respiration by roots and soil microbes, and then used a process‐based ecosystem model (DayCent) to simulate the decadal effects of warming and CO2 enrichment on soil C. Both heating and elevated CO2 increased respiration from soil microbes by ~20%, but heating reduced respiration from roots and rhizosphere by ~25%. The effects were additive, with no heat × CO2 interactions. Particulate organic matter and total soil C declined over time in all treatments and were lower in elevated CO2 plots than in ambient plots, but did not differ between heat treatments. We speculate that these declines indicate a priming effect, with increased C inputs under elevated CO2 fueling a loss of old soil carbon. Model simulations of heated plots agreed with our observations and predicted loss of ~15% of soil organic C after 100 years of heating, but simulations of elevated CO2 failed to predict the observed C losses and instead predicted a ~4% gain in soil organic C under any heating conditions. Despite model uncertainty, our empirical results suggest that combined, elevated CO2 and temperature will lead to long‐term declines in the amount of carbon stored in agricultural soils.  相似文献   

8.
Nutrient‐poor grassland on a silty clay loam overlying calcareous debris was exposed to elevated CO2 for six growing seasons. The CO2 exchange and productivity were persistently increased throughout the experiment, suggesting increases in soil C inputs. At the same time, elevated CO2 lead to increased soil moisture due to reduced evapotransporation. Measurements related to soil microflora did not indicate increased soil C fluxes under elevated CO2. Microbial biomass, soil basal respiration, and the metabolic quotient for CO2 (qCO2) were not altered significantly. PLFA analysis indicated no significant shift in the ratio of fungi to bacteria. 0.5 m KCl extractable organic C and N, indicators of changed DOC and DON concentrations, also remained unaltered. Microbial grazer populations (protozoa, bacterivorous and fungivorous nematodes, acari and collembola) and root feeding nematodes were not affected by elevated CO2. However, total nematode numbers averaged slightly lower under elevated CO2 (?16%, ns) and nematode mass was significantly reduced (?43%, P = 0.06). This reduction reflected a reduction in large‐diameter nematodes classified as omnivorous and predacious. Elevated CO2 resulted in a shift towards smaller aggregate sizes at both micro‐ and macro‐aggregate scales; this was caused by higher soil moisture under elevated CO2. Reduced aggregate sizes result in reduced pore neck diameters. Locomotion of large‐diameter nematodes depends on the presence of large enough pores; the reduction in aggregate sizes under elevated CO2 may therefore account for the decrease in large nematodes. These animals are relatively high up the soil food web; this decline could therefore trigger top‐down effects on the soil food web. The CO2 enrichment also affected the nitrogen cycle. The N stocks in living plants and surface litter increased at elevated CO2, but N in soil organic matter and microbes remained unaltered. Nitrogen mineralization increased markedly, but microbial N did not differ between CO2 treatments, indicating that net N immobilization rates were unaltered. In summary, this study did not provide evidence that soils and soil microbial communities are affected by increased soil C inputs under elevated CO2. On the contrary, available data (13C tracer data, minirhizotron observations, root ingrowth cores) suggests that soil C inputs did not increase substantially. However, we provide first evidence that elevated CO2 can reduce soil aggregation at the scale from µ m to mm scale, and that this can affect soil microfaunal populations.  相似文献   

9.
Important effects of elevated [CO2] on SOM are expected as a consequence of increased labile organic substrates derived from plants. The present study tests the hypotheses that, under elevated [CO2]: 1) soil heterotrophic respiration will increase due to roots-microbes-soil interactions; 2) the increased labile C will boost soil heterotrophic respiration, depending on N availability; 3) the temperature sensitivity of soil respiration will change, depending on nitrogen inputs and plant activity. To test these hypotheses, we measured the heterotrophic respiration of intact soil cores collected in a poplar plantation exposed to elevated [CO2] and two nitrogen inputs, at different temperatures. Additional physical (water content, root biomass) and biochemical parameters (microbial biomass, labile C) were determined on the same samples. The soil samples were collected at the POP-EuroFACE experimental site (Italy), where a Populus x euramericana plantation was exposed for 6 years to 550 ppm [CO2] (Free Air CO2 Enrichment) at two different nitrogen inputs (none or 290 kg ha?1). The higher heterotrophic respiration under elevated [CO2] (+30% on average) was driven by the larger pool of soil labile C (+57% on average). The temperature sensitivity of soil respiration was unaffected by elevated [CO2], but was positively affected by N fertilization. Our results indicate that only a fraction of the extra carbon fixed by photosynthesis in elevated [CO2] will contribute to enhanced carbon storage into the soil because of the contemporary stimulation of soil heterotrophic respiration. At the same time, the fraction remaining in the soil will enhance the pool of soil labile C.  相似文献   

10.
Anthropogenic nitrogen (N) deposition effects on soil organic carbon (C) decomposition remain controversial, while the role of plant species composition in mediating effects of N deposition on soil organic C decomposition and long‐term soil C sequestration is virtually unknown. Here we provide evidence from a 5‐year grassland field experiment in Minnesota that under elevated atmospheric CO2 concentration (560 ppm), plant species determine whether N deposition inhibits the decomposition of soil organic matter via inter‐specific variation in root lignin concentration. Plant species producing lignin‐rich litter increased stabilization of soil C older than 5 years, but only in combination with elevated N inputs (4 g m?2 year?1). Our results suggest that N deposition will increase soil C sequestration in those ecosystems where vegetation composition and/or elevated atmospheric CO2 cause high litter lignin inputs to soils.  相似文献   

11.
We investigated the effects of three elevated atmospheric CO2 levels on a Populus deltoides plantation at Biosphere 2 Laboratory in Oracle Arizona. Stable isotopes of carbon have been used as tracers to separate the carbon present before the CO2 treatments started (old C), from that fixed after CO2 treatments began (new C). Tree growth at elevated [CO2] increased inputs to soil organic matter (SOM) by increasing the production of fine roots and accelerating the rate of root C turnover. However, soil carbon content decreased as [CO2] in the atmosphere increased and inputs of new C were not found in SOM. Consequently, the rates of soil respiration increased by 141% and 176% in the 800 and 1200 μL L?1 plantations, respectively, when compared with ambient [CO2] after 4 years of exposure. However, the increase in decomposition of old SOM (i.e. already present when CO2 treatments began) accounted for 72% and 69% of the increase in soil respiration seen under elevated [CO2]. This resulted in a net loss of soil C at a rate that was between 10 and 20 times faster at elevated [CO2] than at ambient conditions. The inability to retain new and old C in the soil may stem from the lack of stabilization of SOM, allowing for its rapid decomposition by soil heterotrophs.  相似文献   

12.

Aims

The aim of this study was to investigate the effects of elevated CO2 concentration and nitrogen addition on soil organic carbon fractions in subtropical forests where the ambient N deposition was high.

Methods

Seedlings of typical subtropical forest ecosystems were transplanted in ten open-top chambers and grown under CO2 and nitrogen treatments. The treatments included: 1) elevated CO2 (700?μmol?mol-1); 2) N addition of 100?kg NH4NO3 ha-1?yr-1; 3) combined elevated CO2 and N addition; and 4) control. We measured soil total organic carbon (TOC), particulate organic carbon (POC), readily oxidizable organic carbon (ROC), and microbial biomass carbon (MBC).

Results

Results showed that elevated CO2 alone did not significantly affect soil TOC, POC and ROC after 4?years of treatment, but increased soil MBC and soil respiration compared to the control. N addition alone had no significant effect neither on soil TOC, POC and ROC, but decreased MBC and soil respiration over time. However, the elevated CO2 and N addition together significantly increased soil POC and ROC, and had no significant effect on soil MBC.

Conclusions

This study indicated that even in N-rich subtropical forest ecosystems, inputs of N are still needed in order to sustain soil C accumulation under elevated CO2.  相似文献   

13.
The influence of N availability on C sequestration under prolonged elevated CO2 in terrestrial ecosystems remains unclear. We studied the relationships between C and N dynamics in a pasture seeded to Lolium perenne after 8 years of elevated atmospheric CO2 concentration (FACE) conditions. Fertilizer‐15N was applied at a rate of 140 and 560 kg N ha2?1 y2?1 and depleted 13C‐CO2 was used to increase the CO2 concentration to 60 Pa pCO2. The 13C–15N dual isotopic tracer enabled us to study the dynamics of newly sequestered C and N in the soil by aggregate size and fractions of particulate organic matter (POM), made up by intra‐aggregate POM (iPOM) and free light fraction (LF). Eight years of elevated CO2 did not increase total C content in any of the aggregate classes or POM fractions at both rates of N application. The fraction of new C in the POM fractions also remained largely unaffected by N fertilization. Changes in the fractions of new C and new N (fertilizer‐N) under elevated CO2 were more pronounced between POM classes than between aggregate size classes. Hence, changes in the dynamics of soil C and N cycling are easier to detect in the POM fractions than in the whole aggregates. Within N treatments, fractions of new C and N in POM classes were highly correlated with more new C and N in large POM fractions and less in the smaller POM fractions. Isotopic data show that the microaggregates were derived from the macro‐aggregates and that the C and N associated with the microaggregates turned over slower than the C and N associated with the macroaggregates. There was also isotopic evidence that N immobilized by soil microorganisms was an important source of N in the iPOM fractions. Under low N availability, 3.04 units of new C per unit of fertilizer N were sequestered in the POM fractions. Under high N availability, the ratio of new C sequestered per unit of fertilizer N was reduced to 1.47. Elevated and ambient CO2 concentrations lead to similar 15N enrichments in the iPOM fractions under both low and high N additions, clearly showing that the SOM‐N dynamics were unaffected by prolonged elevated CO2 concentrations.  相似文献   

14.
Although numerous studies indicate that increasing atmospheric CO2 or temperature stimulate soil CO2 efflux, few data are available on the responses of three major components of soil respiration [i.e. rhizosphere respiration (root and root exudates), litter decomposition, and oxidation of soil organic matter] to different CO2 and temperature conditions. In this study, we applied a dual stable isotope approach to investigate the impact of elevated CO2 and elevated temperature on these components of soil CO2 efflux in Douglas-fir terracosms. We measured both soil CO2 efflux rates and the 13C and 18O isotopic compositions of soil CO2 efflux in 12 sun-lit and environmentally controlled terracosms with 4-year-old Douglas fir seedlings and reconstructed forest soils under two CO2 concentrations (ambient and 200 ppmv above ambient) and two air temperature regimes (ambient and 4 °C above ambient). The stable isotope data were used to estimate the relative contributions of different components to the overall soil CO2 efflux. In most cases, litter decomposition was the dominant component of soil CO2 efflux in this system, followed by rhizosphere respiration and soil organic matter oxidation. Both elevated atmospheric CO2 concentration and elevated temperature stimulated rhizosphere respiration and litter decomposition. The oxidation of soil organic matter was stimulated only by increasing temperature. Release of newly fixed carbon as root respiration was the most responsive to elevated CO2, while soil organic matter decomposition was most responsive to increasing temperature. Although some assumptions associated with this new method need to be further validated, application of this dual-isotope approach can provide new insights into the responses of soil carbon dynamics in forest ecosystems to future climate changes.  相似文献   

15.
赵广  张扬建 《生态学报》2023,43(20):8493-8503
工业革命以来,大气CO2浓度持续上升,升高的CO2浓度会改变植物光合产物积累、土壤碳库的碳输入和碳输出过程,进而通过影响有机碳组成和周转特征来调控土壤碳库动态变化。土壤碳库是陆地生态系统碳库的重要组成部分,其碳储量的微小变化都会对大气CO2浓度和气候变化产生巨大影响。但目前关于CO2浓度升高对土壤碳库动态和稳定性的影响还不清楚,很大程度上限制了预测陆地生态系统碳循环对气候变化的反馈。系统综述国内外大气CO2浓度升高对植被生产力、植被碳输入和土壤碳库影响的研究进展,旨在揭示土壤碳库物理、化学组成以及周转特征对CO2浓度升高的响应过程和机理,探讨CO2升高情境下土壤微生物特征对土壤碳库稳定性的影响和驱动机制,为深入理解全球变化下的土壤碳循环特征提供理论支撑。  相似文献   

16.
Terrestrial desert ecosystems are strongly structured by the distribution of plants, which concentrate resources and create islands of fertility relative to interplant spaces. Atmospheric nitrogen (N) deposition resulting from urbanization has the potential to change those spatial patterns via resource inputs, resulting in more homogeneous soil resource availability. We sampled soils at 12 desert remnant sites around Phoenix, Arizona along a model-predicted gradient in N deposition to determine the degree to which deposition has altered spatial patterns in soil resource availability and microbial activity. Soil microbial biomass and abundance were not influenced by atmospheric N deposition. Instead, plant islands remained strong organizers of soil microbial processes. These islands of fertility exhibited elevated pools of resources, microbial abundance, and activity relative to interspaces. In both plant islands and interspaces, soil moisture and soil N concentrations predicted microbial biomass and abundance. Following experimental wetting, carbon dioxide (CO2) flux from soil of interspaces was positively correlated with N deposition, whereas in plant islands, soil CO2 flux was positively correlated with soil moisture content and soil organic matter. Soil CO2 flux in both patch types showed rapid and short-lived responses to precipitation, demonstrating the brief time scales during which soil biota may process deposited materials. Although we observed patterns consistent with N limitation of microbes in interspaces, we conclude that atmospheric N deposition likely accumulates in soils because microbes are primarily limited by water and secondarily by carbon or nitrogen. Soil microbial uptake of atmospherically deposited N likely occurs only during sparse and infrequent rainfall.  相似文献   

17.
Many studies have shown that elevated atmospheric CO2 concentrations result in increased plant carbon inputs to soil that can accelerate the decomposition of native soil organic matter, an effect known as priming. Consequently, it is important to understand and quantify the priming effect for future predictions of carbon–climate feedbacks. There are potential pitfalls, however, when representing this complex system with a simple, first‐order model. Here, we show that a multi‐pool soil carbon model can match the change in bulk turnover time calculated from overall respiration and carbon stocks (a one‐pool approach) at elevated CO2, without a change in decomposition rate constants of individual pools (i.e., without priming). Therefore, the priming effect cannot be quantified using a one‐pool model alone, and even a two‐pool model may be inadequate, depending on the effect size as well as the distribution of soil organic carbon and turnover times. In addition to standard measurements of carbon stocks and CO2 fluxes, we argue that quantifying the fate of new plant inputs requires isotopic tracers and microbial measurements. Our results offer insights into modeling and interpreting priming from observations.  相似文献   

18.
Wetlands have an inordinate influence on the global greenhouse gas budget, but how global changes may alter wetland contribution to future greenhouse gas fluxes is poorly understood. We determined the greenhouse gas balance of a tidal marsh exposed to nine years of experimental carbon dioxide (CO2) and nitrogen (N) manipulation. We estimated net carbon (C) gain rates by measuring changes in plant and soil C pools over nine years. In wetland soils that accrete primarily through organic matter inputs, long-term measurements of soil elevation, along with soil C density, provide a robust estimate of net soil C gain. We used net soil C gain along with methane and nitrous oxide fluxes to determine the radiative forcing of the marsh under elevated CO2 and N addition. Nearly all plots exhibited a net gain of C over the study period (up to 203 g C m?2 year?1), and C gain rates were greater with N and CO2 addition. Treatment effects on C gain and methane emissions dominated trends in radiative forcing while nitrous oxide fluxes in all treatments were negligible. Though these soils experience salinities that typically suppress methane emissions, our results suggest that elevated CO2 can stimulate methane emissions, overcoming positive effects of elevated CO2 on C gain, converting brackish marshes that are typically net greenhouse gas sinks into sources. Adding resources, either CO2 or N, will likely increase “blue carbon” accumulation rates in tidal marshes, but importantly, each resource can have distinct influences on the direction of total greenhouse forcing.  相似文献   

19.
The soil nitrogen cycle was investigated in a pre‐established Lolium perenne sward on a loamy soil and exposed to ambient and elevated atmospheric CO2 concentrations (350 and 700 μL L?1) and, at elevated [CO2], to a 3 °C temperature increase. At two levels of mineral nitrogen supply, N– (150 kgN ha?1 y?1) and N+ (533 kgN ha?1 y?1), 15N‐labelled ammonium nitrate was supplied in split applications over a 2.5‐y period. The recovery of the labelled fertilizer N was measured in the harvests, in the stubble and roots, in the macro‐organic matter fractions above 200 μm in size (MOM) and in the aggregated organic matter below 200 μM (AOM). Elevated [CO2] reduced the total amount of N harvested in the clipped parts of the sward. The harvested N derived from soil was reduced to a greater extent than that derived from fertilizer. At both N supplies, elevated [CO2] modified the allocation of the fertilizer N in the sward, in favour of the stubble and roots and significantly increased the recovery of fertilizer N in the soil macro‐organic matter fractions. The increase of fertilizer N immobilization in the MOM was associated with a decline of fertilizer N uptake by the grass sward, which supported the hypothesis of a negative feedback of elevated [CO2] on the sward N yield and uptake. Similar and even more pronounced effects were observed for the native N mineralized in the soil. At N–, a greater part of the fertilizer N organized in the root phytomass resulted in an underestimation of N immobilized in dead roots and, in turn, an underestimation of N immobilization in the MOM. The 3 °C temperature increase alleviated the [CO2] effect throughout much of the N cycle, increasing soil N mineralization, N derived from soil in the harvests, and the partitioning of the assimilated fertilizer N to shoots. In conclusion, at ambient temperature, the N cycle was slowed down under elevated [CO2], which restricted the increase in the aboveground production of the grass sward, and apparently contributed to the sequestration of carbon belowground. In contrast, a temperature increase under elevated [CO2] stimulated the soil nitrogen cycle, improved the N nutrition of the sward and restricted the magnitude of the soil C sequestration.  相似文献   

20.
Increasing global atmospheric CO2 concentration has led to concerns regarding its potential effects on the terrestrial environment. Attempts to balance the atmospheric carbon (C) budget have met with a large shortfall in C accounting (≈1.4 × 1015 g C y–1) and this has led to the hypothesis that C is being stored in the soil of terrestrial ecosystems. This study examined the effects of CO2 enrichment on soil C storage in C3 soybean (Glycine max L.) Merr. and C4 grain sorghum (Sorghum bicolor L.) Moench. agro-ecosystems established on a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with two crop species (soybean and grain sorghum) as the main plots and two CO2 concentration (ambient and twice ambient) as subplots using open top field chambers. Carbon isotopic techniques using δ13C were used to track the input of new C into the soil system. At the end of two years, shifts in δ13C content of soil organic matter carbon were observed to a depth of 30 cm. Calculated new C in soil organic matter with grain sorghum was greater for elevated CO2 vs. ambient CO2 (162 and 29 g m–2, respectively), but with soybean the new C in soil organic matter was less for elevated CO2 vs. ambient CO2 (120 and 291 g m–2, respectively). A significant increase in mineral associated organic C was observed in 1993 which may result in increased soil C storage over the long-term, however, little change in total soil organic C was observed under either plant species. These data indicate that elevated atmospheric CO2 resulted in changes in soil C dynamics in agro-ecosystems that are crop species dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号