首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.

Background

Malaria and dengue are the most prevalent vector-borne diseases worldwide and represent major public health problems. Both are endemic in tropical regions, propitiating co-infection. Only few co-infection cases have been reported around the world, with insufficient data so far to enhance the understanding of the effects of co-infection in the clinical presentation and severity.

Methodology/Principal Findings

A cross-sectional study was conducted (2009 to 2011) in hospitalized patients with acute febrile syndrome in the Brazilian Amazon. All patients were submitted to thick blood smear and PCR for Plasmodium sp. detection, ELISA, PCR and NS1 tests for dengue, viral hepatitis, HIV and leptospirosis. In total, 1,578 patients were recruited. Among them, 176 (11.1%) presented P. vivax malaria mono-infection, 584 (37%) dengue fever mono-infection, and 44 (2.8%) were co-infected. Co-infected patients had a higher chance of presenting severe disease (vs. dengue mono-infected), deep bleeding (vs. P. vivax mono-infected), hepatomegaly, and jaundice (vs. dengue mono-infected).

Conclusions/Significance

In endemic areas for dengue and malaria, jaundice (in dengue patients) and spontaneous bleeding (in malaria patients) should raise the suspicion of co-infection. Besides, whenever co-infection is confirmed, we recommend careful monitoring for bleeding and hepatic complications, which may result in a higher chance of severity, despite of the fact that no increased fatality rate was seen in this group.  相似文献   

2.

Introduction

Viral etiologies of fever, including dengue, Chikungunya, influenza, rota and adeno viruses, cause major disease burden in tropical and subtropical countries. The lack of diagnostic facilities in developing countries leads to failure to estimate the true burden of such illnesses, and generally the diseases are underreported. These diseases may have similar symptoms with other causes of acute febrile illnesses including malaria and hence clinical diagnosis without laboratory tests can be difficult. This study aimed to identify viral etiologies as a cause of fever in children and their co-infections with malaria.

Methods

A cross sectional study was conducted for 6 months at Kilosa district hospital, Tanzania. The participants were febrile children aged 2–13 years presented at the outpatient department. Diagnostic tests such as IgM and IgG ELISA, and PCR were used.

Results

A total of 364 patients were enrolled, of these 83(22.8%) had malaria parasites, 76 (20.9%) had presumptive acute dengue infection and among those, 29(38.2%) were confirmed cases. Dengue was more likely to occur in children ≥ 5 years than in <5 years (OR 2.28, 95% CI: 1.35–3.86). Presumptive acute Chikungunya infection was identified in 17(4.7%) of patients. We observed no presenting symptoms that distinguished patients with Chikungunya infection from those with dengue infection or malaria. Co-infections between malaria and Chikungunya, malaria and dengue fever as well as Chikungunya and dengue were detected. Most patients with Chikungunya and dengue infections were treated with antibacterials. Furthermore, our results revealed that 5(5.2%) of patients had influenza virus while 5(12.8%) had rotavirus and 2(5.1%) had adenovirus.

Conclusion

Our results suggest that even though viral diseases are a major public health concern, they are not given due recognition as a cause of fever in febrile patients. Emphasis on laboratory diagnostic tests for proper diagnosis and management of febrile patients is recommended.  相似文献   

3.

Background

The software available to date for analyzing image sequences from time-lapse microscopy works only for certain bacteria and under limited conditions. These programs, mostly MATLAB-based, fail for microbes with irregular shape, indistinct cell division sites, or that grow in closely packed microcolonies. Unfortunately, many organisms of interest have these characteristics, and analyzing their image sequences has been limited to time consuming manual processing.

Results

Here we describe BactImAS – a modular, multi-platform, open-source, Java-based software delivered both as a standalone program and as a plugin for Icy. The software is designed for extracting and visualizing quantitative data from bacterial time-lapse movies. BactImAS uses a semi-automated approach where the user defines initial cells, identifies cell division events, and, if necessary, manually corrects cell segmentation with the help of user-friendly GUI and incorporated ImageJ application. The program segments and tracks cells using a newly-developed algorithm designed for movies with difficult-to-segment cells that exhibit small frame-to-frame differences. Measurements are extracted from images in a configurable, automated fashion and an SQLite database is used to store, retrieve, and exchange all acquired data. Finally, the BactImAS can generate configurable lineage tree visualizations and export data as CSV files. We tested BactImAS on time-lapse movies of Mycobacterium smegmatis and achieved at least 10-fold reduction of processing time compared to manual analysis. We illustrate the power of the visualization tool by showing heterogeneity of both icl expression and cell growth atop of a lineage tree.

Conclusions

The presented software simplifies quantitative analysis of time-lapse movies overall and is currently the only available software for the analysis of mycobacteria-like cells. It will be of interest to the community of both end-users and developers of time-lapse microscopy software.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-251) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

Dengue fever is a virus infection that is spread by the Aedes aegypti mosquito and can cause severe disease especially in children. Dengue fever is a major problem in tropical and sub-tropical regions of the world.

Methodology/Principal Findings

We invited dengue experts from around the world to attend meetings to discuss dengue surveillance. We reviewed literature, heard detailed reports on surveillance programs, and shared expert opinions.

Results

Presentations by 22 countries were heard during the 2.5 day meetings. We describe the best methods of surveillance in general, the stakeholders in dengue surveillance, and the steps from mosquito bite to reporting of a dengue case to explore how best to carry out dengue surveillance. We also provide details and a comparison of the dengue surveillance programs by the presenting countries.

Conclusions/Significance

The experts provided recommendations for achieving the best possible data from dengue surveillance accepting the realities of the real world (e.g., limited funding and staff). Their recommendations included: (1) Every dengue endemic country should make reporting of dengue cases to the government mandatory; (2) electronic reporting systems should be developed and used; (3) at minimum dengue surveillance data should include incidence, hospitalization rates, deaths by age group; (4) additional studies should be completed to check the sensitivity of the system; (5) laboratories should share expertise and data; (6) tests that identify dengue virus should be used in patients with fever for four days or less and antibody tests should be used after day 4 to diagnose dengue; and (7) early detection and prediction of dengue outbreaks should be goals for national surveillance systems.  相似文献   

5.

Background

Ontologies represent powerful tools in information technology because they enhance interoperability and facilitate, among other things, the construction of optimized search engines. To address the need to expand the toolbox available for the control and prevention of vector-borne diseases we embarked on the construction of specific ontologies. We present here IDODEN, an ontology that describes dengue fever, one of the globally most important diseases that are transmitted by mosquitoes.

Methodology/Principal Findings

We constructed IDODEN using open source software, and modeled it on IDOMAL, the malaria ontology developed previously. IDODEN covers all aspects of dengue fever, such as disease biology, epidemiology and clinical features. Moreover, it covers all facets of dengue entomology. IDODEN, which is freely available, can now be used for the annotation of dengue-related data and, in addition to its use for modeling, it can be utilized for the construction of other dedicated IT tools such as decision support systems.

Conclusions/Significance

The availability of the dengue ontology will enable databases hosting dengue-associated data and decision-support systems for that disease to perform most efficiently and to link their own data to those stored in other independent repositories, in an architecture- and software-independent manner.  相似文献   

6.

Background

Increasing the distribution and use of insecticide-treated nets (ITNs) in Sub-Saharan Africa has made controlling malaria with ITNs more practical. We evaluated community effects induced by ITNs, specifically long-lasting insecticidal nets (LLINs), under ordinary conditions in an endemic malaria area of Western Kenya.

Methods

Using the database from Mbita Health and Demographic Surveillance System (HDSS), children younger than 5 years old were assessed over four survey periods. We analyzed the effect of bed net usage, LLIN density and population density of young people around a child on all-cause child mortality (ACCM) rates using Cox PH models.

Results

During the study, 14,554 children were followed and 250 deaths were recorded. The adjusted hazard ratios (HRs) for LLIN usage compared with no net usage were not significant among the models: 1.08 (95%CI 0.76–1.52), 1.19 (95%CI 0.69–2.08) and 0.92 (95%CI 0.42–2.02) for LLIN users, untreated net users, and any net users, respectively. A significant increasing linear trend in risk across LLIN density quartiles (HR = 1.25; 95%CI 1.03–1.51) and a decreasing linear trend in risk across young population density quartiles among non-net user children (HR = 0.77; 95%CI 0.63–0.94) were observed.

Conclusions

Although our data showed that current LLIN coverage level (about 35%) could induce a community effect to protect children sleeping without bed nets even in a malaria-endemic area, it appears that a better system is needed to monitor the current malaria situation globally in order to optimize malaria control programs with limited resources.  相似文献   

7.

Background

Malaria is the number one public health problem in Nigeria, responsible for about 30% of deaths in under-fives and 25% of deaths in infants and 11% maternal mortality. This study estimated the economic burden of malaria in Nigeria using the cost of illness approach.

Methods

A cross-sectional study was undertaken in two malaria holo-endemic communities in Nigeria, involving both community and hospital based surveys. A random sample of 500 households was interviewed using interviewer administered questionnaire. In addition, 125 exit interviews for inpatient department stays (IPD) and outpatient department visits (OPD) were conducted and these were complemented with data abstraction from 125 patient records.

Results

From the household survey, over half of the households (57.6%) had an episode of malaria within one month to the date of the interview. The average household expenditure per case was 12.57US$ and 23.20US$ for OPD and IPD respectively. Indirect consumer costs of treatment were higher than direct consumer medical costs. From a health system perspective, the recurrent provider costs per case was 30.42 US$ and 48.02 US$ for OPD and IPD while non recurrent provider costs were 133.07US$ and 1857.15US$ for OPD and IPD. The mode of payment was mainly through out-of-pocket spending (OOPS).

Conclusion

Private expenditure on treatment of malaria constitutes a high economic burden to households and to the health system. Removal of user fees and interventions that will decrease the use of OOPS for treatment of malaria will significantly decrease the economic burden of malaria to both households and the health system.  相似文献   

8.

Background

Dengue and malaria are two major public health concerns in tropical settings. Although the pathogeneses of these two arthropod-borne diseases differ, their clinical and biological presentations are unspecific. During dengue epidemics, several hundred patients with fever and diffuse pain are weekly admitted at the emergency room. It is difficult to discriminate them from patients presenting malaria attacks. Furthermore, it may be impossible to provide a parasitological microscopic examination for all patients. This study aimed to establish a diagnostic algorithm for communities where dengue fever and malaria occur at some frequency in adults.

Methodology/Principal Findings

A sub-study using the control groups of a case-control study in French Guiana – originally designed to compare dengue and malaria co-infected cases to single infected cases – was performed between 2004 and 2010. In brief, 208 patients with malaria matched to 208 patients with dengue fever were compared in the present study. A predictive score of malaria versus dengue was established using .632 bootstrap procedures. Multivariate analysis showed that male gender, age, tachycardia, anemia, thrombocytopenia, and CRP>5 mg/l were independently associated with malaria. The predictive score using those variables had an AUC of 0.86 (95%CI: 0.82–0.89), and the CRP was the preponderant predictive factor. The sensitivity and specificity of CRP>5 mg/L to discriminate malaria from dengue were of 0.995 (95%CI: 0.991–1) and 0.35 (95%CI 0.32–0.39), respectively.

Conclusions/Significance

The clinical and biological score performed relatively well for discriminating cases of dengue versus malaria. Moreover, using only the CRP level turned to be a useful biomarker to discriminate feverish patients at low risk of malaria in an area where both infections exist. It would avoid more than 33% of unnecessary parasitological examinations with a very low risk of missing a malaria attack.  相似文献   

9.

Introduction

Insecticide-treated nets (ITNs) are one of the main interventions used for malaria control. However, these nets may also be effective against other vector borne diseases (VBDs). We conducted a systematic review and meta-analysis to estimate the efficacy of ITNs, insecticide-treated curtains (ITCs) and insecticide-treated house screening (ITS) against Chagas disease, cutaneous and visceral leishmaniasis, dengue, human African trypanosomiasis, Japanese encephalitis, lymphatic filariasis and onchocerciasis.

Methods

MEDLINE, EMBASE, LILACS and Tropical Disease Bulletin databases were searched using intervention, vector- and disease-specific search terms. Cluster or individually randomised controlled trials, non-randomised trials with pre- and post-intervention data and rotational design studies were included. Analysis assessed the efficacy of ITNs, ITCs or ITS versus no intervention. Meta-analysis of clinical data was performed and percentage reduction in vector density calculated.

Results

Twenty-one studies were identified which met the inclusion criteria. Meta-analysis of clinical data could only be performed for four cutaneous leishmaniasis studies which together showed a protective efficacy of ITNs of 77% (95%CI: 39%–91%). Studies of ITC and ITS against cutaneous leishmaniasis also reported significant reductions in disease incidence. Single studies reported a high protective efficacy of ITS against dengue and ITNs against Japanese encephalitis. No studies of Chagas disease, human African trypanosomiasis or onchocerciasis were identified.

Conclusion

There are likely to be considerable collateral benefits of ITN roll out on cutaneous leishmaniasis where this disease is co-endemic with malaria. Due to the low number of studies identified, issues with reporting of entomological outcomes, and few studies reporting clinical outcomes, it is difficult to make strong conclusions on the effect of ITNs, ITCs or ITS on other VBDs and therefore further studies be conducted. Nonetheless, it is clear that insecticide-treated materials such as ITNs have the potential to reduce pathogen transmission and morbidity from VBDs where vectors enter houses.  相似文献   

10.
Katz I  Komatsu R  Low-Beer D  Atun R 《PloS one》2011,6(2):e17166

Objective

The paper projects the contribution to 2011–2015 international targets of three major pandemics by programs in 140 countries funded by the Global Fund to Fight AIDS, Tuberculosis and Malaria, the largest external financier of tuberculosis and malaria programs and a major external funder of HIV programs in low and middle income countries.

Design

Estimates, using past trends, for the period 2011–2015 of the number of persons receiving antiretroviral (ARV) treatment, tuberculosis case detection using the internationally approved DOTS strategy, and insecticide-treated nets (ITNs) to be delivered by programs in low and middle income countries supported by the Global Fund compared to international targets established by UNAIDS, Stop TB Partnership, Roll Back Malaria Partnership and the World Health Organisation.

Results

Global Fund-supported programs are projected to provide ARV treatment to 5.5–5.8 million people, providing 30%–31% of the 2015 international target. Investments in tuberculosis and malaria control will enable reaching in 2015 60%–63% of the international target for tuberculosis case detection and 30%–35% of the ITN distribution target in sub-Saharan Africa.

Conclusion

Global Fund investments will substantially contribute to the achievement by 2015 of international targets for HIV, TB and malaria. However, additional large scale international and domestic financing is needed if these targets are to be reached by 2015.  相似文献   

11.

Background

Dengue is a public health problem in many countries. Rapid diagnosis of dengue can assist patient triage and management. Detection of the dengue viral protein, NS1, represents a new approach to dengue diagnosis.

Methodology/Principal Findings

The sensitivity and specificity of the Platelia NS1 ELISA assay and an NS1 lateral flow rapid test (LFRT) were compared against a gold standard reference diagnostic algorithm in 138 Vietnamese children and adults. Overall, the Platelia NS1 ELISA was modestly more sensitive (82%) than the NS1 LFRT (72%) in confirmed dengue cases. Both ELISA and LFRT assays were more sensitive for primary than secondary dengue, and for specimens collected within 3 days of illness onset relative to later time points. The presence of measurable DENV-reactive IgG and to a lesser extent IgM in the test sample was associated with a significantly lower rate of NS1 detection in both assays. NS1 positivity was associated with the underlying viraemia, as NS1-positive samples had a significantly higher viraemia than NS1-negative samples matched for duration of illness. The Platelia and NS1 LFRT were 100% specific, being negative in all febrile patients without evidence of recent dengue, as well as in patients with enteric fever, malaria, Japanese encephalitis and leptospirosis.

Conclusions/Significance

Collectively, these data suggest NS1 assays deserve inclusion in the diagnostic evaluation of dengue patients, but with due consideration for the limitations in patients who present late in their illness or have a concomitant humoral immune response.  相似文献   

12.

Background

To prove effectiveness of wrapping tablet computers in order to reduce microbiological contamination and to evaluate whether a plastic bag-covered tablet leads to impaired user satisfaction or touchscreen functionality.

Materials and Methods

Within a period of 11 days 115 patients were provided with a tablet computer while waiting for their magnetic resonance imaging examination. Every day the contamination of the surface of the tablet was determined before the first and after the final use. Before the device was handed over to a patient, it was enclosed in a customized single-use plastic bag, which was analyzed for bacterial contamination after each use. A questionnaire was applied to determine whether the plastic bag impairs the user satisfaction and the functionality of the touchscreen.

Results

Following the use by patients the outside of the plastic bags was found to be contaminated with various bacteria (657.5 ± 368.5 colony forming units/day); some of them were potentially pathogenic. In contrast, the plastic bag covered surface of the tablet was significantly less contaminated (1.7 ± 1.9 colony forming units/day). Likewise, unused plastic bags did not show any contamination. 11% of the patients reported problems with the functionality of the touchscreen. These patients admitted that they had never used a tablet or a smartphone before.

Conclusions

Tablets get severely contaminated during usage in a clinical setting. Wrapping with a customized single-use plastic bag significantly reduces microbiological contamination of the device, protects patients from the acquisition of potentially pathogenic bacteria and hardly impairs the user satisfaction and the functionality of the touchscreen.  相似文献   

13.
14.

Background

Dengue infection is one of the most important mosquito-borne diseases. More data regarding the disease burden and the prevalence of each clinical spectrum among symptomatic infections and the clinical manifestations are needed. This study aims to describe the incidence and clinical manifestations of symptomatic dengue infection in Thai children during 2006 through 2008.

Study Design

This study is a school-based prospective open cohort study with a 9,448 person-year follow-up in children aged 3–14 years. Active surveillance for febrile illnesses was done in the studied subjects. Subjects who had febrile illness were asked to visit the study hospital for clinical and laboratory evaluation, treatment, and serological tests for dengue infection. The clinical data from medical records, diary cards, and data collection forms were collected and analyzed.

Results

Dengue infections were the causes of 12.1% of febrile illnesses attending the hospital, including undifferentiated fever (UF) (49.8%), dengue fever (DF) (39.3%) and dengue hemorrhagic fever (DHF) (10.9%). Headache, anorexia, nausea/vomiting and myalgia were common symptoms occurring in more than half of the patients. The more severe dengue spectrum (i.e., DHF) had higher temperature, higher prevalence of nausea/vomiting, abdominal pain, rash, diarrhea, petechiae, hepatomegaly and lower platelet count. DHF cases also had significantly higher prevalence of anorexia, nausea/vomiting and abdominal pain during day 3–6 and diarrhea during day 4–6 of illness. The absence of nausea/vomiting, abdominal pain, diarrhea, petechiae, hepatomegaly and positive tourniquet test may predict non-DHF.

Conclusion

Among symptomatic dengue infection, UF is most common followed by DF and DHF. Some clinical manifestations may be useful to predict the more severe disease (i.e., DHF). This study presents additional information in the clinical spectra of symptomatic dengue infection.  相似文献   

15.
16.

Background

International financing for malaria increased more than 18-fold between 2000 and 2011; the largest source came from The Global Fund to Fight AIDS, Tuberculosis and Malaria (Global Fund). Countries have made substantial progress, but achieving elimination requires sustained finances to interrupt transmission and prevent reintroduction. Since 2011, global financing for malaria has declined, fueling concerns that further progress will be impeded, especially for current malaria-eliminating countries that may face resurgent malaria if programs are disrupted.

Objectives

This study aims to 1) assess past total and Global Fund funding to the 34 current malaria-eliminating countries, and 2) estimate their future funding needs to achieve malaria elimination and prevent reintroduction through 2030.

Methods

Historical funding is assessed against trends in country-level malaria annual parasite incidences (APIs) and income per capita. Following Kizewski et al. (2007), program costs to eliminate malaria and prevent reintroduction through 2030 are estimated using a deterministic model. The cost parameters are tailored to a package of interventions aimed at malaria elimination and prevention of reintroduction.

Results

The majority of Global Fund-supported countries experiencing increases in total funding from 2005 to 2010 coincided with reductions in malaria APIs and also overall GNI per capita average annual growth. The total amount of projected funding needed for the current malaria-eliminating countries to achieve elimination and prevent reintroduction through 2030 is approximately US$8.5 billion, or about $1.84 per person at risk per year (PPY) (ranging from $2.51 PPY in 2014 to $1.43 PPY in 2030).

Conclusions

Although external donor funding, particularly from the Global Fund, has been key for many malaria-eliminating countries, sustained and sufficient financing is critical for furthering global malaria elimination. Projected cost estimates for elimination provide policymakers with an indication of the level of financial resources that should be mobilized to achieve malaria elimination goals.  相似文献   

17.
18.

Background

A variety of obstacles including bureaucracy and lack of resources have interfered with timely detection and reporting of dengue cases in many endemic countries. Surveillance efforts have turned to modern data sources, such as Internet search queries, which have been shown to be effective for monitoring influenza-like illnesses. However, few have evaluated the utility of web search query data for other diseases, especially those of high morbidity and mortality or where a vaccine may not exist. In this study, we aimed to assess whether web search queries are a viable data source for the early detection and monitoring of dengue epidemics.

Methodology/Principal Findings

Bolivia, Brazil, India, Indonesia and Singapore were chosen for analysis based on available data and adequate search volume. For each country, a univariate linear model was then built by fitting a time series of the fraction of Google search query volume for specific dengue-related queries from that country against a time series of official dengue case counts for a time-frame within 2003–2010. The specific combination of queries used was chosen to maximize model fit. Spurious spikes in the data were also removed prior to model fitting. The final models, fit using a training subset of the data, were cross-validated against both the overall dataset and a holdout subset of the data. All models were found to fit the data quite well, with validation correlations ranging from 0.82 to 0.99.

Conclusions/Significance

Web search query data were found to be capable of tracking dengue activity in Bolivia, Brazil, India, Indonesia and Singapore. Whereas traditional dengue data from official sources are often not available until after some substantial delay, web search query data are available in near real-time. These data represent valuable complement to assist with traditional dengue surveillance.  相似文献   

19.

Background

Information about malaria risk factors at high altitudes is scanty. Understanding the risk factors that determine the risk of malaria transmission at high altitude villages is important to facilitate implementing sustainable malaria control and prevention programs.

Methods

An unmatched case control study was conducted among patients seeking treatment at health centers in high altitude areas. Either microscopy or rapid diagnostic tests were used to confirm the presence of plasmodium species. A generalized linear model was used to identify the predictors of malaria transmission in high altitude villages.

Results

Males (AOR = 3.11, 95%CI: 2.28, 4.23), and those who traveled away from the home in the previous month (AOR = 2.01, 95% CI: 1.56, 2.58) were strongly associated with presence of malaria in high altitude villages. Other significant factors, including agriculture in occupation (AOR = 1.41, 95% CI: 1.05, 1.93), plants used for fencing (AOR = 1.70, 95% CI: 1.18, 2.52) and forests near the house (AOR = 1.60, 95% CI: 1.15, 2.47), were found predictors for malaria in high altitude villages.

Conclusion

Travel outside of their home was an important risk of malaria infections acquisition. Targeting males who frequently travel to malarious areas can reduce malaria transmission risks in high altitude areas.  相似文献   

20.

Background

Travelers who acquire dengue infection are often routes for virus transmission to other regions. Nevertheless, the interplay between infected travelers, climate, vectors, and indigenous dengue incidence remains unclear. The role of foreign-origin cases on local dengue epidemics thus has been largely neglected by research. This study investigated the effect of both imported dengue and local meteorological factors on the occurrence of indigenous dengue in Taiwan.

Methods and Principal Findings

Using logistic and Poisson regression models, we analyzed bi-weekly, laboratory-confirmed dengue cases at their onset dates of illness from 1998 to 2007 to identify correlations between indigenous dengue and imported dengue cases (in the context of local meteorological factors) across different time lags. Our results revealed that the occurrence of indigenous dengue was significantly correlated with temporally-lagged cases of imported dengue (2–14 weeks), higher temperatures (6–14 weeks), and lower relative humidity (6–20 weeks). In addition, imported and indigenous dengue cases had a significant quantitative relationship in the onset of local epidemics. However, this relationship became less significant once indigenous epidemics progressed past the initial stage.

Conclusions

These findings imply that imported dengue cases are able to initiate indigenous epidemics when appropriate weather conditions are present. Early detection and case management of imported cases through rapid diagnosis may avert large-scale epidemics of dengue/dengue hemorrhagic fever. The deployment of an early-warning surveillance system, with the capacity to integrate meteorological data, will be an invaluable tool for successful prevention and control of dengue, particularly in non-endemic countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号