首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 517 毫秒
1.
Muscadinia rotundifolia, a species closely related to cultivated grapevine Vitis vinifera, is a major source of resistance to grapevine downy and powdery mildew, two major threats to cultivated traditional cultivars of V. vinifera respectively caused by the oomycete Plasmopara viticola and the ascomycete Erisyphe necator. The aim of the present work was to develop a reference genetic linkage map based on simple sequence repeat (SSR) markers for M. rotundifolia. This map was created using S1 M. rotundifolia cv. Regale progeny, and covers 948?cM on 20 linkage groups, which corresponds to the expected chromosome number for muscadine. The comparison of the genetic maps of V. vinifera and M. rotundifolia revealed a high macrosynteny between the genomes of both species. The S1 progeny was used to assess the general level of resistance of M. rotundifolia to P. viticola and E. necator, by scoring different parameters of pathogen development. A quantitative trait locus (QTL) analysis allowed us to highlight a major QTL on linkage group 14 controlling resistance to powdery mildew, which explained up to 58?% of the total phenotypic variance. This QTL was named ‘Resistance to Erysiphe Necator 5’ (Ren5). A microscopic evaluation E. necator mycelium development on resistant and susceptible genotypes of the S1 progeny showed that Ren5 exerts its action after the formation of the first appressorium, and acts by delaying, and then stopping, mycelium development.  相似文献   

2.
Two populations (Pop) segregating quantitatively for resistance to downy mildew (DM), caused by Plasmopara viticola, were used to construct genetic maps and to carry out quantitative trait locus (QTL) analysis. Pop1 comprised of 174 F1 individuals from a cross of ‘Moscato Bianco’, a susceptible Vitis vinifera cultivar, and a resistant individual of Vitis riparia. Pop2 consisted of 94 progeny from a cross of two interspecific hybrids, ‘VRH3082 1-42’ and ‘SK77 5/3’, with resistance traits inherited from Vitis rotundifolia and Vitis amurensis, respectively. Resistance of progeny was measured in field and greenhouse conditions by visual evaluation of disease symptoms on leaves. Linkage maps of 1037.2 and 651 cM were built essentially with simple sequence repeat markers and were enriched with gene-derived single-strand conformational polymorphism and single-nucleotide polymorphism markers. Simple interval mapping and Kruskall–Wallis analysis detected a stable QTL involved in field resistance to DM on linkage group (LG) 7 of the Pop1 integrated map co-localized with a putative Caffeoyl-CoA O-methyltransferase-derived marker. Additional QTLs were detected on LGs 8, 12 and 17. We were able to identify genetic factors correlated with resistance to P. viticola with lower statistical significance on LGs 1, 6 and 7 of the Pop2 map. Finally, no common QTLs were found between the two crosses analyzed. A search of the grapevine genome sequence revealed either homologues to non-host-, host- or defense-signalling genes within the QTL intervals. These positional candidate genes may provide new information about chromosomal regions hosting phenotypic loci.  相似文献   

3.
Dense leaf hairs of grapevines have been known to act as a preexisting defense structure for preventing the incidence of grapevine downy mildew, because the pathogen, Plasmopara viticola, needs water to invade grapevines, and water is repelled by a hydrophobic surface due to dense leaf hairs. In the present study, we performed regression analyses of downy mildew resistance with leaf hair density using hybrids of Vitis labrusca origin and confirmed the effect of leaf hairs. Reducing the repelling effect of leaf hairs by detergent application canceled the effect of leaf hair, which confirmed the hypothesis. Thereafter, based on QTL analyses in the population of V. vinifera ‘Muscat of Alexandria’ × the interspecific hybrid ‘Campbell Early,’ we identified a major locus in linkage group (LG) 5 of ‘Muscat of Alexandria’ controlling leaf hair density. This locus was previously reported as a small effect QTL for downy mildew resistance, however we found that the locus had high LOD scores explaining 71.9%–78.5% of the phenotypic variance of leaf hairs. Moreover, this locus was detected as a QTL for downy mildew resistance. The effect of this locus was confirmed in two other hybrid populations. Finally, we could successfully identify three traditional V. vinifera table grapes ‘Muscat of Alexandria,’ ‘Katta Kurgan,’ and ‘Parkent’ as the origin of the allele linked to hairlessness by defining the SSR haplotypes. The use of this locus for marker-assisted selections would be a promising strategy for producing grapevines with resistance by preexisting defense structure.  相似文献   

4.
The Amur grape (Vitis amurensis Rupr.) thrives naturally in cool climates of Northeast Asia. Resistance against the introduced pathogen Plasmopara viticola is common among wild ecotypes that were propagated from Manchuria into Chinese vineyards or collected by Soviet botanists in Siberia, and used for the introgression of resistance into wine grapes (Vitis vinifera L.). A QTL analysis revealed a dominant gene Rpv12 that explained 79% of the phenotypic variance for downy mildew resistance and was inherited independently of other resistance genes. A Mendelian component of resistance–a hypersensitive response in leaves challenged with P. viticola–was mapped in an interval of 0.2 cM containing an array of coiled-coil NB-LRR genes on chromosome 14. We sequenced 10-kb genic regions in the Rpv12+ haplotype and identified polymorphisms in 12 varieties of V. vinifera using next-generation sequencing. The combination of two SNPs in single-copy genes flanking the NB-LRR cluster distinguished the resistant haplotype from all others found in 200 accessions of V. vinifera, V. amurensis, and V. amurensis x V. vinifera crosses. The Rpv12+ haplotype is shared by 15 varieties, the most ancestral of which are the century-old ‘Zarja severa’ and ‘Michurinets’. Before this knowledge, the chromosome segment around Rpv12+ became introgressed, shortened, and pyramided with another downy mildew resistance gene from North American grapevines (Rpv3) only by phenotypic selection. Rpv12+ has an additive effect with Rpv3+ to protect vines against natural infections, and confers foliar resistance to strains that are virulent on Rpv3+ plants.  相似文献   

5.
6.

Background  

Natural disease resistance is a cost-effective and environmentally friendly way of controlling plant disease. Breeding programmes need to make sure that the resistance deployed is effective and durable. Grapevine downy mildew, caused by the Oomycete Plasmopara viticola, affects viticulture and it is controlled with pesticides. Downy mildew resistant grapevine varieties are a promising strategy to control the disease, but their use is currently restricted to very limited acreages. The arising of resistance-breaking isolates under such restricted deployment of resistant varieties would provide valuable information to design breeding strategies for the deployment of resistance genes over large acreages whilst reducing the risks of the resistance being defeated. The observation of heavy downy mildew symptoms on a plant of the resistant variety Bianca, whose resistance is conferred by a major gene, provided us with a putative example of emergence of a resistance-breaking isolate in the interaction between grapevine and P. viticola.  相似文献   

7.
8.
Watery extracts of composted manure-straw-soil mixtures induced increased resistance of grapevine leaves against downy mildew, Plasmopara viticola, if applied by dipping or spraying. The extracts had no direct fungicidal or fungitoxic effects.  相似文献   

9.
A population derived from a cross between grapevine breeding strain Gf.Ga-52-42 and cultivar ‘Solaris’ consisting of 265 F1-individuals was genetically mapped using SSR markers and screened for downy mildew resistance. Quantitative trait locus (QTL) analysis revealed two strong QTLs on linkage groups (LGs) 18 and 09. The locus on LG 18 was found to be identical with the previously described locus Rpv3 and is transmitted by Gf.Ga-52-42. ‘Solaris’ transmitted the resistance-related locus on LG 09 explaining up to 50% of the phenotypic variation in the population. This downy mildew resistance locus is named Rpv10 for resistance to Plasmopara viticola. Rpv10 was initially introgressed from Vitis amurensis, a wild species of the Asian Vitis gene pool. The one-LOD supported confidence interval of the QTL spans a section of 2.1 centi Morgan (cM) corresponding to 314 kb in the reference genome PN40024 (12x). Eight resistance gene analogues (RGAs) of the NBS–LRR type and additional resistance-linked genes are located in this region of PN40024. The F1 sub-population which contains the Rpv3 as well as the Rpv10 locus showed a significantly higher degree of resistance, indicating additive effects by pyramiding of resistance loci. Possibilities for using the resistance locus Rpv10 in a grapevine breeding programme are discussed. Furthermore, the marker data revealed ‘Severnyi’ × ‘Muscat Ottonel’ as the true parentage for the male parent of ‘Solaris’.  相似文献   

10.
The most economically important diseases of grapevine cultivation worldwide are caused by the fungal pathogen powdery mildew (Erysiphe necator syn. Uncinula necator) and the oomycete pathogen downy mildew (Plasmopara viticola). Currently, grapegrowers rely heavily on the use of agrochemicals to minimize the potentially devastating impact of these pathogens on grape yield and quality. The wild North American grapevine species Muscadinia rotundifolia was recognized as early as 1889 to be resistant to both powdery and downy mildew. We have now mapped resistance to these two mildew pathogens in M. rotundifolia to a single locus on chromosome 12 that contains a family of seven TIR‐NB‐LRR genes. We further demonstrate that two highly homologous (86% amino acid identity) members of this gene family confer strong resistance to these unrelated pathogens following genetic transformation into susceptible Vitis vinifera winegrape cultivars. These two genes, designated r esistance to P lasmopara v iticola (MrRPV1) are the first resistance genes to be cloned from a grapevine species. Both MrRUN1 and MrRPV1 were found to confer resistance to multiple powdery and downy mildew isolates from France, North America and Australia; however, a single powdery mildew isolate collected from the south‐eastern region of North America, to which M. rotundifolia is native, was capable of breaking MrRUN1‐mediated resistance. Comparisons of gene organization and coding sequences between M. rotundifolia and the cultivated grapevine V. vinifera at the MrRUN1/MrRPV1 locus revealed a high level of synteny, suggesting that the TIR‐NB‐LRR genes at this locus share a common ancestor.  相似文献   

11.
12.
13.
Bacillus subtilis GLB191 (hereafter GLB191) is an efficient biological control agent against the biotrophic oomycete Plasmopara viticola, the causal agent of grapevine downy mildew. In this study, we show that GLB191 supernatant is also highly active against downy mildew and that the activity results from both direct effect against the pathogen and stimulation of the plant defences (induction of defence gene expression and callose production). High-performance thin-layer chromatography analysis revealed the presence of the cyclic lipopeptides fengycin and surfactin in the supernatant. Mutants affected in the production of fengycin and/or surfactin were thus obtained and allowed us to show that both surfactin and fengycin contribute to the double activity of GLB191 supernatant against downy mildew. Altogether, this study suggests that GLB191 supernatant could be used as a new biocontrol product against grapevine downy mildew.  相似文献   

14.
Downy mildew, caused by the oomycete Plasmopara viticola, is a serious fungal disease in the cultivated European grapevines (Vitis vinifera L.). The class 10 of pathogenesis-related (PR) genes in grapevine leaves was reported to be accumulated at mRNA level in response to P. viticola infection. To elucidate the functional roles of PR10 genes during plant–pathogen interactions, a PR10 gene from a fungal-resistant accession of Chinese wild Vitis pseudoreticulata (designated VpPR10.2) was isolated and showed high homology to PR10.2 from susceptible V. vinifera (designated VvPR10.2). Comparative analysis displayed that there were significant differences in the patterns of gene expression between the PR10 genes from the two host species. VpPR10.2 was induced with high level in leaves infected by P. viticola, while VvPR10.2 showed a low response to this inoculation. Recombinant VpPR10.2 protein showed DNase activity against host genomic DNA and RNase activity against yeast total RNA in vitro. Meanwhile, recombinant VpPR10.2 protein inhibited the growth of tobacco fungus Alternaria alternata and over-expression of VpPR10.2 in susceptible V. vinifera enhanced the host resistance to P. viticola. The results from subcellular localization analysis showed that VpPR10.2 proteins were distributed dynamically inside or outside of host cell. Moreover, they were found in haustorium of P. viticola and nucleus of host cell which was associated with a nucleus collapse at 10 days post-inoculation. Taken together, these results suggested that VpPR10.2 might play an important role in host plant defense against P. viticola infection.  相似文献   

15.
Specific-locus amplified fragment sequencing is a high-resolution method for genetic mapping, genotyping, and single nucleotide polymorphism (SNP) marker discovery. Previously, a major QTL for downy mildew resistance, BraDM, was mapped to linkage group A08 in a doubled-haploid population derived from Chinese cabbage lines 91–112 and T12–19. The aim of the present study was to improve the linkage map and identify the genetic factors involved in downy mildew resistance. We detected 53,692 high quality SLAFs, of which 7230 were polymorphic, and 3482 of the polymorphic markers were used in genetic map construction. The final map included 1064 bins on ten linkage groups and was 858.98 cM in length, with an average inter-locus distance of 0.81 cM. We identified six QTLs that are involved in downy mildew resistance. The four major QTLs, sBrDM8, yBrDM8, rBrDM8, and hBrDM8, for resistance at the seedling, young plant, rosette, and heading stages were mapped to A08, and are identical to BraDM. The two minor resistance QTLs, rBrDM6 (A06) and hBrDM4 (A04), were active at the rosette and heading stages. The major QTL sBrDM8 defined a physical interval of ~228 Kb on A08, and a serine/threonine kinase family gene, Bra016457, was identified as the possible candidate gene. We report here the first high-density bin map for Chinese cabbage, which will facilitate mapping QTLs for economically important traits and SNP marker development. Our results also expand knowledge of downy mildew resistance in Chinese cabbage and provide three SNP markers (A08-709, A08-028, and A08-018) that we showed to be effective when used in MAS to breed for downy mildew resistance in B. rapa.  相似文献   

16.
As one of the most serious diseases in grape, downy mildew caused by Plasmopara viticola is a worldwide grape disease. Much effort has been focused on improving susceptible grapevine resistance, and wild resistant grapevine species are important for germplasm improvement of commercial cultivars. Using yeast two‐hybrid screen followed by a series of immunoprecipitation experiments, we identified voltage‐dependent anion channel 3 (VDAC3) protein from Vitis piasezkii ‘Liuba‐8’ as an interacting partner of VpPR10.1 cloned from Vitis pseudoreticulata ‘Baihe‐35‐1’, which is an important germplasm for its resistance to a range of pathogens. Co‐expression of VpPR10.1/VpVDAC3 induced cell death in Nicotiana benthamiana, which accompanied by ROS accumulation. VpPR10.1 transgenic grapevine line showed resistance to P. viticola. We conclude that the VpPR10.1/VpVDAC3 complex is responsible for cell death‐mediated defence response to P. viticola in grapevine.  相似文献   

17.
Grapevine downy mildew (Plasmopara viticola) is a devastating disease of grapevine. In this study, 151 actinomycete isolates were obtained and tested for antagonistic activity against P. viticola. The assay suggested that 28 isolates displayed antagonistic effects to varying degrees. The greatest reduction in disease severity was observed with isolate PY-1, which reduced disease severity by 92.13% in the detached leaf assay, and by 83% in a field assay. It was identified as Streptomyces atratus using the 16S rDNA sequence analysis. To elucidate the antagonistic mechanism of PY-1 against P. viticola, scanning electron microscopy showed that major damage to the pathogens sporangia and sporangiophores was observed after treatment for PY-1. Furthermore, PY-1 showed antagonistic activity against other pathogens, including: Botrytis cinerea, Colletotrichum orbiculare, Fusarium oxysporum, Phytophthora capsici and Phytophthora infestans. Two imide compounds were purified from the fermentation liquid using silica gel chromatography and high-performance liquid chromatography and identified as 5-acetoxycycloheximide and cycloheximide using nuclear magnetic resonance. Both compounds showed significant antagonistic activity against P. viticola, determining a reduction in disease severity by 65% and 84%, respectively. In conclusion, 5-acetoxycycloheximide and cycloheximide were identified for the first time in a new S. atratus strain able to effectively control grapevine downy mildew.  相似文献   

18.
Plasmopara viticola is the causal agent of grapevine downy mildew and is among the most important diseases in viticulture. It originates from North America, where it coevolved with wild Vitis species. Beginning in the 1870s it turned into a global epidemic that has been causing severe yield losses. It is generally believed that a single species is causing downy mildew on a large variety of economically important cultivars. Here we report, based on one nuclear and two mitochondrial markers, that isolates from vineyards in the United States fall into three highly distinct phylogenetic lineages. One of these contains European strains and affects Vitis vinifera cultivars, while the other two lineages affect also other species of Vitis. The divergence between these lineages is high, and, judging from the genetic variation in other Plasmopara lineages, might reflect distinct species. Due to the potentially significant implications for quarantine regulations and resistance breeding, detailed studies will be necessary to clarify whether these genetically distinct lineages occur outside of North America or are still confined there.  相似文献   

19.
Mapping of crown gall resistance locus Rcg1 in grapevine   总被引:1,自引:0,他引:1  
Agrobacteria are efficient plant pathogens. They are able to transform plant cells genetically resulting in abnormal cell proliferation. Cultivars of Vitis vinifera are highly susceptible to many virulent Agrobacterium strains but certain wild Vitis species, including Vitis amurensis have resistant genotypes. Studies of the molecular background of such natural resistance are of special importance, not only for practical benefits in agricultural practice but also for understanding the role of plant genes in the transformation process. Earlier, crown gall resistance from V. amurensis was introgressed into V. vinifera through interspecific breeding and it was shown to be inherited as a single and dominant Mendelian trait. To develop this research further, towards understanding underlying molecular mechanisms, a mapping population was established, and resistance-coupled molecular DNA markers were identified by three different approaches. First, RAPD makers linked to the resistance locus (Rcg1) were identified, and on the basis of their DNA sequences, we developed resistance-coupled SCAR markers. However, localization of these markers in the grapevine genome sequence failed due to their similarity to many repetitive regions. Next, using SSR markers of the grapevine reference linkage map, location of the resistance locus was established on linkage group 15 (LG15). Finally, this position was supported further by developing new chromosome-specific markers and by the construction of the genetic map of the region including nine loci in 29.1?cM. Our results show that the closest marker is located 3.3?cM from the Rcg1 locus that may correspond to 576?kb.  相似文献   

20.
We analyzed the proteome of grapevine (Vitis vinifera) leaves 24, 48 and 96 h post infection (hpi) with the downy mildew pathogen Plasmopara viticola. Total proteins were separated on 2-DE gels. By MS analysis, we identified 82 unique grapevine proteins differentially expressed after infection. Upregulated proteins were often included in the functional categories of general metabolism and stress response, while proteins related to photosynthesis and energy production were mostly downregulated. As expected, the activation of a defense reaction was observed more often at the late time point, consistent with the establishment of a compatible interaction. Most proteins involved in resistance were isoforms of different PR-10 pathogenesis-related proteins. Although > 50 differentially expressed protein isoforms were observed at 24 and 96 hpi, only 18 were detected at 48 hpi and no defense-related proteins were among this group. This profile suggests a transient breakdown in defense responses accompanying the onset of disease, further supported by gene expression analyses and by a western blot analysis of a PR-10 protein. Our data reveal the complex modulation of plant metabolism and defense responses during compatible interactions, and provide insight into the underlying molecular processes which may eventually yield novel strategies for pathogen control in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号