首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 251 毫秒
1.
Kraft T  Xu S  Brenner B  Yu LC 《Biophysical journal》1999,76(3):1494-1513
To study possible structural changes in weak cross-bridge attachment to actin upon activation of the thin filament, two-dimensional (2D) x-ray diffraction patterns of skinned fibers from rabbit psoas muscle were recorded at low and high calcium concentration in the presence of saturating concentrations of MgATPgammaS, a nucleotide analog for weak binding states. We also studied 2D x-ray diffraction patterns recorded under relaxing conditions at an ionic strength above and below 50 mM, because it had been proposed from solution studies that reducing ionic strength below 50 mM also induces activation of the thin filament. For this project a novel preparation had to be established that allows recording of 2D x-ray diffraction patterns from single muscle fibers instead of natural fiber bundles. This was required to minimize substrate depletion or product accumulation within the fibers. When the calcium concentration was raised, the diffraction patterns recorded with MgATPgammaS revealed small changes in meridional reflections and layer line intensities that could be attributed in part to the effects of calcium binding to the thin filament (increase in I380, decrease in first actin layer line intensity, increase in I59) and in part to small structural changes of weakly attached cross-bridges (e.g., increase in I143 and I72). Calcium-induced small-scale structural rearrangements of cross-bridges weakly attached to actin in the presence of MgATPgammaS are consistent with our previous observation of reduced rate constants for attachment and detachment of cross-bridges with MgATPgammaS at high calcium. Yet, no evidence was found that weakly attached cross-bridges change their mode of attachment toward a stereospecific conformation when the actin filament is activated by adding calcium. Similarly, reducing ionic strength to less than 50 mM does not induce a transition from nonstereospecific to stereospecific attachment.  相似文献   

2.
Isolated skinned frog skeletal muscle fibers were activated (increasing [Ca2+]) and then relaxed (decreasing [Ca2+]) with solution changes, and muscle force and stiffness were recorded during the steady state. To investigate the actomyosin cycle, the biochemical species were changed (lowering [MgATP] and elevating [H2PO4-]) to populate different states in the actomyosin ATPase cycle. In solutions with 200 microM [MgATP], compared with physiological [MgATP], the slope of the plot of relative steady state muscle force vs. stiffness was decreased. At low [MgATP], cross-bridge dissociation from actin should be reduced, increasing the population of the last cross-bridge state before dissociation. These data imply that the last cross-bridge state before dissociation could be an attached low-force-producing or non-force-producing state. In solutions with 10 mM total Pi, compared to normal levels of MgATP, the maximally activated muscle force was reduced more than muscle stiffness, and the slope of the plot of relative steady state muscle force vs. stiffness was reduced. Assuming that in elevated Pi, Pi release from the cross-bridge is reversed, the state(s) before Pi release would be populated. These data are consistent with the conclusion that the cross-bridges are strongly bound to actin before Pi release. In addition, if Ca2+ activates the ATPase by allowing for the strong attachment of the myosin to actin in an A.M.ADP.Pi state, it could do so before Pi release. The calcium sensitivity of muscle force and stiffness in solutions with 4 mM [MgATP] was bracketed by that measured in solutions with 200 microM [MgATP], where muscle force and stiffness were more sensitive to calcium, and 10 mM total Pi, where muscle force and stiffness were less sensitive to calcium. The changes in calcium sensitivity were explained using a model in which force-producing and rigor cross-bridges can affect Ca2+ binding or promote the attachment of other cross-bridges to alter calcium sensitivity.  相似文献   

3.
The rate and association constants (kinetic constants) which comprise a seven state cross-bridge scheme were deduced by sinusoidal analysis in chemically skinned rabbit psoas muscle fibers at 20 degrees C, 200 mM ionic strength, and during maximal Ca2+ activation (pCa 4.54-4.82). The kinetic constants were then used to calculate the steady state probability of cross-bridges in each state as the function of MgATP, MgADP, and phosphate (Pi) concentrations. This calculation showed that 72% of available cross-bridges were (strongly) attached during our control activation (5 mM MgATP, 8 mM Pi), which agreed approximately with the stiffness ratio (active:rigor, 69 +/- 3%); active stiffness was measured during the control activation, and rigor stiffness after an induction of the rigor state. By assuming that isometric tension is a linear combination of probabilities of cross-bridges in each state, and by measuring tension as the function of MgATP, MgADP, and Pi concentrations, we deduced the force associated with each cross-bridge state. Data from the osmotic compression of muscle fibers by dextran T500 were used to deduce the force associated with one of the cross-bridge states. Our results show that force is highest in the AM*ADP.Pi state (A = actin, M = myosin). Since the state which leads into the AM*ADP.Pi state is the weakly attached AM.ADP.Pi state, we confirm that the force development occurs on Pi isomerization (AM.ADP.Pi --> AM*ADP.Pi). Our results also show that a minimal force change occurs with the release of Pi or MgADP, and that force declines gradually with ADP isomerization (AM*ADP -->AM.ADP), ATP isomerization (AM+ATP-->AM*ATP), and with cross-bridge detachment. Force of the AM state agreed well with force measured after induction of the rigor state, indicating that the AM state is a close approximation of the rigor state. The stiffness results obtained as functions of MgATP, MgADP, and Pi concentrations were generally consistent with the cross-bridge scheme.  相似文献   

4.
We find that at 6 degrees C in the presence of 4 mM MgPPi, at low or moderate ionic strength, skinned rabbit psoas fibers exhibit a stiffness and an equatorial x-ray diffraction pattern similar to that of rigor fibers. As the ionic strength is increased in the absence of Ca2+, both the stiffness and the equatorial x-ray diffraction pattern approach those of the relaxed state. This suggests that, as in solution, increasing ionic strength weakens the affinity of myosin cross-bridges for actin, which results in a decrease in the number of cross-bridges attached. The effect is Ca2+-sensitive. Assuming that stiffness is a measure of the number of cross-bridge heads attached, in the absence of Ca2+, the fraction of attached cross-bridge heads varies from approximately 75% to approximately 25% over an ionic strength range where ionic strength in solution weakens the binding constant for myosin subfragment-1 binding to unregulated actin by less than a factor of 3. Therefore, this phenomenon appears similar to the cooperative Ca2+-sensitive binding of S1 to regulated actin in solution (Greene, L. E., and E. Eisenberg, 1980, Proc. Natl. Acad. Sci. USA, 77:2616). By comparing the binding constants in solution and in the fiber under similar conditions, we find that the "effective actin concentration," that is, the concentration that gives the same fraction of S1 molecules bound to actin in solution as cross-bridge heads are bound to actin in a fiber, is in the millimolar range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Skinned frog fibers were reversibly activated in Ca-free solutions containing 0 mM KCl, 23 microM free Mg, and having an ionic strength of approximately 50 mM. Contractile force was nearly maximal at 22 degrees - 25 degrees C and decreased at lower temperatures. Maximal force in Ca-free solution at 50 mM ionic strength was close to twice the calcium-activated force with pCa 5 and 190 mM ionic strength. The force in Ca-free solution could be reduced to zero by raising the concentration of free Mg from 23 microM to 1.0 mM at the same ionic strength (50 mM). On stretching the fiber from 2.0 to 3.2 micron the force decreased; this effect was similar to that seen with Ca-activated fiber and the data support the idea that Ca-free tension is made at the cross-bridge level. Isotonic contraction during Ca-free activation showed a velocity transient as in Ca-activated fiber at 190 mM ionic strength, but the transient in the present case was very much prolonged. This finding suggests that contraction mechanisms for force generation and for shortening are essentially the same in the two conditions, but that certain rate constants of cross-bridge turnover are slower for the Ca-free contraction. Also, the results indicate that, in low ionic strength, Ca binding to thin filaments is not essential for unmasking the cross-bridge attachment sites, which suggests that the steric blocking mechanism is modified under these conditions.  相似文献   

6.
S Xu  S Malinchik  D Gilroy  T Kraft  B Brenner    L C Yu 《Biophysical journal》1997,73(5):2292-2303
X-ray diffraction patterns were obtained from skinned rabbit psoas muscle under relaxing and rigor conditions over a wide range of ionic strengths (50-170 mM) and temperatures (1 degree C-30 degrees C). For the first time, an intensification of the first actin-based layer line is observed in the relaxed muscle. The intensification, which increases with decreasing ionic strength at various temperatures, including 30 degrees C, parallels the formation of weakly attached cross-bridges in the relaxed muscle. However, the overall intensities of the actin-based layer lines are low. Furthermore, the level of diffuse scattering, presumably a measure of disorder among the cross-bridges, is little affected by changing ionic strength at a given temperature. The results suggest that the intensification of the first actin layer line is most likely due to the cross-bridges weakly bound to actin, and that the orientations of the weakly attached cross-bridges are hardly distinguishable from the detached cross-bridges. This suggests that the orientations of the weakly attached cross-bridges are not precisely defined with respect to the actin helix, i.e., nonstereospecific. Intensities of the myosin-based layer lines are only marginally affected by changing ionic strength, but markedly by temperature. The results could be explained if in a relaxed muscle the cross-bridges are distributed between a helically ordered and a disordered population with respect to myosin filament structure. Within the disordered population, some are weakly attached to actin and others are detached. The fraction of cross-bridges in the helically ordered assembly is primarily a function of temperature, while the distribution between the weakly attached and the detached within the disordered population is mainly affected by ionic strength. Some other notable features in the diffraction patterns include a approximately 1% decrease in the pitch of the myosin helix as the temperature is raised from 4 degrees C to 20 degrees C.  相似文献   

7.
When smooth muscle myosin subfragment 1 (S1) is bound to actin filaments in vitro, the light chain domain tilts upon release of MgADP, producing a approximately 3.5-nm axial motion of the head-rod junction (Whittaker et al., 1995. Nature. 378:748-751). If this motion contributes significantly to the power stroke, rigor tension of smooth muscle should decrease substantially in response to cross-bridge binding of MgADP. To test this prediction, we monitored mechanical properties of permeabilized strips of chicken gizzard muscle in rigor and in the presence of MgADP. For comparison, we also tested psoas and soleus muscle fibers. Any residual bound ADP was minimized by incubation in Mg2+-free rigor solution containing 15 mM EDTA. The addition of 2 mM MgADP, while keeping ionic strength and free Mg2+ concentration constant, resulted in a slight increase in rigor tension in both gizzard and soleus muscles, but a decrease in psoas muscle. In-phase stiffness monitored during small (<0.1%) 500-Hz sinusoidal length oscillations decreased in all three muscle types when MgADP was added. The changes in force and stiffness with the addition of MgADP were similar at ionic strengths from 50 to 200 mM and were reversible. The results with gizzard muscle were similar after thiophosphorylation of the regulatory light chain of myosin. These results suggest that the axial motion of smooth muscle S1 bound to actin, upon dissociation of MgADP, is not associated with force generation. The difference between the present mechanical data and previous structural studies of smooth S1 may be explained if geometrical constraints of the intact contractile filament array alter the motions of the myosin heads.  相似文献   

8.
In the presence of ATP and absence of Ca2+, muscle crossbridges have either MgATP or MgADP.Pi bound at the active site (S. B. Marston and R. T. Tregear, Nature [Lond.], 235:22:1972). The behavior of these myosin adenosine triphosphate (M.ATP) crossbridges, both in relaxed skinned rabbit psoas and frog semitendinosus fibers, was analyzed. At very low ionic strength, T = 5 degrees C, mu = 20 mM, these crossbridges spend a large fraction of the time attached to actin. In rabbit, the attachment rate constants at low salt are 10(4) - 10(5) s-1, and the detachment rate constants are approximately 10(4) s-1. When ionic strength is increased up to physiological values by addition of 140 mM potassium propionate, the major effect is a weakening of the crossbridge binding constant approximately 30-40-fold. This effect occurs because of a large decrease, approximately 100-fold, in the crossbridge attachment rate constants. The detachment rate constants decrease only 2-3-fold. The effect of ionic strength on crossbridge binding in the fiber is very similar to the effect of ionic strength on the binding of myosin subfragment-1 to unregulated actin in solution. Thus, the effect of increasing ionic strength in fibers appears to be a direct effect on crossbridge binding rather than an effect on troponin-tropomyosin. The finding that crossbridges with ATP bound at the active site can and do attach to actin over a wide range of ionic strengths strongly suggests that troponin-tropomyosin keeps a muscle relaxed by blocking a step subsequent to crossbridge attachment. Thus, rather than troponin-tropomyosin serving to keep a muscle relaxed by inhibiting attachment, it seems quite possible that the main way in which troponin-tropomyosin regulates muscle activity is by preventing the weakly-binding relaxed crossbridges from going on through the crossbridge cycle into more strongly-binding states.  相似文献   

9.
The steady-state isometric force following active muscle shortening is smaller than the corresponding force obtained for purely isometric contractions. This so-called residual force depression has been observed consistently for more than half a century, however its mechanism remains a matter of scientific debate. [Maréchal, G., Plaghki, L., 1979. The deficit of the isometric tetanic tension redeveloped after a release of frog muscle at a constant velocity. J. Gen. Physiol. 73, 453–467] suggested that force depression might be caused by alterations in the cross-bridge kinetics following muscle shortening, but there is no research studying force depression systematically for altered cross-bridge kinetic conditions. The purpose of this study was to investigate if force depression affects so-called weakly and strongly bound cross-bridges to the same degree. In order to achieve this aim, we modified the ratio of weakly to strongly bound cross-bridges with 2,3-butanedione monoxime (BDM) in single frog fibers. BDM inhibits the formation of strongly bound cross-bridges in a dose-dependent manner, thus the ratio of weakly to strongly bound cross-bridges could be altered in a systematic way. We found that the absolute amount of force depression was decreased by 50% while the relative amount was decreased by 12% in BDM exposed fibers compared to fibers in normal Ringer's solution. Furthermore, force depression was accompanied by a decrease in stiffness that was much greater in normal compared to BDM exposed fibers, leading to the conclusion that force depression was caused by an inhibition of cross-bridge attachment following fiber shortening and that this inhibition primarily affected cross-bridges in the strongly bound states.  相似文献   

10.
Xu S  Gu J  Belknap B  White H  Yu LC 《Biophysical journal》2006,91(9):3370-3382
When myosin is attached to actin in a muscle cell, various structures in the filaments are formed. The two strongly bound states (A*M*ADP and A*M) and the weakly bound A*M*ATP states are reasonably well understood. The orientation of the strongly bound myosin heads is uniform ("stereospecific" attachment), and the attached heads exhibit little spatial fluctuation. In the prehydrolysis weakly bound A*M*ATP state, the orientations of the attached myosin heads assume a wide range of azimuthal and axial angles, indicating considerable flexibility in the myosin head. The structure of the other weakly bound state, A*M*ADP*P(i), however, is poorly understood. This state is thought to be the critical pre-power-stroke state, poised to make the transition to the strongly binding, force-generating states, and hence it is of particular interest for understanding the mechanism of contraction. However, because of the low affinity between myosin and actin in the A*M*ADP*P(i) state, the structure of this state has eluded determination both in isolated form and in muscle cells. With the knowledge recently gained in the structures of the weakly binding M*ATP, M*ADP*P(i) states and the weakly attached A*M*ATP state in muscle fibers, it is now feasible to delineate the in vivo structure of the attached state of A*M*ADP*P(i). The series of experiments presented in this article were carried out under relaxing conditions at 25 degrees C, where approximately 95% of the myosin heads in the skinned rabbit psoas muscle contain the hydrolysis products. The affinity for actin is enhanced by adding polyethylene glycol (PEG) or by lowering the ionic strength in the bathing solution. Solution kinetics and binding constants were determined in the presence and in the absence of PEG. When the binding between actin and myosin was increased, both the myosin layer lines and the actin layer lines increased in intensity, but the intensity profiles did not change. The configuration (mode) of attachment in the A*M*ADP*P(i) state is thus unique among the intermediate attached states of the cross-bridge ATP hydrolysis cycle. One of the simplest explanations is that both myosin filaments and actin filaments are stabilized (e.g., undergo reduced spatial fluctuations) by the attachment. The alignment of the myosin heads in the thick filaments and the alignment of the actin monomers in the thin filaments are improved as a result. The compact atomic structure of M*ADP*P(i) with strongly coupled domains may contribute to the unique attachment configuration: the "primed" myosin heads may function as "transient struts" when attached to the thin filaments.  相似文献   

11.
Two-dimensional x-ray diffraction was used to investigate structural features of cross-bridges that generate force in isometrically contracting skeletal muscle. Diffraction patterns were recorded from arrays of single, chemically skinned rabbit psoas muscle fibers during isometric force generation, under relaxation, and in rigor. In isometric contraction, a rather prominent intensification of the actin layer lines at 5.9 and 5.1 nm and of the first actin layer line at 37 nm was found compared with those under relaxing conditions. Surprisingly, during isometric contraction, the intensity profile of the 5.9-nm actin layer line was shifted toward the meridian, but the resulting intensity profile was different from that observed in rigor. We particularly addressed the question whether the differences seen between rigor and active contraction might be due to a rigor-like configuration of both myosin heads in the absence of nucleotide (rigor), whereas during active contraction only one head of each myosin molecule is in a rigor-like configuration and the second head is weakly bound. To investigate this question, we created different mixtures of weak binding myosin heads and rigor-like actomyosin complexes by titrating MgATPgammaS at saturating [Ca2+] into arrays of single muscle fibers. The resulting diffraction patterns were different in several respects from patterns recorded under isometric contraction, particularly in the intensity distribution along the 5.9-nm actin layer line. This result indicates that cross-bridges present during isometric force generation are not simply a mixture of weakly bound and single-headed rigor-like complexes but are rather distinctly different from the rigor-like cross-bridge. Experiments with myosin-S1 and truncated S1 (motor domain) support the idea that for a force generating cross-bridge, disorder due to elastic distortion might involve a larger part of the myosin head than for a nucleotide free, rigor cross-bridge.  相似文献   

12.
The purpose of this study was to evaluate the relationship between force and stiffness after stretch of activated fibers, while simultaneously changing contractility by interfering with the cross-bridge kinetics and muscle activation. Single fibers dissected from lumbrical muscles of frogs were placed at a length 20% longer than the plateau of the force-length relationship, activated, and stretched by 5 and 10% of fiber length (speed: 40% fiber length/s). Experiments were conducted with maximal and submaximal stimulation in Ringer solution and with the addition of 2 and 5 mM of the myosin inhibitor 2,3-butanedione monoxime (BDM) to the solution. The steady-state force after stretch of an activated fiber was higher than the isometric force produced at the corresponding length in all conditions investigated. Lowering the frequency of stimulation decreased the force and stiffness during isometric contractions, but it did not change force enhancement and stiffness enhancement after stretch. Administration of BDM decreased the force and stiffness during isometric contractions, but it increased the force enhancement and stiffness enhancement after stretch. The relationship between force enhancement and stiffness suggests that the increase in force after stretch may be caused by an increase in the proportion of cross bridges attached to actin. Because BDM places cross bridges in a weakly bound, pre-powerstroke state, our results further suggest that force enhancement is partially associated with a recruitment of weakly bound cross bridges into a strongly bound state.  相似文献   

13.
To characterize the kinetics of cross-bridge attachment to actin during unloaded contraction (maximum velocity of filament sliding), ramp-shaped stretches with different stretch-velocities (2-40,000 nm per half-sarcomere per s) were applied to actively contracting skinned fibers of the rabbit psoas muscle. Apparent fiber stiffness observed during such stretches was plotted versus the speed of the imposed stretch (stiffness-speed relation) to derive the rate constants for cross-bridge dissociation from actin. The stiffness-speed relation obtained for unloaded shortening conditions was shifted by about two orders of magnitude to faster stretch velocities compared to isometric conditions and was almost identical to the stiffness-speed relation observed in the presence of MgATPgammaS at high Ca(2+) concentrations, i.e., under conditions where cross-bridges are weakly attached to the fully Ca(2+) activated thin filaments. These data together with several control experiments suggest that, in contrast to previous assumptions, most of the fiber stiffness observed during high-speed shortening results from weak cross-bridge attachment to actin. The fraction of strongly attached cross-bridges during unloaded shortening appears to be as low as some 1-5% of the fraction present during isometric contraction. This is about an order of magnitude less than previous estimates in which contribution of weak cross-bridge attachment to observed fiber stiffness was not considered. Our findings imply that 1) the interaction distance of strongly attached cross-bridges during high-speed shortening is well within the range consistent with conventional cross-bridge models, i.e., that no repetitive power strokes need to be assumed, and 2) that a significant part of the negative forces that limit the maximum speed of filament sliding might originate from weak cross-bridge interactions with actin.  相似文献   

14.
The elementary steps of contraction in rabbit fast twitch muscle fibers were investigated with particular emphasis on the mechanism of phosphate (Pi) binding/release, the mechanism of force generation, and the relation between them. We monitor the rate constant 2 pi b of a macroscopic exponential process (B) by imposing sinusoidal length oscillations. We find that the plot of 2 pi b vs. Pi concentration is curved. From this observation we infer that Pi released is a two step phenomenon: an isomerization followed by the actual Pi release. Our results fit well to the kinetic scheme: [formula: see text] where A = actin, M = myosin, S = MgATP (substrate), D = MgADP, P = phosphate, and Det is a composite of all the detached and weakly attached states. For our data to be consistent with this scheme, it is also necessary that step 4 (isomerization) is observed in process (B). By fitting this scheme to our data, we obtained the following kinetic constants: k4 = 56 s-1, k-4 = 129 s-1, and K5 = 0.069 mM-1, assuming that K2 = 4.9. Experiments were performed at pCa 4.82, pH 7.00, MgATP 5 mM, free ATP 5 mM, ionic strength 200 mM in K propionate medium, and at 20 degrees C. Based on these kinetic constants, we calculated the probability of each cross-bridge state as a function of Pi, and correlated this with the isometric tension. Our results indicate that all attached cross-bridges support equal amount of tension. From this, we infer that the force is generated at step 4. Detailed balance indicates that 50-65% of the free energy available from ATP hydrolysis is transformed to work at this step. For our data to be consistent with the above scheme, step 6 must be the slowest step of the cross-bridge cycle (the rate limiting step). Further, AM*D is a distinctly different state from the AMD state that is formed by adding D to the bathing solution. From our earlier ATP hydrolysis data, we estimated k6 to be 9 s-1.  相似文献   

15.
It is well accepted that the steady-state isometric force following active stretching of a muscle is greater than the steady-state isometric force obtained in a purely isometric contraction at the same length. This property of skeletal muscle has been called residual force enhancement (FE). Despite decades of research the mechanisms responsible for FE have remained largely unknown. Based on previous studies showing increases in FE in fibers in which cross-bridges were biased towards weakly bound states, we hypothesized that FE might be associated with a stretch-induced facilitation of transitioning from weakly to strongly bound cross-bridges. In order to test this hypothesis, single fibers (n=11) from the lumbrical muscles of frog (Rana pipiens) were used to determine FE at temperatures of 7 and 20 degrees C. At the cold temperature, cross-bridges are biased towards weakly bound states, therefore we expected FE to be greater at 7 degrees C compared to 20 degrees C. The average FE was significantly greater at 7 degrees C (11.5+/-1.1%) than at 20 degrees C (7.8+/-1.0%), as expected. The enhancement of force/stiffness was also significantly greater at the low (13.3+/-1.4%) compared to the high temperature (5.6+/-1.7%), indicating an increased conversion from weakly to strongly bound cross-bridges at the low temperature. We conclude from the results of this study that muscle preparations that are biased towards weakly bound cross-bridge states show increased FE for given stretch conditions, thereby supporting the idea that FE might be caused, in part, by a stretch-induced facilitation of the conversion of weakly to strongly bound cross-bridges.  相似文献   

16.
K Ajtai  T P Burghardt 《Biochemistry》1986,25(20):6203-6207
The fluorescence polarization from rhodamine labels specifically attached to the fast-reacting thiol of the myosin cross-bridge in glycerinated muscle fibers has been measured to determine the angular distribution of the cross-bridges in different physiological states of the fibers as a function of temperature. To investigate the fibers at temperatures below 0 degree C, we have added glycerol to the bathing solution as an anti-freezing agent. We find that the fluorescence polarization from the rhodamine probe detects distinct angular distributions of the cross-bridges in isometric-active, rigor, MgADP, and low ionic strength relaxed fibers at 4 degrees C. We also find that the rigor cross-bridges in the presence of glycerol can maintain at least two distinct orientations relative to the actin filament, one dominant at temperatures T greater than 2 degrees C and another dominant at T less than -10 degrees C. MgADP cross-bridges in the presence of glycerol maintain approximately the same orientation for all temperatures investigated. The rigor cross-bridge orientation at T less than -10 degrees C is similar to both the MgADP cross-bridge orientation in the presence of glycerol and the active muscle cross-bridge orientation at 4 degrees C. These findings show that the rigor cross-bridge in the presence of glycerol has at least two distinct orientations while attached to actin: one of them dominant at high temperature, the other dominant at low temperature or when MgADP is present. The latter orientation resembles that present in isometric-active fibers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Xu S  Gu J  Melvin G  Yu LC 《Biophysical journal》2002,82(4):2111-2122
It is well established that in a skeletal muscle under relaxing conditions, cross-bridges exist in a mixture of four weak binding states in equilibrium (A*M*ATP, A*M*ADP*P(i), M*ATP, and M*ADP*P(i)). It has been shown that these four weak binding states are in the pathway to force generation. In the past their structural, biochemical, and mechanical properties have been characterized as a group. However, it was shown that the myosin heads in the M*ATP state exhibited a disordered distribution along the thick filament, while in the M*ADP*P(i) state they were well ordered. It follows that the structures of the weakly attached states of A*M*ATP and A*M*ADP*P(i) could well be different. Individual structures of the two attached states could not be assigned because protocol for isolating the two states has not been available until recently. In the present study, muscle fibers are reacted with N-phenylmaleimide such that ATP hydrolysis is inhibited, i.e., the cross-bridge population under relaxing conditions is distributed only between the two states of M*ATP and A*M*ATP. Two-dimensional x-ray diffraction was applied to determine the structural characteristics of the attached A*M*ATP state. Because the detached state of M*ATP is disordered and does not contribute to layer line intensities, changes as a result of increasing attachment in the A*M*ATP state are attributable to that state alone. The equilibrium toward the attached state was achieved by lowering the ionic strength. The results show that upon attachment, both the myosin and the first actin associated layer lines increased intensities, while the sixth actin layer line was not significantly affected. However, the intensities remain weak despite substantial attachment. The results, together with modeling (see J. Gu, S. Xu and L. C. Yu, 2002, Biophys. J. 82:2123-2133), suggest that there is a wide range of orientation of the attached A*M*ATP cross-bridges while the myosin heads maintain some degree of helical distribution on the thick filament, suggesting a high degree of flexibility in the actomyosin complex. Furthermore, the lack of sensitivity of the sixth actin layer line suggests that the binding site on actin differs from the putative site for rigor binding. The significance of the flexibility in the A*M*ATP complex in the process of force generation is discussed.  相似文献   

18.
Isolated intact frog muscle fibers, while shortening with the intrinsic maximal speed, were stretched back to the original length to measure the kinetics of force redevelopment. These kinetics give information on the attachment rate constant in the cross-bridge cycle in vivo, and a value of approximately 25.6 s-1 (0 degree C) is found in the present study. We find that these kinetics were slightly less sensitive to temperature than was the unloaded shortening speed. The effect of hyperosmolarity on force redevelopment was also measured in solutions with added sucrose or KCl. The rate constant was nearly halved with 120 mM sucrose, but there was practically no effect with isosmotic (60 mM) KCl. These results indicate that the rate constant of force redevelopment is insensitive to raised intracellular ionic strength. In sucrose, the fiber width was also compressed, and the attenuation of the rate constant of force redevelopment in this case is consequently attributed to the decrease in interfilament space. The order of magnitude of the rate constant found in this study suggests that tension transduction by a cross-bridge, during each turnover cycle, requires a series of elementary steps following the attachment.  相似文献   

19.
Myosin produces force in a cyclic interaction, which involves alternate tight binding to actin and to ATP. We have investigated the energetics associated with force production by measuring the force generated by skinned muscle fibers as the strength of the actomyosin bond is changed. We varied the strength of the actomyosin bond by addition of a polymer that promotes protein-protein association or by changing temperature or ionic strength. We estimated the free energy available to generate force by measuring isometric tension, as the free energy of the states that precede the working stroke are lowered with increasing phosphate. We found that the free energy available to generate force and the force per attached cross-bridge at low [Pi] were both proportional to the free energy available from the formation of the actomyosin bond. We conclude that the formation of the actomyosin bond is involved in providing the free energy driving the production of isometric tension and mechanical work. Because the binding of myosin to actin is an endothermic, entropically driven reaction, work must be performed by a "thermal ratchet" in which a thermal fluctuation in Brownian motion is captured by formation of the actomyosin bond.  相似文献   

20.
M Walker  H White  B Belknap    J Trinick 《Biophysical journal》1994,66(5):1563-1572
The structure of the complex of actin and myosin subfragment-1 (S1) during steady-state ATP hydrolysis has been examined by electron microscopy. This complex is normally dissociated by ATP in vitro but was stabilized here by low ionic strength. Optimal conditions for attachment were established by light-scattering experiments that showed that approximately 70% of S1 could be bound in the presence of ATP. Micrographs of the unstained complex in vitreous water suggest that S1 attaches to actin in a variety of configurations in ATP; this contrasts with the single attached configuration seen in the presence of ADP. The data are therefore compatible with the idea that a change in attached configuration of the myosin cross-bridge is the origin of muscle force. In control experiments where ATP was allowed to hydrolyze completely the binding of the S1 seemed cooperative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号