首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In the novel replication mechanism of closed circular mouse L-cell mitochondrial DNA synthesis one strand of the duplex (the heavy-strand) is initiated at a defined origin and proceeds unidirectionally. Synthesis of the complementary light-strand is initiated at a different origin, located approximately two-thirds genome length from the heavy-strand origin, and also proceeds unidirectionally. The initiation of light-strand synthesis does not occur until synthesis of the heavy-strand has extended past the light-strand origin region. One intriguing consequence of this asynchrony is that the heavy-strand origin functions in a DNA duplex, while the light-strand origin functions as a single-stranded template. In order to obtain the precise location of the light-strand origin we have isolated replicative molecules in which light-strand synthesis has begun and subjected them to digestion by a combination of the single-strand specific nuclease S1 and various restriction cndonucleases. By comparison of the sizes of the duplex fragments thus generated with those produced by cleavage of non-replicating molecules cleaved with the same enzymes we have located the 5′-end of daughter light-strands at a position 55 to 90 nucleotides from a HpaI cleavage site 0.67 genome length from the heavy-strand origin. The nucleotide sequence of a 318-base region surrounding this site, determined by chemical sequencing techniques, possesses the symmetry required for the formation of three hairpin loops. The most striking of these has a stem consisting of 12 consecutive basepairs and a 13-base loop. In the heavy-strand template, this loop contains 11 consecutive thymidine nucleotides. This light-strand origin region has been found to possess a remarkable degree of homology with several other prokaryotic and eukaryotic origin-related sequences, particularly those of the øX174 A region and the simian virus 40 EcoRII G fragment.It has previously been shown that mouse mitochondrial DNA contains alkali-labile sites, which are presumably due to the presence of ribonucleotides incorporated into the DNA. A cluster of sites, representing eight adjacent ribonucleotides, has been located in mature light strands at or near the origin of light-strand synthesis. The retention of ribonucleotides at this specific location may reflect inefficient removal of an RNA primer at the light-strand origin.  相似文献   

2.
3.
4.
Template-directed arrest of mammalian mitochondrial DNA synthesis.   总被引:12,自引:1,他引:11       下载免费PDF全文
Mammalian mitochondrial DNA often contains a short DNA displacement loop at the heavy-strand origin of replication. This short nascent DNA molecule has been used to study site-specific termination of mitochondrial DNA synthesis in human and mouse cells. We examined D-loop strand termination in two distantly related artiodactyls, the pig and the cow. Porcine mitochondrial DNA was unique among mammals in that it contained only a single species of D-loop single-stranded DNA. Its 3' end mapped to a site 187 nucleotides from the 5' end of the proline tRNA gene. This site was 21 and 47 nucleotides 5' to two very similar sequences (5' ACATATPyATTAT 3') which are closely related to the human and mouse termination-associated sequences noted by Doda et al. (J. N. Doda, D. T. Wright, and D. A. Clayton, Proc. Nat. Acad. Sci. USA 78:616-6120, 1981). Bovine mitochondrial DNA contained three major D-loop DNA species whose 3' ends mapped to three different sites. These sites were not found in the porcine sequence. However, the bovine termination sites were located 60 to 64 base pairs 5' from sequences which were also very similar to the termination-associated sequences present in pigs and other mammals. These results firmly establish the concept that arrest of heavy-strand DNA synthesis is an event determined, at least in part, by template sequence. They also suggest that arrest is determined by sequences which are a considerable physical distance away from the actual termination site.  相似文献   

5.
The major form of mouse L-cell mitochondrial DNA contains a small displacement loop at the replication origin, created by synthesis of a 550 to 670-nucleotide portion of the heavy strand. These short heavy-strand segments remain hydrogen-bonded to the parental light strand and are collectively termed 7 S mitochondrial DNA. The unique location of these 7 S mitochondrial DNAs at the heavy-strand origin suggests that they may function as primers in the synthesis of full-length heavy strands. Ribonucleotides have been detected at the 5′-end of some of these molecules, which are most likely remnants of primer RNAs. Using 5′-end labeling in vitro, we have determined that these ribonucleotides occur at several discrete positions along the nucleotide sequence of the origin region, which suggests that there may be variability in the precise initiation point of RNA priming or in the location of the switchover from RNA priming to DNA synthesis. The length of 5′-end RNA was estimated by alkali treatment of mitochondrial DNA prior to end labeling. A range of one to ten ribonucleotides was hydrolyzed from the 5′-end of some 7 S mitochondrial DNA strands. This is the first evidence of RNA priming at a eukaryotic cell DNA replication origin.  相似文献   

6.
7.
8.
T W Wong  D A Clayton 《Cell》1985,42(3):951-958
Synthesis of human light-strand mitochondrial DNA was accomplished in vitro using DNA primase, DNA polymerase, and other accessory proteins isolated from human mitochondria. Replication begins with the synthesis of primer RNA on a T-rich sequence in the origin stem-loop structure of the template DNA and absolutely requires ATP. A transition from RNA synthesis to DNA synthesis occurs near the base of the stem-loop structure and a potential recognition site for signaling that transition has been identified. The start sites of the in vitro products were mapped at the nucleotide level and were found to be in excellent agreement with those of in vivo nascent light-strand DNA. Isolated human mitochondrial enzymes recognize and utilize the bovine, but not the mouse, origin of light-strand replication.  相似文献   

9.
10.
RNase MRP is a site-specific ribonucleoprotein endoribonuclease that cleaves mitochondrial RNA from the origin of leading-strand DNA synthesis contained within the displacement-loop region. Bovine mitochondrial DNA maintains the typical gene content and order of mammalian mitochondrial DNAs but differs in the nature of sequence conservation within this displacement-loop regulatory region. This markedly different sequence arrangement raises the issue of the degree to which a bovine RNase MRP would reflect the physical and functional properties ascribed to the enzymes previously characterized from mouse and human. We find that bovine RNase MRP exists as a ribonucleoprotein, with an RNA component of 279 nucleotides that is homologous to that of mouse or human RNase MRP RNA. Characterization of the nuclear gene for bovine RNase MRP RNA showed conservation of sequence extending 5 of the RNase MRP RNA coding sequence, including the presence of a cis-acting element known to be important for the expression of some mitochondrial protein-coding nuclear genes. Bovine or mouse RNase MRP cleaves a standard mouse mitochondrial RNA substrate in the same manner; each also cleaves a bovine mitochondrial RNA substrate identically. Since bovine and mouse RNase MRPs process both bovine and mouse substrates, we conclude that the structural features of the mitochondrial RNA substrate required for enzymatic cleavage have been well conserved despite significant overall primary sequence divergence. Inspection of the bovine RNA substrate reveals conservation of only the most critical portion of the primary sequence as indicated by earlier studies with mouse and human RNase MRPs. Interestingly, a principal cleavage site in the bovine mitochondrial RNA substrate is downstream of the promoter located at the leading-strand mitochondrial DNA replication origin. Correspondence to: D.J. Dairaghi  相似文献   

11.
12.
13.
RNase MRP is a site-specific endonuclease that processes primer mitochondrial RNA from the leading-strand origin of mitochondrial DNA replication. Using deletional analysis and saturation mutagenesis, we have determined the substrate requirements for cleavage by mouse mitochondrial RNase MRP. Two regions of sequence homology among vertebrate mitochondrial RNA primers, conserved sequence blocks II and III, were found to be critical for both efficient and accurate cleavage; a third region of sequence homology, conserved sequence block I, was dispensable. Analysis of insertion and deletion mutations within conserved sequence block II demonstrated that the specificity of RNase MRP accommodates the natural sequence heterogeneity of conserved sequence block II in vivo. Heterologous assays with human RNase MRP and mutated mouse mitochondrial RNA substrates indicated that sequences essential for substrate recognition are conserved between mammalian species.  相似文献   

14.
15.
We have characterized some of the experimental conditions that are essential for initiation of human mitochondrial DNA synthesis. Mitochondria were purified from HeLa cells and were permeabilized with Triton X-100. When supplied with rNTPs and dNTPs, the permeabilized mitochondria synthesized nucleic acids that ranged in size from about 600 to 2000 nucleotides. In vitro DNA synthesis occurred on endogenous DNA templates and required a continuous supply of ATP. Analyses of the synthetic products revealed that almost all of them were of heavy-strand sequence and included authentic 7S DNA. Most of the synthetic products had 5' ends that mapped to similar locations as those previously identified for nascent heavy-strand DNA. Identification of these parameters should facilitate our efforts to achieve in vitro replication of heavy-strand mitochondrial DNA.  相似文献   

16.
17.
Vertebrate cells contain a site-specific endoribonuclease (RNase MRP) that cleaves mitochondrial RNA transcribed from the origin of leading-strand mitochondrial DNA replication. This report presents the characterization of the human enzyme and its essential RNA component. Human RNase MRP is a ribonucleoprotein with a nucleus-encoded RNA of 265 nucleotides. As expected, the single-copy RNA coding region is homologous (84%) to the corresponding mouse gene; surprisingly, at least 700 nucleotides of the immediate 5'-flanking region are conserved. The 265-nucleotide MRP RNA and an MRP RNA cleavage product representing the 3'-terminal 108 nucleotides exist in nuclear and mitochondrial RNA isolates; the larger MRP RNA is present in greatest abundance in the nucleus. The putative processing site within the 265-nucleotide MRP RNA is offset from that of mouse MRP RNA, but in each case cleavage is precise and occurs at the sequence ANCCCGC. Oligonucleotide-mediated inhibition experiments reveal that both the 5' and 3' portions of the MRP RNA are involved in cleavage by RNase MRP; this implies that full length MRP RNA complexed with proteins is an active species in vertebrate cells.  相似文献   

18.
Human mitochondrial DNA contains two physically separate and distinct origins of DNA replication. The initiation of each strand (heavy and light) occurs at a unique site and elongation proceeds unidirectionally. Animal mitochondrial DNA is novel in that short nascent strands are maintained at one origin (D-loop) in a significant percentage of the molecules. In the case of human mitochondrial DNA, there are three distinct D-loop heavy strands differing in length at the 5' end. We report here the localization of the 5' ends of nascent daughter heavy strands originating from the D-loop region. Analyses of the map positions of 5' ends relative to known restriction endonuclease cleavage sites and 5' end nucleotides indicate that the points of initiation of D-loop synthesis and actual daughter strands are the same. In contrast, the second origin is located two-thirds of the way around the genome where light strand synthesis is presumably initiated on a single-stranded template. Mapping of 5' ends of daughter light strands at this origin relative to known restriction endonuclease cleavage sites reveals two distinct points of initiation separated by 37 nucleotides. This origin is in the same relative genomic position and shows a high degree of DNA sequence homology to that of mouse mitochondrial DNA. In both cases, the DNA region within and immediately flanking the origin of DNA replication contains five tightly clustered tRNA genes. A major portion of the pronounced DNA template secondary structure at this origin includes the known tDNA sequences.  相似文献   

19.
20.
Examination of in vivo long-labeled, pulse-labeled and pulse-chase-labeled mitochondrial DNA has corroborated and extended the basic elements of the displacement model of replication. Mitochondrial DNA molecules are shown to replicate an average of once per cell doubling in exponentially growing cultures. Analysis of the separate strands of partially replicated molecules indicates that replication is highly asynchronous with heavy-strand synthesis preceding light-strand synthesis. Native and denatured pulse-labeled replicating molecules exhibit sedimentation properties predicted by the displacement model of replication. Pulse-label incorporated into molecules isolated in the lower band region of ethidium bromide/cesium chloride gradients is found primarily in heavy daughter strands. Pulse-label incorporated into molecules isolated in the upper band region is found primarily in light daughter strands. The results of a series of pulse-chase experiments indicate that the complete process of replication requires approximately 120 minutes. Both daughter molecules are shown to segregate in an open circular form. They are then converted to closed circular molecules having a superhelix density near zero. After closure, the 7 S heavy-strand initation sequence is synthesized, and this process is accompanied by nicking, unwinding and closing of at least one of the parental strands resulting in the formation of the D-loop structure. The 7 S heavy-strand initiation sequence of the D-loop structure is not stable and turns over with a half-life of 7·9 hours. We suggest that all in vivo forms of parental closed circular mitochondrial DNA have superhelix densities of near zero, and that the previously observed superhelix density of closed circular mitochondrial DNA, σ~ ?0·02, results from the loss of the 7 S heavy-strand initiation sequence from D-loop mitochondrial DNA molecules during isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号