首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The magnitude of the protonmotive force in respiring bovine heart submitochondrial particles was estimated. The membrane-potential component was determined from the uptake of S14CN-ions, and the pH-gradient component from the uptake of [14C]methylamine. In each case a flow-dialysis technique was used to monitor uptake. 2. With NADH as substrate the membrane potential was approx. 145mV and the pH gradient was between 0 and 0.5 unit when the particles were suspended in a Pi/Tris reaction medium. The addition of the permeant NO3-ion decreased the membrane potential with a corresponding increase in the pH gradient. In a medium containing 200mM-sucrose, 50mM-KCl and Hepes as buffer, the total protonmotive force was 185mV, comprising a membrane potential of 90mV and a pH gradient of 1.6 units. Thus the protonmotive force was slightly larger in the high-osmolarity medium. 3. The phosphorylation potential (= deltaG0' + RT ln[ATP]/[ADP][Pi]) was approx. 43.1 kJ/mol (10.3kcal/mol) in all the reaction media tested. Comparison of this value with the protonmotive force indicates that more than 2 and up to 3 protons must be moved across the membrane for each molecule of ATP synthesized by a chemiosmotic mechanism. 4. Succinate generated both a protonmotive force and a phosphorylation potential that were of similar magnitude to those observed with NADH as substrate. 5. Although oxidation of NADH supports a rate of ATP synthesis that is approximately twice that observed with succinate, respiration with either of these substrates generated a very similar protonmotive force. Thus there seemed to be no strict relation between the size of the protonmotive force and the phosphorylation rate. 6. In the presence of antimycin and/or 2-n-heptyl-4-hydroxyquinoline N-oxide, ascorbate oxidation with either NNN'N'-tetramethyl-p-phenylenediamine or 2,3,5,6-tetramethyl-p-phenylenediamine as electron mediator generated a membrane potential of approx. 90mV, but no pH gradient was detected, even in the presence of NO3-. These data are discussed with reference to the proposal that cytochrome oxidase contains a proton pump.  相似文献   

2.
3.
4.
Nonequilibrium sedimentation of membrane vesicles from Paracoccus denitrificans through Ficoll gradients results in a separation into two fractions. The fraction which pellets through dense Ficoll is uncoupled. The second fraction, retarded by dense Ficoll, shows both improved concentrative transport activity and greater uncoupler stimulation of respiration as compared to the original vesicle preparation.  相似文献   

5.
6.
7.
The relationship between the respiration rate and the magnitude of the electrochemical proton potential (ΔμH+) in rat liver mitochondria was investigated. (1) Under the active-state conditions, the action of inhibitors of either phosphorylation (oligomycin) or respiration (rotenone, malonate) on the respiration and ΔμH+ was measured. Both inhibitors diminished the respiration, whereas rotenone resulted in a decrease of ΔμH+, and oligomycin produced an increase of this potential. The effect of the inhibitors was much more pronounced on the respiration rate than on ΔμH+; for example, the excess of oligomycin produced a 90% inhibition of the respiration while ΔμH+ was changed only by 9%. (2) Under the resting-state conditions, small concentrations of the uncoupler stimulated the respiration while changing ΔμH+ to a relatively small extent. The uncoupler concentrations which doubled and tripled the respiration rate produced only 5 and 9% decrease of ΔμH+, respectively. (3) The present results enabled us to propose a model describing the interrelationship between respiration and ΔμH+.  相似文献   

8.
9.
The relationship between the respiration rate and the magnitude of the electrochemical proton potential (delta mu H+) in rat liver mitochondria was investigated. (1) Under the active-state conditions, the action of inhibitors of either phosphorylation (oligomycin) or respiration (rotenone, malonate) on the respiration and delta mu H+ was measured. Both inhibitors diminished the respiration, whereas rotenone resulted in a decrease of delta mu H+, and oligomycin produced an increase of this potential. The effect of the inhibitors was much more pronounced on the respiration rate than on delta mu H+; for example, the excess of oligomycin produced a 90% inhibition of the respiration while delta mu H+ was changed only by 9%. (2) Under the resting-state conditions, small concentrations of the uncoupler stimulated the respiration while changing delta mu H+ to a relatively small extent. The uncoupler concentrations which doubled and tripled the respiration rate produced only 5 and 9% decrease of delta mu H+, respectively. (3) The present results enabled us to propose a model describing the interrelationship between respiration and delta mu H+.  相似文献   

10.
Membrane vesicles of Escherichia coli can be produced by 2 different methods: lysis of intact cells by passage through a French pressure cell or by osmotic rupturing of spheroplasts. The membrane of vesicles produced by the former method is everted relative to the orientation of the inner membrane in vivo. Using NADH, D-lactate, reduced phenazine methosulfate, or ATP these vesicles produce protonmotive forces, acid and positive inside, as determined using flow dialysis to measured the distribution of the weak base methylamine and the lipophilic anion thiocyanate. The vesicles accumulate calcium using the same energy sources, most likely by a calcium/proton antiport. Calcium accumulation, therefore, is presumably indicative of a proton gradient, acid inside. The latter type of vesicle, on the other hand, exhibits D-lactate-dependent proline transport but does not accumulate calcium with D-lactate as an energy source. NADH oxidation or ATP hydrolysis, however, will drive the transport of calcium but not proline in these vesicles. Oxidation of NADH or hydrolysis of ATP simultaneous with oxidation of D-lactate does not result in either calcium or proline transport. These results suggest that the vesicles are a patchwork or mosiac, in which certain enzyme complexes have an orientation opposite to that found in vivo, resulting in the formation of electrochemical proton gradients with an orientation opposite to that found in the intact cell. Other complexes retain their original orientation, making it possible to set up simultaneous proton fluxes in both directions, causing an apparent uncoupling of energy-linked processes. That the vesicles are capable of generating protonmotive forces of the opposite polarity was demonstrated by measurements of the distribution of acetate and methylamine (to measure the ΔpH) and thiocyanate (to measure the Δψ).  相似文献   

11.
12.
There exists considerable controversy regarding membrane topography in vesicles derived by osmotic lysis of spheroplasts of Gram-negative bacteria. It has been reported by others that bee venom can be used to quantitate the portion of a heterogeneous vesicle population with an inside-out orientation by determining the degree of loss of crypticity of NADH dehydrogenase activity. We have demonstrated that a major component of bee venom, melittin, causes an increase in the activity of several different respiratory enzymes in isolated membrane vesicles of Paracoccus denitrificans. The degree of stimulation produced by melittin is dependent upon (i) the nature of the respiratory substrates, (ii) the pH, (iii) the presence of Mg2+, (iv) the melittin: membrane protein ratio, and (v) the growth history of the cells from which the membrane vesicles were derived. Melittin-induced enhancement of TMPD:ascorbate and cytochrome c oxidase activities cannot be accounted for by increased accessibility of nonpermeant substrate to the interior of the vesicle. The stimulatory effect of melittin may rely in part on its ability to alter the proton permeability of the membrane thereby abolishing respiratory control. Collectively these observations call into question the usefulness of bee venom melittin in quantitative analyses of membrane topography. These results are consistent with the postulated existence of a homogeneous vesicle population in which the topography of the NADH dehydrogenase is different from that of the intact cell.  相似文献   

13.
14.
The and the Gp have been measured in whole cells ofMethylophilus methylotrophus during the oxidation of various respiratory chain substrates. The magnitude of the depended on the external pH and the composition of the assay medium, and varied from-109 to-165 mV. The relative contributions of the and the pH to the were found to vary with the external pH such that the internal pH remained constant; depending on the composition of the assay medium, this value was between 6.6 and 7.0. A Gp of approximately-46 kJ/mol was generated during the oxidation of methanol, and either the or pH alone was fully competent to drive ATP synthesis. Respiration and ATP synthesis were found to be poised far from equilibrium under the conditions of these experiments, and the value of the Gp was thus controlled kinetically. Comparison of the with the Gp yielded an H+/ATP quotient >2.6 g-ion H+/mol ATP.Abbreviations TMPD N,N,N,N-tetramethyl-p-phenylenediamine - FCCP carbonylcyanidep-trifluoromethoxyphenylhydrazone - DMO 5,5-dimethyloxazolidine-2,4-dione - TPMP+ triphenylmethylphosphonium (iodide salt); Tween 20, polyoxyethylenesorbitan monolaurate - TPP+ tetraphenylphosphonium (bromide salt) - bulk phase transmembrane electrochemical potential difference of protons ( ) - pH bulk phase transmembrane pH difference (pHin-pHout) - bulk phase transmembrane electrical potential difference (in-out) - p true protonmotive force (incorporating both bulk phase and localised protons; )  相似文献   

15.
Nitric oxide reductase of Paracoccus denitrificans was purified, with the use of 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) detergent, as membrane vesicles of apparent Mr = 2-3 x 10(6). Fifty percent of the protein was a peptide of Mr = 34,000. Further fractionation with sodium dodecyl sulfate (SDS) resulted in vesicles in which the peptide constituted 90-95% of the protein. This peptide, which is rich in Ala, Gly, Ser, Asx, and Glx, is considered to be the peptide of nitric oxide reductase. The CHAPSO- and SDS-fractionated preparations lost activity at 4 degrees C, pH 7.4, with half-times, respectively, of about 6 days and 4 h. Specific activities at 32 degrees C, pH 7.4, of about 0.33 mumol of NO x min-1 x mg-1 were realized after fractionation with CHAPSO in a phenazine methosulfate/ascorbate-based assay. The Km(NO) was less than or equal to 17 microM at pH 7.4. Rates decreased substantially below pH 5 and above pH 7.6. The preparations were free or almost free of cytochromes, exhibited otherwise no absorption bands in the visible region, contained no redox metals except for very small amounts of iron, were not inhibited by EDTA or some other common inhibitors of redox-metal enzymes, and were not observed to catalyze the reduction of nitrate, nitrite, or N2O. An absorption band at 274 nm in both the CHAPSO- and SDS-fractionated preparations was attributed to the presence of a solvent-soluble chromophore. N-Bromosuccinimide (NBS) inactivated the enzyme and bleached the chromophore both in the enzyme preparation and, after its purification, in 95% ethanol. NBS-inactivated enzyme could be reconstituted with purified chromophore, which alone seemed to have no nitric oxide reductase activity, but not with purified chromophore that had been reacted with NBS. Spectral changes interpretable as due to changes in redox state were not observed when enzyme was exposed to NO or certain reducing agents.  相似文献   

16.
The effect of three food preservatives, sorbic acid and methyl and butyl esters of p-hydroxybenzoic acid, on the protonmotive force in Escherichia coli membrane vesicles was investigated. Radioactive chemical probes were used to determine the two components of the protonmotive force: delta pH (pH difference) and delta psi (membrane potential). Both types of compound selectively eliminated delta pH across the membrane, while leaving delta psi much less disturbed indicating that transport inhibition by neutralization of the protonmotive force cannot be the only mechanism of action for the food preservatives tested.  相似文献   

17.
《FEBS letters》1987,214(2):343-346
Addition of ATP leads to the accumulation of the permeant anion PCB by sub-bacterial vesicles from Vibrio alginolyticus. This accumulation is caused by Δψ generation by ATPase, the effect being inhibited by CCCP, gramicidin D and DCCD. Δψ values may be increased by incubation of sub-bacterial vesicles at room temperature and with the protein fraction isolated according to Beechey et al. [(1975) Biochem. J. 148, 533–537] from another portion of the sub-bacterial vesicles. Δψ generation is observable only in the presence of Mg2+ at high concentrations (optimum ≈ 30 mM). Proceeding from experimental data we assume that Mg2+ reduces passive H+ conductivity of the vesicle membranes. Thus, a Δψ-generating ATPase has been shown for the first time in V. alginolyticus membranes.  相似文献   

18.
Tightly coupled inside-out vesicles were prepared from Paracoccus denitrificans cells (SPP, sub-Paracoccus particles) and characterized kinetically. The rate of NADH oxidation, catalysed by SPP, increases 6-8 times on addition of gramicidin. The vesicles are capable of catalysing Delta micro H+-dependent reverse electron transfer from quinol to NAD+. The kinetic parameters of the NADH-oxidase and the reverse electron transfer carried out by membrane-bound P. denitrificans complex I were estimated and compared with those of the mitochondrial enzyme. The data demonstrate that catalytic properties of the dinucleotide-binding site of the bacterial and mitochondrial complex I are almost identical, pointing out similar organization of the site in mammals and P. denitrificans. Inhibition of the bacterial complex I by a specific inhibitor of Q reduction, rotenone, is very different from that of the mitochondrial enzyme. The inhibitor is capable of suppressing the NADH oxidation reaction only at micromolar concentrations, while the activity of mitochondrial enzyme is suppressed by nanomolar concentrations of rotenone. In contrast to the mitochondrial enzyme, rotenone, even at concentrations as high as 10 micro m, does not inhibit the reverse, Delta micro H+-dependent NAD+-reductase reaction on SPP.  相似文献   

19.
In quinone-depleted mitochondrial and Paracoccus denitrificans membranes the quantum yield of fluorescence of ostruthin (6-geranyl-7-hydroxycoumarin) was maintained, whereas an increase in the quantum yield took place after extraction of Staphylococcus epidermidis membrane. A marked quenching effect of ubiquinone and menaquinone each with two isoprene units in the side chain on the ostruthin fluorescence was found with all types of quinone-depleted particles. When the homogues of menaquinone and ubiquinone with six isoprene units in the side chain were re-incorporated, a quenching of the ostruthin fluorescence was observed in the S. epidermidis membranes but not in those of P. denitrificans. The different behaviour of both bacterial preparations is attributable to the more specific finding of ubiquinone in the particles of P. denitrificans.  相似文献   

20.
The membrane-bound hydrogenase from Paracoccus denitrificans was purified 68-fold with a yield of 14.6%. The final preparation had a specific activity of 161.9 mumol H2 min-1 (mg protein)-1 (methylene blue reduction). Purification involved solubilization by Triton X-114, phase separation, chromatography on DEAE-Sephacel, ammonium-sulfate precipitation and chromatography on Procion-red HE-3B-Sepharose. Gel electrophoresis under denaturing conditions revealed two non-identical subunits with molecular masses of 64 kDa and 34 kDa. The molecular mass of the native enzyme was 100 kDa, as estimated by FPLC gel filtration in the presence of Chaps, a zwitterionic detergent. The isoelectric point of the Paracoccus hydrogenase was 4.3. Metal analysis of the purified enzyme indicated a content of 0.6 nickel and 7.3 iron atoms/molecule. ESR spectra of the reduced enzyme exhibited a close similarity to the membrane-bound hydrogenase from Alcaligenes eutrophus H16 with g values of 1.86, 1.92 and 1.98. The half-life for inactivation under air at 20 degrees C was 8 h. The Paracoccus hydrogenase reduced several electron acceptors, namely methylene blue, benzyl viologen, methyl viologen, menadione, cytochrome c, FMN, 2,6-dichloroindophenol, ferricyanide and phenazine methosulfate. The highest activity was measured with methylene blue (V = 161.9 U/mg; Km = 0.04 mM), whereas benzyl and methyl viologen were reduced at distinctly lower rates (16.5 U/mg and 12.1 U/mg, respectively). The native hydrogenase from P. denitrificans cross-reacted with purified antibodies raised against the membrane-bound hydrogenase from A. eutrophus H16. The corresponding subunits from both enzymes also showed immunological relationship. All reactions were of partial identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号