首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
刘冉冉  时伟伟  张晓东  宋杰 《生态学报》2017,37(6):1881-1887
为了探讨不同生境盐地碱蓬对低氮生境的适应机制,测定了盐渍环境下(200 mmol/L Na Cl)不同浓度硝态氮(0.3、5 mmol/L NO~-_3-N)预处理两种生境盐地碱蓬经氮饥饿后的NO~-_3含量、硝酸还原酶(NR)活性、光合特性及生长状况。结果表明,0.3和5 mmol/L NO~-_3-N处理以及进行氮饥饿时,潮间带生境盐地碱蓬叶片NO~-_3含量均高于内陆生境盐地碱蓬。与内陆生境盐地碱蓬相比,氮饥饿后,潮间带生境盐地碱蓬叶绿素含量、NR活性和光合放氧速率下降幅度均小于内陆生境盐地碱蓬,在0.3mmol/L NO~-_3-N预处理进行氮饥饿时趋势更加明显。0.3 mmol/L NO~-_3-N预处理后氮饥饿对潮间带生境盐地碱蓬根冠比没有影响,却降低内陆生境盐地碱蓬根冠比。上述结果表明,低氮条件下潮间带生境盐地碱蓬具有较高的NO~-_3储存能力,在环境持续氮素缺乏时具有较高的NO~-_3-N再利用能力,能更好地维持氮代谢以及光合性能。说明潮间带生境盐地碱蓬能更好地适应低氮生境。  相似文献   

2.
The effects of growing seedlings of red oak (Quercus rubra) and red ash (Fraxinus pennsylvanica) with Hoagland solutions containing five N-regimes, differing in the N-forms (NH4, NO3) and concentrations (High and Low), in relation to light intensity were investigated by the utilization of enzymatic markers of the N assimilation pathway, nitrate reductase (NR) and glutamine synthetase (GS). Red oak and red ash showed different patterns of N-assimilation. Red oak seedlings assimilated NO3 in low amounts in their roots and leaves, whereas red ash seedlings assimilated high amounts of NO3, mostly in the leaves. A significant amount of constitutive NR activity was found in red oak seedlings supplied with NH4 N-regime. This could be characteristic of a species adapted to soils that are poor in nitrogen. Root GS activity was lower in red oak seedlings than in red ash seedlings, indicating that the rate of NH4 assimilation differed in these two hardwood species. Low irradiance reduced growth of both hardwood species, but greatly affected the specific leaf area of red ash and reduced NO3 assimilation (when data are expressed per leaf area). Both species reacted similarly to N-regimes in terms of relative growth rate.  相似文献   

3.
Sulfur deprivation and nitrogen metabolism in maize seedlings   总被引:12,自引:1,他引:11       下载免费PDF全文
The objective of this experiment was to elucidate the manner in which N metabolism is influenced by S nutrition. Maize (Zea mays L.) seedlings supplied with Hoagland solution minus SO42− exhibited S deficiency symptoms 12 days after emergence. Prior to development of these symptoms, a decline in leaf blade nitrate reductase (NR, EC 1.6.6.1) activity was observed in S-deprived seedlings compared to normal seedlings. Twelve days after emergence, in vitro NR activity was diminished 50% compared to normal seedlings. Glutamine synthetase (EC 6.3.1.2) and NAD-glutamate dehydrogenase (EC 1.4.1.2) activities were less severely affected (19 and 13%, respectively, at day 12). NADP-glutamate dehydrogenase (EC 1.4.1.4) activity and leaf blade fresh weight were not altered by S deprivation. Concentrations of soluble protein and chlorophyll (a and b) in leaf blades were reduced 18 and 25%, respectively, at day 12. A significantly higher concentration of NO3-N was observed for leaf blade and stem (culms, leaf sheaths, and unfurled leaves) fractions (46 and 31%, respectively) in S-deprived plants. In contrast to the other parameters measured, NR activity in S-deprived seedlings could be readily restored to the normal level by addition of SO42−. The apparent preferential effect of S deprivation on NR activity could be causally related to the observed changes in NO3-N and soluble protein concentration.  相似文献   

4.
The objectives of this study were to select and initially characterize mutants of soybean (Glycine max L. Merr. cv Williams) with decreased ability to reduce nitrate. Selection involved a chlorate screen of approximately 12,000 seedlings (progeny of mutagenized seed) and subsequent analyses for low nitrate reductase (LNR) activity. Three lines, designated LNR-2, LNR-3, and LNR-4, were selected by this procedure.

In growth chamber studies, the fully expanded first trifoliolate leaf from NO3-grown LNR-2, LNR-3, and LNR-4 plants had approximately 50% of the wild-type NR activity. Leaves from urea-grown LNR-2, LNR-3, and LNR-4 plants had no NR activity while leaves from comparable wild-type plants had considerable activity; the latter activity does not require the presence of NO3 in the nutrient solution for induction and on this basis is tentatively considered as a constitutive enzyme. Summation of constitutive (urea-grown wild-type plants) and inducible (NO3-grown LNR-2, LNR-3, or LNR-4 plants) leaf NR activities approximated activity in leaves of NO3-grown wild-type plants. Root NR activities were comparable in wild-type and mutant plants grown on NO3, and roots of both plant types lacked constitutive NR activity when grown on urea. In both growth chamber- and field-grown plants, oxides of nitrogen [NO(x)] were evolved from young leaves of wild-type plants, but not from leaves of LNR-2 plants, during in vivo NR assays. Analysis of leaves from different canopy locations showed that constitutive NR activity was confined to the youngest three fully expanded leaves of the wild-type plant and, therefore, on a total plant canopy basis, the NR activity of LNR-2 plants was approximately 75% that of wild-type plants. It is concluded that: (a) the NR activity in leaves of NO3-grown wild-type plants includes both constitutive and inducible activity; (b) the missing NR activity in LNR-2, LNR-3, and LNR-4 leaves is the constitutive component; and (c) the constitutive NR activity is associated with NO(x) evolution and occurs only in physiologically young leaves.

  相似文献   

5.
Seasonal changes in plant NO3 -N use were investigated by measuring leaf nitrate reductase activity (NRA), leaf N concentration, and leaf expansion in one evergreen woody species (Quercus glauca Thunb.) and two deciduous woody species [Acer palmatum Thunb. and Zelkova serrata (Thunb.) Makino]. Leaf N concentration was highest at the beginning of leaf expansion and decreased during the expansion process to a steady state at the point of full leaf expansion in all species. The leaf NRA of all species was very low at the beginning of leaf expansion, followed by a rapid increase and subsequent decrease. The highest leaf NRA was observed in the middle of the leaf-expansion period, and the lowest leaf NRA occurred in summer for all species. Significant positive correlations were detected between leaf NRA and leaf expansion rates, while leaf N concentrations were negatively correlated with leaf area. In the evergreen Q. glauca, the N concentration in current buds increased before leaves opened; concurrently, the N concentration in 1-year-old leaves decreased by 25%. Our results show that the leaf-expansion period is the most important period for NO3 -N assimilation by broadleaf tree species, and that decreases in leaf N concentration through the leaf-expansion period are at least partly compensated for by newly assimilated NO3 -N in current leaves.  相似文献   

6.
The in vivo nitrate reductase activity in leaf tissue of cotton (Gossypium hirsutum L.) was characterized. Enzymatic activity was linear with time up to 60 min. The assay for nitrate reductase activity was optimized in leaf slices 400 μm wide incubated in an anaerobic system at 30°C, in a 0.02 M KNO3 medium at pH 7.0 with 1 % propanol. In vivo activity was highest in recently matured leaves at the top of the plant. Both light and nitrate enhanced in vivo enzymatic activity. The activity was highest after 9 hours in the light and then decreased steadily for several more hours even in the presence of light. The nitrate reductase activity was more strongly correlated to the levels of NO3-N in the culture solution than to the NO3-N level in the tissue. The utility of this technique in nitrate reductase assay in a tissue containing large amounts of phenolic compounds is discussed.  相似文献   

7.
Nitrate reductase activity (NRA) in different compartments (leaves, inflorescence stalks, flowers and tuberous roots) of Asphodelus aestivus Brot. (Liliaceae) and actual mineral nitrogen (NO3-N and NH4+-N) in soil surrounding the roots were investigated over one year. Although the highest NRA was found in the leaves, the other plant compartments, such as flowers and tuberous roots, also have nitrate assimilation capacity. High nitrate assimilation capacity under suitable conditions is considered to be a good strategy for development and dominance of this species in Mediterranean environments. There was a seasonal variation in nitrate assimilation in leaves and actual NO3-N content of soils. Depending on actual nitrate content of soils, nitrate assimilation increased in winter.  相似文献   

8.
为了解铁线莲的光合性能和氮素代谢的响应机制,对不同氮素形态配比下1 a生厚叶铁线莲(Clematis crassifolia)与天台铁线莲(C.paten ssp.tientaiensis)的生长、光响应曲线、A-Ci曲线和氮代谢相关酶活性进行了比较。结果表明,氮素形态配比显著影响铁线莲的生物量和叶绿素(Chl)含量,厚叶铁线莲在铵态氮(NH_4~+-N)与硝态氮(NO_3~–-N)配比为1∶1时,生物量、Chl a、Chl b、Car含量达到最大;天台铁线莲的Chl a和Chl b含量在NH_4~+-N/NO_3~–-N为1∶3时最高。在NH_4~+-N/NO_3~–-N为1∶1时,厚叶铁线莲的光饱和点和天台铁线莲的光补偿点为最大值,且厚叶铁线莲叶片的Vc_(max)与J_(max)值均显著高于其他处理。天台铁线莲的谷氨酰胺合成酶(GS)活性在NH_4~+-N/NO_3~–-N为3∶1处理下最高,而硝酸还原酶(NR)和亚硝酸还原酶(NiR)活性在NH_4~+-N/NO_3~–-N为1∶3时显著高于其他处理。可见,NH_4~+-N和NO_3~–-N混合施用能有效促进2种铁线莲的生长和光合作用,加强氮素利用效率。厚叶铁线莲适宜的NH_4~+-N/NO_3~–-N配比为1∶1,而天台铁线莲更适宜1∶3。  相似文献   

9.
10.
The effect of NH4+/NO3 availability on nitrate reductase (NR) activity in Phragmites australis and Glyceria maxima was studied in sand and water cultures with the goal to characterise the relationship between NR activity and NO3 availability in the rhizosphere and to describe the extent to which NH4+ suppresses the utilization of NO3 in wetland plants.The NR activity data showed that both wetland helophytes are able to utilize NO3. This finding was further supported by sufficient growth observed under the strict NO3 nutrition. The distribution of NR activity within plant tissues differed between species. Phragmites was proved to be preferential leaf NO3 reducer with high NR activity in leaves (NRmax > 6.5 μmol NO2 g dry wt−1 h−1) under all N treatments, and therefore Phragmites seems to be good indicator of NO3 availability in flooded sediment. In the case of Glyceria the contribution of roots to plant NO3 reduction was higher, especially in sand culture. Glyceria also tended to accumulate NO3 in non-reduced form, showing generally lower leaf NR activity levels. Thus, the NR activity does not necessarily correspond with plant ability to take up NO3 and grow under NO3-N source. Moreover, the species differed significantly in the content of compounds interfering with NR activity estimation. Glyceria, but not Phragmites, contained cyanogenic glycosides releasing cyanide, the potent NR inhibitor. It clearly shows that the use of NR activity as a marker of NO3 utilization in individual plant species is impossible without the precise method optimisation.  相似文献   

11.
Greenhouse experiments were conducted in two years (1993–1994) with eggplants supplied with 1, 2 or 4 mM NH4NO3 as the N source in order to determine its influence on molybdenum (Mo) and nitrate (NO3 ) content in leaf blades, petioles, and fruits as well as leaf nitrate reductase (NR) activity. The results reveal that 2 and 4 mM NH4NO3 altered shoot Mo distribution and thus affecting the NR activity.  相似文献   

12.
A field experiment on wheat (Triticum aestivum L.) ev. Shera grown at 120 kg N ha?1 was conducted. Half of the dose of fertilizer N was applied at the pre-sowing stage and the other half when the seedlings were one month old. The leaf blades were examined for their NO3? content and NO3? assimilatory activity at various stages of growth and development. Soil nitrate level at 50 cm depth was determined throughout the wheat growing season in terms of cencentration (μg/ml) and total amount (kg ha?1). The upper leaf blades were examined for their capacity to assimilate NO3?. Highly significant correlation between NR (nitrate reductase) activity and NO3? content in the leaf blades. NR activity and soil NO3?, and between soil NO3? and leaf blade NO3? was observed. Findings on low soil NO3? status during the reproductive phase and the capacity of the upper leaf blades to assimilate additional amounts of NO3?, point to the need for developing a programme of soil fertilizer application whereby all the leaf blades can utilize the NO3? optimally and thus result in greater N harvest.  相似文献   

13.
The carbondioxide compensation point (), dry matter production, and the activities of nitrate reductase (NR), glycolate oxidase (GO), ribulose 1,5-bisphosphate carboxylase (RuBPC) and phosphoenolpyruvate carboxylase (PEPC) were measured in wheat, grown on media, containing nitrate or ammonium. Significantly higher and lower dry matter was observed in plants supplied with ammonium-nitrogen (NH4-N), as compared to those supplied with nitrate-nitrogen (NO3-N). The activities of NR and PEPC were higher in plants grown on NO3-N than to those grown on NH4-N. There were no significant differences in the activities of GO and RuBPC irrespective of whether NO3-N or NH4-N was supplied. None of the enzymes was found to be associated directly with the .PEPC activity accounted the measured differences in the and biomass production between NH4-N and NO3-N supplied plants. The relationship between PEPC and the is discussed.  相似文献   

14.
Abstract. Wild radish plants deprived of, and continuously supplied with solution NO?3 for 7 d following 3 weeks growth at high NO?3 supply were compared in terms of changes in dry weight, leaf area, photosynthesis and the partitioning of carbon and nitrogen (NH2-N and NO?3-N) among individual organs. Initial levels of NO?3-N accounted for 25% of total plant N. Following termination of NO?3 supply, whole plant dry weight growth was not significantly reduced for 3 d, during which time plant NH2-N concentration declined by about 25% relative to NO?3-supplied plants, and endogenous NO?3-N content was reduced to nearly zero. Older leaves lost NO?3 and NH2-N, and roots and young leaves gained NH2-N in response to N stress. Relative growth rate declined due both to decreased net assimilation rate and a decrease in leaf area ratio. A rapid increase in specific leaf weight was indicative of a greater sensitivity to N stress of leaf expansion compared to carbon gain. In response to N stress, photosynthesis per unit leaf area was more severely inhibited in older leaves, whereas weight-based rates were equally inhibited among all leaf ages. Net photosynthesis was strongly correlated with leaf NH2-N concentration, and the relationship was not significantly different for leaves of NO3?-supplied compared to NO?3-deprived plants. Simulations of the time course of NO?3 depletion for plants of various NH2-N and NO?3 compositions and relative growth rates indicated that environmental conditions may influence the importance of NO?3 accumulation as a buffer against fluctuations in the N supply to demand ratio.  相似文献   

15.
16.
Anaerobic nitrite production (thein vivo NO3-R activity) in an incubation medium lacking exogenous nitrate but containing 0.5%n-propanol and 0.1% Triton X-100 showed higher correlation (y - ax b) with the level of endogenous nitrate inPisum sativum L. leaves than thein vitro nitrate reductase activity. Thein vivo NO3-R activity correlated well with thein vitro activity up to the 50 ppm NO3-N level of endogenous nitrate. The ratioin vivo: in vitro activity slightly decreased with increasing level of endogenous nitrate in leaf tissue.  相似文献   

17.
The activities of glutamate dehydrogenase (GDH), glutamine synthetase (GS), and nitrate reductase (NR) and the levels of soluble protein and NO-3 were assayed in soybean (Glycine max [L.] Merr.) leaves over a 48-h period with the initial 24 h under a light-dark cycle (LD 16:8) followed by 24 h of continuous light (LL). Plants had been entrained for 30 days under the LD regime. Maize (Zea mays) leaves (10 days old) under a LD 15:9 cycle were assayed only for NR and nitrite reductase (NiR). Data were subjected to frequency analysis by the least squares method to determine probabilities for cosine function periods (τ's) between 10 and 30 h. NR activities for both soybean and Zea leaves had 24 h τ's with P values < 0.05 indicating circadian periodicity. GDH in soybeans had a 24-h rhythm under LD conditions which lengthened under LL conditions. The 24-h rhythm of GDH displayed maximal activity toward the end of the dark period of the LD cycle whereas the highest activity of NR was early in the light period. Total soluble protein displayed a rhythm with a best fitting τ of greater than 24 h under both LD and LL. GDH, GS, NR, NO3, and soluble protein in soybeans and NiR in Zea, all displayed that were ultradian (10–18 h), indicating that a τ of about one half a circadian periodicity may be a common characteristic of the enzymes of primary nitrogen metabolism in higher plants. These data also demonstrate that although both NR and GDH are circadian in their activity, the 24-h rhythm may be greatly influenced by ultradian oscillations in activity.  相似文献   

18.
Both the in vivo (+ nitrate) nitrate reductase (NR) activity (leaf disks incubated in the presence of KNO3) and the in vivo (? nitrate) NR activity (leaf disks incubated without KNO3) in leaves of eggplant (Solanum melongena L. cv. Bonica) were affected by rapidly growing fruits. Plants with a fruit load showed more pronounced diurnal variation in (+ nitrate) NR activity and higher (? nitrate) NR activity than plants without fruit. The higher (? nitrate) NR activity was accompanied by higher nitrate and lower sucrose and starch contents of leaves. The more pronounced diurnal changes in (+ nitrate) NR activity were paralleled by more pronounced diurnal variation in carbohydrate content of leaves. Fruit removal led to a decrease in both (? nitrate) NR activity and nitrate concentration in leaves, while the carbohydrate content increased. Plants supplied with ammonium instead of nitrate showed only slightly lower (+ nitrate) but no (? nitrate) NR activity. As for plants treated with nitrate, diurnal changes in (+ nitrate) NR activity were most pronounced in leaves of plants with fruit and this again was paralleled by a more pronounced diurnal variation in the carbohydrate concentration in the leaves. Increasing the oxygen level of the atmosphere to 50% led to a dramatic decrease in the (+ nitrate) NR activity and to an increase in both (? nitrate) NR activity and nitrate concentration, which was accompanied by decreasing carbohydrate contents of the leaves. Low light intensities and extended dark periods caused similar changes in NR activity and nitrate and carbohydrate concentrations in leaves. Increasing the nitrate concentration in the nutrient solution led to a rise in (+ nitrate) and (? nitrate) NR activity, but only the (? nitrate) NR activity paralleled the nitrate concentration in the leaves. This increase in the nitrate concentration was accompanied by a decrease in the carbohydrate content of the leaves. It is concluded that the level of and the diurnal changes in both (+ nitrate) and (? nitrate) NR activity and the concentration of nitrate in the leaves are dependent upon their carbohydrate status.  相似文献   

19.
The author studied the effect of different nickel concentrations (0, 0.4, 40 and 80 μM Ni) on the nitrate reductase (NR) activity of New Zealand spinach (Tetragonia expansa Murr.) and lettuce (Lactuca sativa L. cv. Justyna) plants supplied with different nitrogen forms (NO3 –N, NH4 +–N, NH4NO3). A low concentration of Ni (0.4 μM) did not cause statistically significant changes of the nitrate reductase activity in lettuce plants supplied with nitrate nitrogen (NO3 –N) or mixed (NH4NO3) nitrogen form, but in New Zealand spinach leaves the enzyme activity decreased and increased, respectively. The introduction of 0.4 μM Ni in the medium containing ammonium ions as a sole source of nitrogen resulted in significantly increased NR activity in lettuce roots, and did not cause statistically significant changes of the enzyme activity in New Zealand spinach plants. At a high nickel level (Ni 40 or 80 μM), a significant decrease in the NR activity was observed in New Zealand spinach plants treated with nitrate or mixed nitrogen form, but it was much more marked in leaves than in roots. An exception was lack of significant changes of the enzyme activity in spinach leaves when plants were treated with 40 μM Ni and supplied with mixed nitrogen form, which resulted in the stronger reduction of the enzyme activity in roots than in leaves. The statistically significant drop in the NR activity was recorded in the aboveground parts of nickel-stressed lettuce plants supplied with NO3 –N or NH4NO3. At the same time, there were no statistically significant changes recorded in lettuce roots, except for the drop of the enzyme activity in the roots of NO3 -fed plants grown in the nutrient solution containing 80 μM Ni. An addition of high nickel doses to the nutrient solution contained ammonium nitrogen (NH4 +–N) did not affect the NR activity in New Zealand spinach plants and caused a high increase of this enzyme in lettuce organs, especially in roots. It should be stressed that, independently of nickel dose in New Zealand spinach plants supplied with ammonium form, NR activity in roots was dramatically higher than that in leaves. Moreover, in New Zealand spinach plants treated with NH4 +–N the enzyme activity in roots was even higher than in those supplied with NO3 –N.  相似文献   

20.
Nitrogen assimilation was studied in the deciduous, perennial climber Clematis vitalba. When solely supplied with NO3 in a hydroponic system, growth and N-assimilation characteristics were similar to those reported for a range of other species. When solely supplied with NH4+, however, nitrate reductase (NR) activity dramatically increased in shoot tissue, and particularly leaf tissue, to up to three times the maximum level achieved in NO3 supplied plants. NO3 was not detected in plant material that had been solely supplied with NH4+, there was no NO3 contamination of the hydroponic system, and the NH4+-induced activity did not occur in tobacco or barley grown under similar conditions. Western Blot analysis revealed that the induction of NR activity, either by NO3 or NH4+, was matched by NR and nitrite reductase protein synthesis, but this was not the case for the ammonium assimilation enzyme glutamine synthetase. Exposure of leaf disks to N revealed that NO3 assimilation was induced in leaves directly by NO3 and NH4+ but not glutamine. Our results suggest that the NH4+-induced potential for NO3 assimilation occurs when externally sourced NH4+ is assimilated in the absence of any NO3 assimilation. These data show that the potential for nitrate assimilation in C. vitalba is induced by a nitrogenous compound in the absence of its substrate and suggest that NO3 assimilation in C. vitalba may have a significant role beyond the supply of reduced N for growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号