首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Rudgers JA  Hodgen JG  White JW 《Oecologia》2003,135(1):51-59
Predators can reduce herbivory by consuming herbivores (a consumptive effect) and by altering herbivore behavior, life history, physiology or distribution (non-consumptive effects). The non-consumptive, or trait-mediated, effects of predators on prey may have important functions in the dynamics of communities. In a facultative ant-plant mutualism, we investigated whether these non-consumptive effects influenced the host plants of prey. Here, predaceous ants (Forelius pruinosus) consume and disturb a dominant lepidopteran folivore (Bucculatrix thurberiella) of wild cotton plants (Gossypium thurberi). Season-long ant exclusion experiments revealed that ants had a larger proportional effect on damage by B. thurberiella than on caterpillar abundance, a result that suggests ants have a strong non-consumptive effect. Behavioral experiments conducted in two populations over 2 years demonstrated that B. thurberiella caterpillars were substantially less likely to damage wild cotton leaves in the presence of ants due to ant-induced changes in caterpillar behavior. In the absence of ants caterpillars spent more time stationary (potential feeding time) and less time dropping from leaves by a thread of silk than when ants were present. Furthermore, ants altered the spatial distribution of both caterpillars and damage; caterpillars spent relatively more time on the upper surfaces of leaves and caused damage further from the leaf margin in ant exclusion treatments. Both direct encounters with ants and information conveyed when ants walked onto leaves were key events leading to the anti-predator behaviors of caterpillars. This study contributes to a small body of evidence from terrestrial systems demonstrating that the trait-mediated effects of predators can cascade to the host plants of prey.  相似文献   

2.
Ian Kaplan  Jennifer S. Thaler 《Oikos》2010,119(7):1105-1113
Plant resistance and predation have strong independent and interacting effects on herbivore survival, behavior, and patterns of herbivory. Historically, research has emphasized variation in the consumption of herbivores by enemies. Recent work, however, demonstrates that predators also elicit important changes in the traits of their prey, but we do not know how this is influenced by plant quality. In this study, we quantify how the consumptive and non‐consumptive effects of predators vary along a gradient of plant resistance using tomato plants (Solanum lycopersicum), tobacco hornworms (Manduca sexta), and predaceous stinkbugs (Podisus maculiventris). We manipulated resource quality using three tomato lines that vary in the expression of the jasmonate pathway, a phytohormonal pathway that is central in mediating resistance to insects. Resistant plants had higher levels of defensive proteins and glandular trichomes than low resistance plants. The consumptive and non‐consumptive effects of predators were quantified on the three tomato lines by comparing the impact of ‘lethal’ predators that both kill and scare prey with ‘risk’ predators whose mouthparts were surgically impaired to prevent killing. Across several field experiments, the total cascading effect of predators on plant damage was 80.4% lower on jasmonate‐overex‐pressing (highly resistant) plants compared to that on wild‐type or jasmonate‐insensitive (low resistance) plants. This dramatic attenuation of predator effects was due to a 66% reduction in consumption on high resistance plants, and also because of a 65% decline in non‐consumptive effects. Numerous studies in natural and agricultural habitats have documented that predator effects tend to be weaker on well‐defended plants; our results provide novel mechanistic insight into this pattern by demonstrating that plant resistance substantially weakens both the consumptive and non‐consumptive impacts of predators.  相似文献   

3.
There is increasing evidence that top-down controls have strong non-consumptive effects on herbivore populations. However, little is known about how these non-consumptive effects relate to bottom-up influences. Using a series of field trials, we tested how changes in top-down and bottom-up controls at the within-plant scale interact to increase herbivore suppression. In the first experiment, we manipulated access of natural populations of predators (primarily lady beetles) to controlled numbers of A. glycines on upper (i.e. vigorous-growing) versus lower (i.e. slow-growing) soybean nodes and under contrasting plant ages. In a second experiment, we measured aphid dispersion in response to predation. Bottom-up and top-down controls had additive effects on A. glycines population growth. Plant age and within-plant quality had significant bottom-up effects on aphid size and population growth. However, top-down control was the dominant force suppressing aphid population growth, and completely counteracted bottom-up effects at the plant and within-plant scales. The intensity of predation was higher on upper than lower soybean nodes, and resulted in a non-consumptive reduction in aphid population growth because most of the surviving aphids were located on lower plant nodes, where rates of increase were reduced. No effects of predation on aphid dispersal among plants were detected, suggesting an absence of predator avoidance behavior by A. glycines. Our results revealed significant non-consumptive predator impacts on aphids due to the asymmetric intensity of predation at the within-plant scale, suggesting that low numbers of predators are highly effective at suppressing aphid populations.  相似文献   

4.
Recent reviews on trait-mediated interactions in food webs suggest that trait-mediated effects are as important in triggering top–down trophic cascades as are density-mediated effects. Trait-mediated interactions between predator and prey result from non-consumptive predator effects changing behavioural and/or life history traits of prey. However, in biological control the occurrence of trait-mediated interactions between predators, prey and plants has been largely ignored. Here, we show that non-consumptive predator effects on prey cascade down to the plant in an agro-ecological food chain. The study system consisted of the predatory mites P. persimilis and N. californicus , the herbivorous non-target prey western flower thrips F. occidentalis and the host plant bean. Irrespective of predator species and risk posed to prey, the presence of predator eggs led to increased ambulation, increased mortality and decreased oviposition of thrips. Furthermore, the presence of predator eggs reduced leaf damage caused by thrips. To our knowledge this is the first experimental evidence suggesting a positive trophic cascade triggered by non-consumptive predator effects on non-target prey in an augmentative biological control system.  相似文献   

5.
Abstract.  1. Most studies evaluating the combined impact of spiders and other predators on herbivore densities in agroecosystems have focused primarily on their trophic connections with invertebrate predators (e.g. carabids, chrysopids); however linkages among spiders and vertebrate predators may also help structure the population dynamics of insect herbivores. A field experiment was conducted to examine the impact of avian and spider predation on lepidopteran caterpillar densities and plant productivity within a Brassica agroecosystem.
2. Arthropod abundance, leaf-chewing damage, and final plant productivity associated with broccoli, Brassica oleracea L. (var. italica ), were recorded for four treatments: (1) bird present but spiders removed; (2) both birds and spiders present; (3) birds excluded, spiders present; and (4) birds and spiders both excluded.
3. Densities of Artogeia rapae L. (Lepidoptera: Pieridae) and Trichoplusia ni Hübner (Lepidoptera: Noctuidae) large caterpillars and post feeding stages were reduced significantly by bird predation. The abundance of large caterpillars was also reduced on spider-inhabited plants during early plant growth; however the assemblage of birds and spiders did not suppress caterpillar densities more significantly than either predator alone.
4. Plants protected by birds, spiders, and birds plus spiders sustained less folivory attributable to leaf chewing caterpillars than check plants. Plant productivity was also greater for predator-protected plants than check plants.
5. Although spiders and parasitoids were responsible for some of the mortality inflicted upon lepidopteran caterpillars, it was concluded that in this study system, birds are the most important natural enemies of folivores.  相似文献   

6.
Abstract.  1. Allelochemicals in herbivore diet are known to affect the development of higher trophic levels, such as parasitoids and predators.
2. This study examines how differing levels of nicotine affects the development of a herbivore, its parasitoid and secondary hyperparasitoid over four trophic levels. Separate cohorts of the herbivore, Manduca sexta , were fed on artificial diets containing 0.0, 0.1, and 0.5% wet weights of nicotine. Some of the larvae in each cohort were separately parasitised in the first (L1) and third (L3) instars by the gregarious endoparasitoid, Cotesia congregata . Newly emerged parasitoid cocoons were, in turn, parasitised by the hyperparasitoid, Lysibia nana .
3. Pupal mass in M . sexta was negatively correlated with nicotine concentrations in the artificial diet, although larval development time was unaffected.
4. Hyperparasitoid survival was highest when there were low levels of nicotine in the diet of M . sexta . Cocoon mass in C . congregata and adult mass in L . nana were mostly affected by nicotine levels in host diet when L1 M. sexta larvae were parasitised. The effects were slightly stronger on L . nana than on C . congregata , indicating the presence of both qualitative and quantitative effects of nicotine concentration on both species.
5. The results suggest that allelochemicals in herbivore diet can have both direct and indirect effects on the performance of higher trophic levels. However, in multitrophic interactions these effects can vary with the stage of the herbivore attacked by the primary parasitoid, as well as with the strategy employed by the herbivore to deal with plant phytotoxins.  相似文献   

7.
Predators can impact their prey via consumptive effects that occur through direct killing, and via non-consumptive effects that arise when the behaviour and phenotypes of prey shift in response to the risk of predation. Although predators'' consumptive effects can have cascading population-level effects on species at lower trophic levels there is less evidence that predators'' non-consumptive effects propagate through ecosystems. Here we provide evidence that suppression of abundance and activity of a mesopredator (the feral cat) by an apex predator (the dingo) has positive effects on both abundance and foraging efficiency of a desert rodent. Then by manipulating predators'' access to food patches we further the idea that apex predators provide small prey with refuge from predation by showing that rodents increased their habitat breadth and use of ‘risky′ food patches where an apex predator was common but mesopredators rare. Our study suggests that apex predators'' suppressive effects on mesopredators extend to alleviate both mesopredators'' consumptive and non-consumptive effects on prey.  相似文献   

8.
Classical ecological theory states that in tri-trophic systems, predators indirectly facilitate plants by reducing herbivore densities through consumption, while more recent work has revealed that predators can generate the same positive effect on plants non-consumptively by inducing changes in herbivore traits (e.g. feeding rates). Based on observations in US salt marshes dominated by vast monocultures of cordgrass, we hypothesized that sit-and-wait substrate-dwelling predators (crabs) could actually strengthen per capita impacts of potent grazers (snails), by non-consumptively inducing a vertical habitat shift of snails to their predation refuge high on canopy leaves that are vulnerable to grazing. A two-month field experiment supported this hypothesis, revealing that predators non-consumptively increased the mean climbing height of snails on grasses, increased grazing damage per leaf and ultimately suppressed cordgrass biomass, relative to controls. While seemingly counterintuitive, our results can be explained by (i) the vulnerability of refuge resources to grazing, and (ii) universal traits that drove the vertical habitat shift--i.e. relative habitat domains of predator and prey, and the hunting mode of the top predator. These results underline the fact that not only should we continue to incorporate non-consumptive effects into our understanding of top-down predator impacts, but we should do so in a spatially explicit manner.  相似文献   

9.
Predators are known to have both consumptive and non-consumptive effects (NCEs) on their prey that can cascade to affect lower trophic levels. Non-consumptive interactions often drive these effects, though the majority of studies have been conducted in aquatic- or herbivory-based systems. Here, we use a laboratory study to examine how linkages between an above-ground predator and a detritivore influence below-ground properties. We demonstrate that predators can depress soil metabolism (i.e. CO2 flux) and soil nutrient content via both consumptive and non-consumptive interactions with detritivores, and that the strength of isolated NCEs is comparable to changes resulting from predation. Changes in detritivore abundance and activity in response to predators and the fear of predation likely mediate interactions with the soil microbe community. Our results underscore the need to explore these mechanisms at large scales, considering the disproportionate extinction risk faced by predators and the importance of soils in the global carbon cycle.  相似文献   

10.
Predators may have consumptive (lethal) and non-consumptive (sub-lethal) effects on prey. Non-consumptive effects include altered behavior and reduced growth and fecundity. Native prey may not recognize non-native predators as a threat, and therefore may suffer pronounced effects. Additionally, non-native predators may elicit different behavioral responses from prey compared to native predators. Theory predicts that consumptive effects should be greater for non-native predators (due to prey naiveté), and non-consumptive effects should be greater for native predators (due to predator recognition). To test these hypotheses, I monitored bicolor damselfish (Stegastes partitus) in the presence of invasive predatory Pacific lionfish (Pterois spp.), a native predator (graysby, Cephalopholis cruentata), and an egg predator (bluehead wrasse, Thalassoma bifasciatum). Body size and location of lionfish and graysby were monitored on reefs in the Bahamas. Bicolor fecundity was measured as the number and size of egg-masses that individual fish laid. Bicolor fecundity was negatively correlated with lionfish density but not graysby or bluehead density. Neither predator had a detectable effect on bicolor body size, but lionfish density was negatively correlated with the size of mature adult damselfish. I observed behavioral responses of bicolors to the two piscivores, to bluehead wrasse, and to two herbivorous fishes (Acanthurus coeruleus, Scarus spp.) as non-aggressive controls. Bicolors changed behavior (feeding and aggression) in the presence of all native fishes, but not in the presence of lionfish. Thus, differential effects exist between native and non-native predators, and invasive lionfish pose a non-consumptive threat to bicolor damselfish via reduced growth and fecundity.  相似文献   

11.
Predators can affect prey in two ways—by reducing their density (consumptive effects) or by changing their behavior, physiology or other phenotypic traits (non-consumptive effects). Understanding the cues and sensory modalities prey use to detect predators is critical for predicting the strength of non-consumptive effects and the outcome of predator–prey encounters. While predator-associated cues have been well studied in aquatic systems, less is known about how terrestrial prey, particularly insect larvae, detect their predators. We evaluated how Colorado potato beetle, Leptinotarsa decemlineata, larvae perceive predation risk by isolating cues from its stink bug predator, the spined soldier bug, Podisus maculiventris. When exposed to male “risk” predators that were surgically manipulated so they could hunt but not kill, beetles reduced feeding 29 % compared to controls. Exposure to risk females caused an intermediate response. Beetles ate 24 % less on leaves pre-exposed to predators compared to leaves never exposed to predators, indicating that tactile and visual cues are not required for the prey’s response. Volatile odor cues from predators reduced beetle feeding by 10 % overall, although male predators caused a stronger reduction than females. Finally, visual cues from the predator had a weak effect on beetle feeding. Because multiple cues appear to be involved in prey perception of risk, and because male and female predators have differential effects, beetle larvae likely experience tremendous variation in the information about risk from their local environment.  相似文献   

12.
13.
Predation can be one of the key factors that determine abundance in insect herbivore communities, and drive evolution of body size, and anti‐predator traits, including crypsis. Population dynamics and selection pressures will depend on the identity of dominant predators in the system, and these may vary substantially among habitats. Arthropods emerge as chief predators on caterpillars in the understorey of non‐montane tropical forest, whereas birds dominate elsewhere. In a tropical forest in Uganda, Africa, we evaluated marks on dummy caterpillars that differed in size, material (clay vs. dough), colourant, and plant species on which dummy caterpillars were exposed. We included live caterpillars to estimate the extent to which studies using artificial caterpillars reflect actual levels of predation. Ants and wasps were the most important damagers of dummy caterpillars, whereas bug and beetle damage was very rare, and no bird or small mammal damage was observed. Daily attack rates did not differ significantly from apparent mortality of live caterpillars (daily mortality = 12.1%), but dummy caterpillars made from dough were attacked more frequently (daily attack rate = 18.4%) than those from clay (daily attack rate = 6.9%). Caterpillars of different colour and size, and caterpillars exposed on different plant species had the same chances to be predated. This is in contrast to results from temperate area studies where birds dominate and are not affected by dummy caterpillar material, but prefer larger caterpillars. Our results are consistent with dominant predators on tropical forest caterpillars being invertebrates that are more chemically than visually oriented, so that: (1) material used for dummy caterpillars is important, (2) background matching is relatively unimportant, and (3) being large may have less of a cost. These patterns in predation might facilitate polyphagy and evolution of large body size in tropical Lepidoptera.  相似文献   

14.
1. Intraguild predation occurs when top predators feed upon both intermediate predators and herbivores. Intraguild predators may thus have little net impact on herbivore abundance. Variation among communities in the strength of trophic cascades (the indirect effects of predators on plants) may be due to differing frequencies of intraguild predation. Less is known about the influence of variation within communities in predator-predator interactions upon trophic cascade strength. 2. We compared the effects of a single predator community between two sympatric plants and two herbivore guilds. We excluded insectivorous birds with cages from ponderosa pine Pinus ponderosa trees parasitized by dwarf mistletoe Arceuthobium vaginatum. For 3 years we monitored caged and control trees for predatory arthropods that moved between the two plants, foliage-feeding caterpillars and sap-feeding hemipterans that were host-specific, and plant damage and growth. 3. Excluding birds increased the abundance of ant-tended aphids on pine and resulted in an 11% reduction in pine woody growth. Mutualist ants protected pine-feeding aphids from predatory arthropods, allowing aphid populations to burgeon in cages even though predatory arthropods also increased in cages. By protecting pine-feeding aphids from predatory arthropods but not birds, mutualist ants created a three-tiered linear food chain where bird effects cascaded to pine growth via aphids. 4. In contrast to the results for tended aphids on pine, bird exclusion had no net effects on untended pine herbivores, the proportion of pine foliage damaged by pine-feeding caterpillars, or the proportion of mistletoe plants damaged by mistletoe-feeding caterpillars. These results suggest that arthropod predators, which were more abundant in cages as compared with control trees, compensated for bird predation of untended pine and mistletoe herbivores. 5. These contrasting effects of bird exclusion support food web theory: where birds were connected to pine by a linear food chain, a trophic cascade occurred. Where birds fed as intraguild predators, the reticulate food webs linking birds to pine and mistletoe resulted in no net effects on herbivores or plant biomass. Our study shows that this variation in food web structure occurred between sympatric plants and within plants between differing herbivore guilds.  相似文献   

15.
Andrew Wilby  Kate H. Orwin 《Oecologia》2013,172(4):1167-1177
Changes in predator species richness can have important consequences for ecosystem functioning at multiple trophic levels, but these effects are variable and depend on the ecological context in addition to the properties of predators themselves. Here, we report an experimental study to test how species identity, community attributes, and community structure at the herbivore level moderate the effects of predator richness on ecosystem functioning. Using mesocosms containing predatory insects and aphid prey, we independently manipulated species richness at both predator and herbivore trophic levels. Community structure was also manipulated by changing the distribution of herbivore species across two plant species. Predator species richness and herbivore species richness were found to negatively interact to influence predator biomass accumulation, an effect which is hypothesised to be due to the breakdown of functional complementarity among predators in species-rich herbivore assemblages. The strength of predator suppression of herbivore biomass decreased as herbivore species richness and distribution across host plants increased, and positive predator richness effects on herbivore biomass suppression were only observed in herbivore assemblages of relatively low productivity. In summary, the study shows that the species richness, productivity and host plant distribution of prey communities can all moderate the general influence of predators and the emergence of predator species richness effects on ecosystem functioning.  相似文献   

16.
Predators can affect herbivores both through direct consumption (density-mediated interactions) and by changing behavioural, physiological or morphological attributes of the prey (trait-mediated interactions). These effects on the herbivore can in turn affect the plant through density- and trait-mediated indirect interactions (DMIIs and TMIIs). While the effects of DMIIs and TMIIs imposed by predators has been shown to influence plant density and plant communities, we know little about the effects on plant quality. In addition, the DMII and TMII components of the predator may influence each other so that the total effect of the predator on the plant is not simply the sum of the DMII and TMII. We examined DMIIs and TMIIs between a stinkbug predator and a caterpillar, and show how these interactions affect plant quality, as measured by damage, resistance to herbivores, and a defence chemical, peroxidase. We used novel methods to estimate the independent and non-additive contribution of DMIIs and TMIIs to the plant phenotype. Both predator-induced DMIIs and TMIIs caused decreases in the amount of caterpillar herbivory on plants; a strong non-additive effect between the two resulted from redundancy in their effects. TMIIs initiated by the predator were primarily responsible for a decrease in induced plant resistance. However, DMIIs predominated for reducing the production of peroxidase. These data demonstrate how DMIIs and TMIIs initiated by predators cascade through tri-trophic interactions to affect plant damage and induced resistance.  相似文献   

17.
Ecosystems host multiple coexisting predator species whose interactions may strengthen or weaken top–down control of grazers. Grazer populations often exhibit size‐structure, but the nature of multiple predator effects on suppression of size‐structured prey has seldom been explicitly considered. In a southeastern US salt‐marsh, we used both field (additive design) and mesocosm (additive‐substitutive design) experiments to test the independent and combined effects of two species of predatory crab on the survival and predator‐avoidance behavior (i.e. a non‐consumptive effect) of both juveniles and adults of a dominant grazing snail. Results showed: 1) juvenile snails were more vulnerable to predation; 2) consumptive impacts of predators were hierarchically nested, i.e. the larger predator consumed both juvenile and adult snails, while the smaller‐bodied predator consumed only juvenile snails; 3) there were no emergent multiple predator effects on snail consumption; and 4) non‐consumptive effects differed from consumptive effects, with only the large predator inducing predator‐avoidance behavior of individuals within either snail ontogenetic class. The smaller predator therefore played a functionally redundant trophic role across the prey classes considered, augmenting and potentially stabilizing trophic regulation of juvenile snails. Meanwhile, the larger predator played a complementary and functionally unique role by both expanding the size‐spectrum of prey trophic regulation and non‐consumptively altering prey behavior. While our study suggests that nestedness of consumptive interactions determined by predator and prey body sizes may allow prediction of the functional redundancy of particular predator species, it also shows that traits beyond predator body size (e.g. habitat domain) may be required to predict potentially cascading non‐consumptive effects. Future studies of multiple predators (and predator biodiversity) should continue to strive towards greater realism by incorporating not only size‐structured prey, but also other aspects of resource and environmental heterogeneity typical of natural ecosystems.  相似文献   

18.
Elderd BD 《Oecologia》2006,147(2):261-271
Disturbances, such as flooding, play important roles in determining community structure. Most studies of disturbances focus on the direct effects and, hence, the indirect effects of disturbances are poorly understood. Within terrestrial riparian areas, annual flooding leads to differences in the arthropod community as compared to non-flooded areas. In turn, these differences are likely to alter the survival, growth, and reproduction of plant species via an indirect effect of flooding (i.e., changes in herbivory patterns). To test for such effects, an experiment was conducted wherein arthropod predators and herbivores were excluded from plots in flooded and non-flooded areas and the impact on a common riparian plant, Mimulus guttatus was examined. In general, the direct effect of flooding on M. guttatus was positive. The indirect effects, however, significantly decreased plant survival for both years of the experiment, regardless of predator presence, because of an increased exposure to grasshoppers, the most abundant herbivore in the non-flooded sites. Leafhoppers, which were more abundant in the flooded sites, had much weaker and varying effects. During 2000, when the leafhopper herbivory was high, arthropod predators did not significantly reduce damage to plants. In 2001, the mean herbivory damage was lower and predators were able to significantly reduce overall leafhopper damage. The effects of predators on leafhoppers, however, did not increase plant survival, final weight, or the reproduction potential and, thus, did not initiate a species-level trophic cascade. Overall, it was the differences in the herbivore community that led to a significant decrease in plant survival. While flooding certainly alters riparian plant survival through direct abiotic effects, it also indirectly affects riparian plants by changing the arthropod community, in particular herbivores, and hence trophic interactions.  相似文献   

19.
We present a framework for explaining variation in predator invasion success and predator impacts on native prey that integrates information about predator–prey naïveté, predator and prey behavioral responses to each other, consumptive and non‐consumptive effects of predators on prey, and interacting effects of multiple species interactions. We begin with the ‘naïve prey’ hypothesis that posits that naïve, native prey that lack evolutionary history with non‐native predators suffer heavy predation because they exhibit ineffective antipredator responses to novel predators. Not all naïve prey, however, show ineffective antipredator responses to novel predators. To explain variation in prey response to novel predators, we focus on the interaction between prey use of general versus specific cues and responses, and the functional similarity of non‐native and native predators. Effective antipredator responses reduce predation rates (reduce consumptive effects of predators, CEs), but often also carry costs that result in non‐consumptive effects (NCEs) of predators. We contrast expected CEs versus NCEs for non‐native versus native predators, and discuss how differences in the relative magnitudes of CEs and NCEs might influence invasion dynamics. Going beyond the effects of naïve prey, we discuss how the ‘naïve prey’, ‘enemy release’ and ‘evolution of increased competitive ability’ (EICA) hypotheses are inter‐related, and how the importance of all three might be mediated by prey and predator naïveté. These ideas hinge on the notion that non‐native predators enjoy a ‘novelty advantage’ associated with the naïveté of native prey and top predators. However, non‐native predators could instead suffer from a novelty disadvantage because they are also naïve to their new prey and potential predators. We hypothesize that patterns of community similarity and evolution might explain the variation in novelty advantage that can underlie variation in invasion outcomes. Finally, we discuss management implications of our framework, including suggestions for managing invasive predators, predator reintroductions and biological control.  相似文献   

20.
Nora Underwood 《Oikos》2010,119(12):1993-1999
Net intraspecific density dependence experienced by insect herbivores at the scale of single plants can be a function both of induced resistance in the plant and other interactions among individual herbivores. Theory suggests that non‐linearity in the form of this density dependence can influence the effects of plants on herbivore population dynamics. This study examined both net density dependence at the scale of single plants, and changes in plant quality with herbivore density for Spodoptera exigua caterpillars on tomato plants. One experiment measured the growth of caterpillars moving freely about the plant at different densities, the distribution of damage by these caterpillars, and the quality of the plant as food for caterpillars (growth of caterpillars on undamaged leaf tissue excised from the plant). A second experiment measured plant quality for plants with different amounts of damage by caterpillars confined to particular leaves in mesh bags. Growth of S. exigua caterpillars was found to be negatively density dependent, and this was in part due to decreases in plant quality both as herbivore density increased and as the amount of damage increased. The response of plant quality to herbivores was found to have non‐linear features; there was both a threshold below which no significant decreases in quality (as measured by herbivore growth) occurred, and the decrease in herbivore performance saturated at the highest damage levels. In addition, it was found that caterpillar damage was significantly more aggregated than expected when multiple caterpillars occupy a single plant. This study confirms that host plants have the potential to be a source of density dependence that affects herbivore performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号