首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linker DNA was found to be critical for the specific docking of ISW2 with nucleosomes as shown by mapping the physical contacts of ISW2 with nucleosomes at base-pair resolution. Hydroxyl radical footprinting revealed that ISW2 not only extensively interacts with the linker DNA, but also approaches the nucleosome from the side perpendicular to the axis of the DNA superhelix and contacts two disparate sites on the nucleosomal DNA from opposite sides of the superhelix. The topography of the ISW2-nucleosome was further delineated by finding which of the ISW2 subunits are proximal to specific sites within the linker and nucleosomal DNA regions by site-directed DNA photoaffinity labeling. Although ISW2 was shown to contact approximately 63 bp of linker DNA, a minimum of 20 bp of linker DNA was required for stable binding of ISW2 to nucleosomes. The remaining approximately 43 bp of flanking linker DNA promoted more efficient binding under competitive binding conditions and was functionally important for enhanced sliding of nucleosomes when ISW2 was significantly limiting.  相似文献   

2.
The stable contact of ISW2 with nucleosomal DNA approximately 20 bp from the dyad was shown by DNA footprinting and photoaffinity labeling using recombinant histone octamers to require the histone H4 N-terminal tail. Efficient ISW2 remodeling also required the H4 N-terminal tail, although the lack of the H4 tail can be mostly compensated for by increasing the incubation time or concentration of ISW2. Similarly, the length of extranucleosomal DNA affected the stable contact of ISW2 with this same internal nucleosomal site, with the optimal length being 70 to 85 bp. These data indicate the histone H4 tail, in concert with a favorable length of extranucleosomal DNA, recruits and properly orients ISW2 onto the nucleosome for efficient nucleosome remodeling. One consequence of this property of ISW2 is likely its previously observed nucleosome spacing activity.  相似文献   

3.
The nucleosome remodeling factor NURF is a four-subunit, ISWI-containing chromatin remodeling complex that catalyzes nucleosome sliding in an ATP-dependent fashion, thereby modulating the accessibility of the DNA. To elucidate the mechanism of nucleosome sliding, we have investigated by hydroxyl radical footprinting how NURF makes initial contact with a nucleosome positioned at one end of a DNA fragment. NURF binds to two separate locations on the nucleosome: a continuous stretch of linker DNA up to the nucleosome entry site and a region asymmetrically surrounding the nucleosome dyad within the minor grooves, close to residues of the histone H4 tail that have been implicated in the activation of ISWI activity. Kinetic analysis reveals that nucleosome sliding occurs in apparent increments or steps of 10 bp. Furthermore, single nucleoside gaps as well as nicks about two helical turns before the dyad interfere with sliding, indicating that structural stress at this region assists the relative movement of DNA. These findings support a sliding model in which the position-specific tethering of NURF forces a translocating ISWI ATPase to pump a DNA distortion over the histone octamer, thereby changing the translational position of the nucleosome.  相似文献   

4.
5.
The activity of uracil DNA glycosylases (UDGs), which recognize and excise uracil bases from DNA, has been well characterized on naked DNA substrates but less is known about activity in chromatin. We therefore prepared a set of model nucleosome substrates in which single thymidine residues were replaced with uracil at specific locations and a second set of nucleosomes in which uracils were randomly substituted for all thymidines. We found that UDG efficiently removes uracil from internal locations in the nucleosome where the DNA backbone is oriented away from the surface of the histone octamer, without significant disruption of histone-DNA interactions. However, uracils at sites oriented toward the histone octamer surface were excised at much slower rates, consistent with a mechanism requiring spontaneous DNA unwrapping from the nucleosome. In contrast to the nucleosome core, UDG activity on DNA outside the core DNA region was similar to that of naked DNA. Association of linker histone reduced activity of UDG at selected sites near where the globular domain of H1 is proposed to bind to the nucleosome as well as within the extra-core DNA. Our results indicate that some sites within the nucleosome core and the extra-core (linker) DNA regions represent hot spots for repair that could influence critical biological processes.  相似文献   

6.
The Dpb4 subunit of ISW2 is anchored to extranucleosomal DNA   总被引:2,自引:0,他引:2  
Histone fold proteins Dpb4 and Dls1 are components of the yeast ISW2 chromatin remodeling complex that resemble the smaller subunits of the CHRAC (Chromatin Accessibility Complex) complex found in Drosophila and humans. DNA photoaffinity labeling found that the Dpb4 subunit contacts extranucleosomal DNA 37-53 bp away from the entry/exit site of the nucleosome. Binding of Dpb4 to Isw2 and Itc2, the two largest subunits of ISW2, was found to require Dls1. Even after remodeling and nucleosome movement, Dpb4 tends to remain bound to its original binding site and likely serves as an anchor point for ISW2 on DNA. In vitro, only minor differences can be detected in the nucleosome binding and mobilization properties of ISW2 with or without Dpb4 and Dls1. Changes in the contacts of the largest subunit Itc1 with extranucleosomal DNA have, however, been found upon deletion of the Dpb4 and Dls1 dimer that may affect the nucleosome spacing properties of ISW2.  相似文献   

7.
Nucleosome dimers containing, on average, a single molecule of histone H5 have been isolated from chicken erythrocyte nuclei and the associated DNA fragments cloned and sequenced. The average sequence organization of at least one of the two nucleosomes in the dimers is highly asymmetric and suggests that the torsional, as well as the axial, flexibility of DNA is a determinant of nucleosome positioning. On average the nucleosome dimer is a polar structure containing linker DNA of variable lengths. The sequences associated with H5 containing nucleosomes and core particles are sufficiently different to indicate that removal of histone H5 (or H1) from chromatin may result in the migration of the histone octamer and a consequent exposure of sites for regulatory proteins.  相似文献   

8.
The DNA chaperone HMGB1 facilitates ACF/CHRAC-dependent nucleosome sliding   总被引:21,自引:0,他引:21  
Nucleosome remodelling complexes CHRAC and ACF contribute to chromatin dynamics by converting chemical energy into sliding of histone octamers on DNA. Their shared ATPase subunit ISWI binds DNA at the sites of entry into the nucleosome. A prevalent model assumes that DNA distortions catalysed by ISWI are converted into relocation of DNA relative to a histone octamer. HMGB1, one of the most abundant nuclear non-histone proteins, binds with preference to distorted DNA. We have now found that transient interaction of HMGB1 with nucleosomal linker DNA overlapping ISWI-binding sites enhances the ability of ACF to bind nucleosomal DNA and accelerates the sliding activity of limiting concentrations of remodelling factor. By contrast, an HMGB1 mutant with increased binding affinity was inhibitory. These observations are consistent with a role for HMGB1 as a DNA chaperone facilitating the rate-limiting DNA distortion during nucleosome remodelling.  相似文献   

9.
Nucleosome remodeling by the hSWI/SNF complex and other chromatin remodeling complexes can cause translocation (sliding) of the histone octamer in cis along DNA. Structural and biochemical evidence suggest that sliding involves a DNA twist-diffusion process whereby the DNA rotates about the helical axis without major displacement from the surface of the nucleosome and that this process may be driven by torsional stress within the DNA. We report that hSWI/SNF efficiently catalyzes sliding of nucleosomes containing branched DNAs as steric blocks to twist-diffusion and a nick to allow dissipation of torsional stress within the nucleosome. These results suggest that SWI/SNF-catalyzed nucleosome sliding does not occur exclusively via a simple twist-diffusion mechanism and support models in which the DNA maintains its rotational orientation to and is at least partially separated from the histone surface during nucleosome translocation.  相似文献   

10.
Regulation of gene expression requires dynamic changes in chromatin, but the nature of these changes is not well understood. Here, we show that progesterone treatment of cultured cells leads to recruitment of progesterone receptor (PR) and SWI/SNF-related complexes to Mouse Mammary Tumor Virus (MMTV) promoter, accompanied by displacement of histones H2A and H2B from the nucleosome containing the receptor binding sites, but not from adjacent nucleosomes. PR recruits SWI/SNF to MMTV nucleosomes in vitro and facilitates synergistic binding of receptors and nuclear factor 1 to the promoter. In nucleosomes assembled on MMTV or mouse rDNA promoter sequences, SWI/SNF catalyzes ATP-dependent sliding of the histone octamer followed only on the MMTV promoter by displacement of histones H2A and H2B. In MMTV nucleosome arrays, SWI/SNF displaces H2A and H2B from nucleosome B and not from the adjacent nucleosome. Thus, the outcome of nucleosome remodeling by SWI/SNF depends on DNA sequence.  相似文献   

11.
The chromatin accessibility complex (CHRAC) is an abundant, evolutionarily conserved nucleosome remodeling machinery able to catalyze histone octamer sliding on DNA. CHRAC differs from the related ACF complex by the presence of two subunits with molecular masses of 14 and 16 kDa, whose structure and function were not known. We determined the structure of Drosophila melanogaster CHRAC14-CHRAC16 by X-ray crystallography at 2.4-angstroms resolution and found that they dimerize via a variant histone fold in a typical handshake structure. In further analogy to histones, CHRAC14-16 contain unstructured N- and C-terminal tail domains that protrude from the handshake structure. A dimer of CHRAC14-16 can associate with the N terminus of ACF1, thereby completing CHRAC. Low-affinity interactions of CHRAC14-16 with DNA significantly improve the efficiency of nucleosome mobilization by limiting amounts of ACF. Deletion of the negatively charged C terminus of CHRAC16 enhances DNA binding 25-fold but leads to inhibition of nucleosome sliding, in striking analogy to the effect of the DNA chaperone HMGB1 on nucleosome sliding. The presence of a surface compatible with DNA interaction and the geometry of an H2A-H2B heterodimer may provide a transient acceptor site for DNA dislocated from the histone surface and therefore facilitate the nucleosome remodeling process.  相似文献   

12.
13.
The salt-dependent structural changes of the histone octamer in complex with high-molecular-weight DNA have been studied by fluorescent spectroscopy. Changes in both the spectra maximum position and anisotropy of the histone tyrosine fluorescence reveal structural transitions in nucleosome within the ranges of 0.5-3 mM and 20-30 mM NaCl. Comparison of the octamer fluorescent parameters in complex with DNA as well as in a free state permits to interpret the revealed structural transitions as a change in degree of contacts stability between (H2A-H2B) dimer and (H3-H4)2 tetramer. More pronounced conformational changes in histone octamer are observed under the conditions of polynucleosome fibers interaction within the range of physiological ionic strength (100-600 mM NaCl). As far as fluorescent parameters are concerned, the aforementioned changes are connected with entire destruction of (H2A-H2B) dimer specific contacts with (H3-H4)2 tetramer. The obtained results suggest the possibility of existence of different structural states of histone octamer in the chromatin composition including those which are quite dissimilar from the octamer structure in the 2M NaCl solution.  相似文献   

14.
The ability of DNA-binding proteins to recognize their cognate sites in chromatin is restricted by the structure and dynamics of nucleosomal DNA, and by the translational and rotational positioning of the histone octamer. Here, we use six different pyrrole-imidazole polyamides as sequence-specific molecular probes for DNA accessibility in nucleosomes. We show that sites on nucleosomal DNA facing away from the histone octamer, or even partially facing the histone octamer, are fully accessible and that nucleosomes remain fully folded upon ligand binding. Polyamides only failed to bind where sites are completely blocked by interactions with the histone octamer. Removal of the amino-terminal tails of either histone H3 or histone H4 allowed these polyamides to bind. These results demonstrate that much of the DNA in the nucleosome is freely accessible for molecular recognition in the minor groove, and also support a role for the amino-terminal tails of H3 and H4 in modulating accessibility of nucleosomal DNA.  相似文献   

15.
The structure of the SWI/SNF-remodeled nucleosome was characterized with single base-pair resolution by mapping the contacts of specific histone fold residues with nucleosomal DNA. We demonstrate that SWI/SNF peels up to 50 bp of DNA from the edge of the nucleosome, translocates the histone octamer beyond the DNA ends via a DNA bulge propagation mechanism, and promotes the formation of an intramolecular DNA loop between the nucleosomal entry and exit sites. This stable altered nucleosome conformation also exhibits alterations in the distance between contacts of specific histone residues with DNA and higher electrophoretic and sedimentation mobility, consistent with a more compact molecular shape. SWI/SNF converts a nucleosome to the altered state in less than 1 s, hydrolyzing fewer than 10 ATPs per event.  相似文献   

16.
Eukaryotes have evolved a specific strategy to package DNA. The nucleosome is a 147-base-pair DNA segment wrapped around histone core proteins that plays important roles regulating DNA-dependent biosynthesis and gene expression. Chromatin remodeling complexes (RSC, Remodel the Structure of Chromatin) hydrolyze ATP to perturb DNA-histone contacts, leading to nucleosome sliding and ejection. Here, we utilized tethered particle motion (TPM) experiments to investigate the mechanism of RSC-mediated nucleosome remodeling in detail. We observed ATP-dependent RSC-mediated DNA looping and nucleosome ejection along individual mononucleosomes and dinucleosomes. We found that nucleosome assembly protein 1 (Nap1) enhanced RSC-mediated nucleosome ejection in a two-step disassembly manner from dinucleosomes but not from mononucleosomes. Based on this work, we provide an entire reaction scheme for the RSC-mediated nucleosome remodeling process that includes DNA looping, nucleosome ejection, the influence of adjacent nucleosomes, and the coordinated action between Nap1 and RSC.  相似文献   

17.
Histone H2A ubiquitination is a bulky posttranslational modification that occurs at the vicinity of the binding site for linker histones in the nucleosome. Therefore, we took several experimental approaches to investigate the role of ubiquitinated H2A (uH2A) in the binding of linker histones. Our results showed that uH2A was present in situ in histone H1-containing nucleosomes. Notably in vitro experiments using nucleosomes reconstituted onto 167-bp random sequence and 208-bp (5 S rRNA gene) DNA fragments showed that ubiquitination of H2A did not prevent binding of histone H1 but it rather enhanced the binding of this histone to the nucleosome. We also showed that ubiquitination of H2A did not affect the positioning of the histone octamer in the nucleosome in either the absence or the presence of linker histones.  相似文献   

18.
The histone variant H2A.Bbd appeared to be associated with active chromatin, but how it functions is unknown. We have dissected the properties of nucleosome containing H2A.Bbd. Atomic force microscopy (AFM) and electron cryo-microscopy (cryo-EM) showed that the H2A.Bbd histone octamer organizes only approximately 130 bp of DNA, suggesting that 10 bp of each end of nucleosomal DNA are released from the octamer. In agreement with this, the entry/exit angle of the nucleosomal DNA ends formed an angle close to 180 degrees and the physico-chemical analysis pointed to a lower stability of the variant particle. Reconstitution of nucleosomes with swapped-tail mutants demonstrated that the N-terminus of H2A.Bbd has no impact on the nucleosome properties. AFM, cryo-EM and chromatin remodeling experiments showed that the overall structure and stability of the particle, but not its property to interfere with the SWI/SNF induced remodeling, were determined to a considerable extent by the H2A.Bbd docking domain. These data show that the whole H2A.Bbd histone fold domain is responsible for the unusual properties of the H2A.Bbd nucleosome.  相似文献   

19.
20.
Using the circular dichroism spectra induced in the visible by the binding to the minor groove of DNA, we found that Hoechst 33258 is able to occupy its specific sites even when these are located inside the nucleosome structure. This high accessibility of the DNA in the nucleosome is not modified by the removal of the amino-terminal domains of the octamer histones and is not reduced by the presence of linker histone. Interesting and reasonable differences were found in the association constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号