首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Despite its importance as the source of one of three major vascular systems in the mammalian conceptus, little is known about the murine allantois, which will become the umbilical cord of the chorio-allantoic placenta. During gastrulation, the allantois grows into the exocoelomic cavity as a mesodermal extension of the posterior primitive streak. On the basis of morphology, gene expression and/or function, three cell types have been identified in the allantois: an outer layer of mesothelial cells, whose distal portion will become transformed into chorio-adhesive cells, and endothelial cells within the core. Formation of endothelium and chorio-adhesive cells begins in the distal region of the allantois, farthest from the streak. Over time, endothelium spreads to the proximal allantoic region, whilst the distal outer layer of presumptive mesothelium gradually acquires vascular cell adhesion molecule (VCAM1) and mediates chorio-allantoic union. Intriguingly, the VCAM1 domain does not extend into the proximal allantoic region. How these three allantoic cell types are established is not known, although contact with the chorion has been discounted. In this study, we have investigated how the allantois differentiates, with the goal of discriminating between extrinsic mechanisms involving the primitive streak and an intrinsic role for the allantois itself. Exploiting previous observations that the streak contributes mesoderm to the allantois throughout the latter's early development, microsurgery was used to remove allantoises at ten developmental stages. Subsequent whole embryo culture of operated conceptuses resulted in the formation of regenerated allantoises at all time points. Aside from being generally shorter than normal, none of the regenerates exhibited abnormal differentiation or inappropriate cell relationships. Rather, all of them resembled intact allantoises by morphological, molecular and functional criteria. Moreover, fate mapping adjacent yolk sac and amniotic mesoderm revealed that these tissues and their associated bone morphogenetic protein 4 (BMP4) did not contribute to restoration of allantoic outgrowth and differentiation during allantoic regeneration. Thus, on the basis of these observations, we conclude that specification of allantoic endothelium, mesothelium and chorio-adhesive cells does not occur by a streak-related mechanism during the time that proximal epiblast travels through it and is transformed into allantoic mesoderm. Rather, all three cell-types are established by mechanisms intrinsic to the allantois, and possibly include roles for cell age and cell position. However, although chorio-adhesive cells were not specified within the streak, we discovered that the streak nonetheless plays a role in establishing VCAM1's expression domain, which typically began and was thereafter maintained at a defined distance from the primitive streak. When allantoises were removed from contact with the streak, normally VCAM1-negative proximal allantoic regions acquired VCAM1. These results suggested that the streak suppresses formation of chorio-adhesive cells in allantoic mesoderm closest to it. Together with previous results, findings presented here suggest a model of differentiation of allantoic mesoderm that invokes intrinsic and extrinsic mechanisms, all of which appear to be activated once the allantoic bud has formed.  相似文献   

2.
《Journal of morphology》2017,278(5):600-620
Despite its conserved role in placenta and umbilical cord formation, the mammalian allantois shows remarkable diversity in size and form as well as in the timing of its appearance and attachment to the chorion. In the mouse, the common allantoic diverticulum is lacking; instead, the allantoic core domain is defined as a progenitor center for allantoic development. In this study, the allantoises of the pig and the rabbit as two nonrodent mammals of increasing significance in biomedical research are compared (1) morphologically using high resolution light and electron microscopy and (2) molecularly using brachyury mRNA expression as a mesodermal marker. Multiple small allantoic diverticula in the rabbit contrast with a single large cavity filling the entire allantois of the pig, but neither pig nor rabbit allantois expresses brachyury . The mesothelium on the allantois surface shows regional variability of cell contacts and microvilli, while blood vessels appear randomly around the allantoic diverticula in a mesodermal layer of variable thickness. Primordial germ cell‐like cells are found in the allantois of the pig but not of the rabbit. To understand further the relevance of this developmental and morphological diversity, we compare the allantois development of pig and rabbit with early developmental landmarks of mouse and man. Our findings suggest that (1) tissue interaction between endoderm and mesoderm is important for allantoic development and vascular differentiation in species with a rudimentary allantoic diverticulum, (2) allantoic mesothelium plays a specific role in chorioallantoic attachment, allantoic differentiation and vascularization, and (3) there is a pronounced diversity in the extraembryonic migratory pathways of primordial germ cells among mammals. Finally, the phylogenetically basal characteristics of the pig allantois are suggestive of a functional similarity in mammals with a large allantois before placentation and in (aplacental) sauropsids with a chorioallantoic membrane well‐adjusted to material exchange function.  相似文献   

3.
Mouse conceptuses homozygous for mutations in brachyury (T) exhibit a short, misshapen allantois that fails to fuse with the chorion. Ultimately, mutant embryos die during mid-gestation. In the 60 years since this discovery, the role of T in allantoic development has remained obscure. T protein was recently identified in several new sites during mouse gastrulation, including the core of the allantois, where its function is not known. Here, using molecular, genetic and classical techniques of embryology, we have investigated the role of T in allantoic development. Conceptuses homozygous for the T(Curtailed) (T(C)) mutation (T(C)/T(C)) exhibited allantoic dysmorphogenesis shortly after the allantoic bud formed. Diminution in allantoic cell number and proliferation was followed by cell death within the core. Fetal liver kinase (Flk1)-positive angioblasts were significantly decreased in T(C)/T(C) allantoises and did not coalesce into endothelial tubules, possibly as a result of the absence of platelet endothelial cell adhesion molecule 1 (Pecam1), whose spatiotemporal relationship to Flk1 suggested a role in patterning the umbilical vasculature. Remarkably, microsurgical perturbation of the wild-type allantoic core phenocopied the T(C)/T(C) vascularization defect, providing further support that an intact core is essential for vascularization. Last, abnormalities were observed in the T(C)/T(C) heart and yolk sac, recently reported sites of T localization. Our findings reveal that T is required to maintain the allantoic core, which is essential for allantoic elongation and vascular patterning. In addition, morphological defects in other extraembryonic and embryonic vascular organs suggest a global role for T in vascularization of the conceptus.  相似文献   

4.
5.
In the development of ruminant embryos, the emergence and growth of the allantois is critical for the establishment of the chorioallantoic placenta. The allantoic membrane contributes to all the vasculature that perfuses the placental tissues and the fetal membranes. Using suppressive subtractive hybridization to compare mRNA from Day 13 ovine preimplantation conceptuses (prior to allantoic emergence) with Day 17 allantoic membrane, we identified nine genes whose expression was associated with the emergence of the allantoic sac. Collagen alpha 1 type XII, collagen alpha 2 type I, collagen alpha 2 type V, epsilon 4 beta-globin, osteonectin, and uroplakin were expressed at significantly greater levels in ovine Day 17 allantois compared to Day 13 conceptuses. These genes are associated with the extracellular matrix and most likely are involved in establishing and strengthening the structural integrity of the allantoic sac and in the development of the blood vessels. RalB expression increased with development although at significantly greater levels in the allantois only at Day 19. Hoxa-10 and RhoA showed no differential expression during this period. All these genes showed a similar temporal pattern of expression in bovine conceptuses at equivalent stages of development with significantly greater expression of all these genes, except for Hoxa-10, found in Day 24 allantois compared to Day 14 conceptuses. This suggests that the role they play in allantoic emergence, growth and function is conserved in both ruminant species and that their expression is regulated in a similar manner. The interactions and regulation of this process remains to be fully explained.  相似文献   

6.
Transforming growth factor-beta1 (TGF-beta1) is a potent inducer of extracellular matrix synthesis leading to progressive glomerular fibrosis. The intracellular signaling mechanisms involved in this process remain incompletely understood. The p38 mitogen-activated protein kinase (MAPK) is a major stress signal transducing pathway that is rapidly activated by TGF-beta1 in mesangial cells. We have previously demonstrated MKK3 as the immediate upstream MAPK kinase required for selective activation of p38 MAPK isoforms, p38alpha and p38delta, and stimulation of pro-alpha1(I) collagen by TGF-beta1 in murine mesangial cells. In this study, we further sought to determine MAPK kinase 3 (MKK3)-dependent TGF-beta1 responses by gene expression profiling analysis utilizing mesangial cells isolated from Mkk3-/- mice compared with Mkk3+/+ controls. Interestingly, vascular endothelial growth factor (VEGF) was identified as a TGF-beta1-induced gene affected by deletion of Mkk3. VEGF is a well known endothelial mitogen, whose actions in nonendothelial cell types are still not well understood. We confirmed that TGF-beta1 increased VEGF mRNA and protein synthesis of VEGF164 and VEGF188 isoforms in wild-type mesangial cells. However, in the Mkk3-/- mesangial cells, both TGF-beta1-induced VEGF mRNA and VEGF164 protein expression were inhibited, whereas TGF-beta1-induced VEGF188 protein expression was unaffected. Furthermore, transfection of dominant negative mutants of p38alpha and p38delta resulted in marked inhibition of TGF-beta1-induced VEGF164 expression but not VEGF188, and treatment with recombinant mouse VEGF164 increased collagen and fibronectin mRNA expression in mesangial cells. Taken together, our findings suggest a critical role for the MKK3-p38alpha and p38delta MAPK pathway in mediating VEGF164 isoform-specific stimulation by TGF-beta1 in mesangial cells. Further, VEGF164 stimulates collagen and fibronectin expression in mesangial cells and thus in turn enhances TGF-beta1-induced extracellular matrix and may play an important role in progressive glomerular fibrosis.  相似文献   

7.
Vascular endothelial growth factor (VEGF) is a potent endothelial cell mitogen involved in normal and abnormal angiogenesis. VEGF mRNA and protein are abundant in distal epithelium of midtrimester human fetal lung. In the present study, we identified immunoreactivity for KDR, a major VEGF-specific receptor, in distal lung epithelial cells of human fetal lung tissue, suggesting a possible autocrine or paracrine regulatory role for VEGF in pulmonary epithelial cell growth and differentiation. Addition of exogenous VEGF to human fetal lung explants resulted in increased epithelium volume density and lumen volume density in the tissues, both morphometric parameters of tissue differentiation. Cellular proliferation demonstrated by bromodeoxyuridine uptake was prominent in distal airway epithelial cells and increased in the VEGF-treated explants. VEGF-treated explants also demonstrated increased surfactant protein (SP) A mRNA, SP-C mRNA, and SP-A protein levels compared with controls. However, SP-B mRNA levels were unaffected by VEGF treatment. [(3)H]choline incorporation into total phosphatidylcholine was increased by VEGF treatment, but incorporation into disaturated phosphatidylcholine was not affected by exogenous VEGF. Based on these observations, we conclude that VEGF may be an important autocrine growth factor for distal airway epithelial cells in the developing human lung.  相似文献   

8.
9.

Background

Previous work in our laboratory demonstrated that hyperoxia suppressed the expression of vascular endothelial growth factor (VEGF) by the embryonic lung, leading to increased epithelial cell apoptosis and failure of explant airway growth and branching that was rescued by the addition of Vegf165. The aims of this study were to determine protective pathways by which VEGF isoforms attenuate hyperoxic lung growth retardation and to identify the target cell for VEGF action.

Methods

Timed pregnant CD-1 or fetal liver kinase (FLK1)-eGFP lung explants cultured in 3% or 50% oxygen were treated ± Vegf121, VEGF164/Vegf165 or VEGF188 in the presence or absence of anti-rat neuropilin-1 (NRP1) antibody or GO6983 (protein kinase C (PKC) pan-inhibitor) and lung growth and branching quantified. Immunofluorescence studies were performed to determine apoptosis index and location of FLK1 phosphorylation and western blot studies of lung explants were performed to define the signaling pathways that mediate the protective effects of VEGF.

Results

Heparin-binding VEGF isoforms (VEGF164/Vegf165 and VEGF188) but not Vegf121 selectively reduced epithelial apoptosis and partially rescued lung bud branching and growth. These protective effects required NRP1-dependent FLK1 activation in endothelial cells. Analysis of downstream signaling pathways demonstrated that the VEGF-mediated anti-apoptotic effects were dependent on PKC activation.

Conclusions

Vegf165 activates FLK1-NRP1 signaling in endothelial cells, leading to a PKC-dependent paracrine signal that in turn inhibits epithelial cell apoptosis.  相似文献   

10.
Vascular endothelial growth factor-A (VEGF) is produced by most cancer cells as multiple isoforms, which display distinct biological activities. VEGF plays an undisputed role in tumour growth, vascularisation and metastasis; nevertheless the functions of individual isoforms in these processes remain poorly understood. We investigated the effects of three main murine isoforms (VEGF188, 164 and 120) on tumour cell behaviour, using a panel of fibrosarcoma cells we developed that express them individually under endogenous promoter control. Fibrosarcomas expressing only VEGF188 (fs188) or wild type controls (fswt) were typically mesenchymal, formed ruffles and displayed strong matrix-binding activity. VEGF164- and VEGF120-producing cells (fs164 and fs120 respectively) were less typically mesenchymal, lacked ruffles but formed abundant cell-cell contacts. On 3D collagen, fs188 cells remained mesenchymal while fs164 and fs120 cells adopted rounded/amoeboid and a mix of rounded and elongated morphologies respectively. Consistent with their mesenchymal characteristics, fs188 cells migrated significantly faster than fs164 or fs120 cells on 2D surfaces while contractility inhibitors accelerated fs164 and fs120 cell migration. VEGF164/VEGF120 expression correlated with faster proliferation rates and lower levels of spontaneous apoptosis than VEGF188 expression. Nevertheless, VEGF188 was associated with constitutively active/phosphorylated AKT, ERK1/2 and Stat3 proteins. Differences in proliferation rates and apoptosis could be explained by defective signalling downstream of pAKT to FOXO and GSK3 in fs188 and fswt cells, which also correlated with p27/p21 cyclin-dependent kinase inhibitor over-expression. All cells expressed tyrosine kinase VEGF receptors, but these were not active/activatable suggesting that inherent differences between the cell lines are governed by endogenous VEGF isoform expression through complex interactions that are independent of tyrosine kinase receptor activation. VEGF isoforms are emerging as potential biomarkers for anti-VEGF therapies. Our results reveal novel roles of individual isoforms associated with cancer growth and metastasis and highlight the importance of understanding their diverse actions.  相似文献   

11.
The 90 kDa heat-shock proteins (HSP90s) play important roles during stress situations as general chaperones and under physiological conditions in the conformational activation of specific protein substrates. Vertebrates express two cytosolic HSP90s (HSP90alpha and HSP90beta) ubiquitously. We have mutated the Hsp90beta gene in murine embryonic stem cells and generated Hsp90beta mutant mice. Heterozygous animals were phenotypically normal. Interestingly, homozygous embryos developed normally until embryonic day 9.0/9.5. Then, although Hsp90beta is expressed ubiquitously, they exhibited phenotypic abnormalities restricted to the placenta. The mutant concepti failed to form a fetal placental labyrinth and died a day later. Fusion between the allantois and the chorionic plate occurred, allantoic blood vessels invaded the chorion, but then did not expand. Mutant trophoblast cells failed to differentiate into trilaminar labyrinthine trophoblast. Despite conspicuous similarities between HSP90alpha and HSP90beta at the molecular level, our data suggest that HSP90beta has a key role in placenta development that cannot be performed by the endogenous HSP90alpha alone. Analysis of chimeric concepti consisting of mutant embryos and tetraploid embryos or ES cells revealed that wild-type allantois was able to induce mutant trophoblast to differentiate. In contrast, trophoblast wild type at the Hsp90beta locus was unable to differentiate when in contact with mutant allantois. Therefore, the primary defect caused by the Hsp90beta mutation resided in the allantois. The allantois mesoderm is thought to induce trophoblast differentiation. Our results show that Hsp90beta is a necessary component of this induction process.  相似文献   

12.
Paraffin sections of an ontogenetic series of embryos of the viviparous lizard Gerrhonotus coeruleus and the oviparous congener G. multicarinatus reveal that although general features of the development of the chorioallantoic and yolk sac membranes are similar, differences are evident in the distribution of the chorioallantoic membrane in late stage embryos. An acellular shell membrane surrounds the egg throughout gestation in both species although the thickness of this structure is much reduced in G. coeruleus over that of G. multicarinatus. The initial vascular membrane to contact the shell membrane in both species is a trilaminar omphalopleure (choriovitelline membrane) composed of ectoderm, mesoderm of the area vasculosa, and endoderm. This transitory membrane is replaced by the vascularized chorioallantois as the allantois expands to contact the inner surface of the chorion. Prior to the establishment of the chorioallantois at the embryonic pole, a membrane begins to form within the yolk ventral to the sinus terminalis. This membrane, which becomes vascularized, extends across the entire width of the abembryonic region and isolates a mass of yolk ventral to the yolk mass proper. The outer membrane of the yolk pole is a nonvascular bilaminar omphalopleure (chorionic ectoderm and yolk endoderm). In G. multicarinatus the bilaminar omphalopleure is supported internally by the vascularized allantoic membrane, whereas in G. coeruleus the allantois does not extend beyond the margin of the isolated yolk mass and the bilaminar omphalopleure is supported by the vascularized intravitelline membrane. Both the chorioallantoic placenta (uterine epithelium, chorionic ectoderm and mesoderm, and allantoic mesoderm and endoderm) and the yolk sac placenta at the abembryonic pole (uterine epithelium, chorionic ectoderm, and yolk sac endoderm) persist to the end of gestation in G. coeruleus.  相似文献   

13.
14.
The rodent allantois is thought to be unique amongst mammals in not having an endodermal component. Here, we have investigated the mesothelium, or outer surface, of murine umbilical precursor tissue, the allantois (~7.25–8.5 days postcoitum, dpc) to discover whether it exhibits the properties of an epithelium. A combination of morphology, challenge with biotinylated dextran amines (BDAs), and immunohistochemistry revealed that the mesothelium of the mouse allantois exhibits distinct regional properties. By headfold stages (~7.75–8.0 dpc), distal mesothelium was generally squamous in shape, and highly permeable to BDA challenge, whereas ventral proximal mesothelium, referred to as “ventral cuboidal mesothelium” (VCM) for the characteristic cuboidal shape of its cells, was relatively impermeable. Although “dorsal cuboidal mesothelium” (DCM) resembled the VCM in cell shape, its permeability to BDA was intermediate between the other two regions. Results of immunostaining for Zonula Occludens‐1 (ZO‐1) and Epithelial‐cadherin (E‐cadherin), together with transmission electron microscopy (TEM), suggested that impermeability in the VCM may be due to greater cellular contact area between cells and close packing rather than to maturity of tight junctions, the latter of which, by comparison with the visceral yolk sac, appeared to be rare or absent from the allantoic surface. Both VCM and DCM exhibited an ultrastructure more favorable for protein synthesis than did the distal squamous mesothelium; however, at most stages, VCM exhibited robust afadin (AF‐6), whereas the DCM uniquely contained alpha‐4‐integrin. These observations demonstrate that the allantoic mesothelium is not a conventional epithelium but possesses regional ultrastructural, functional and molecular differences that may play important roles in the correct deployment of the umbilical cord and its associated vascular, hematopoietic, and other cell types. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

15.
T-box gene family members have important roles during murine embryogenesis, gastrulation, and organogenesis. Although relatively little is known about how T-box genes are regulated, published gene expression studies have revealed dynamic and specific patterns in both embryonic and extraembryonic tissues of the mouse conceptus. Mutant alleles of the T-box gene Brachyury (T) have identified roles in formation of mesoderm and its derivatives, such as somites and the allantois. However, given the cell autonomous nature of T gene activity and conflicting results of gene expression studies, it has been difficult to attribute a primary function to T in normal allantoic development. We report localization of T protein by sectional immunohistochemistry in both embryonic and extraembryonic tissues during mouse gastrulation, emphasizing T localization within the allantois. T was detected in all previously reported sites within the conceptus, including the primitive streak and its derivatives, nascent embryonic mesoderm, the node and notochord, as well as notochord-associated endoderm and posterior neurectoderm. In addition, we have clarified T within the allantois, where it was first detected in the proximal midline of the late allantoic bud (approximately 7.5 days postcoitum, dpc) and persisted within an expanded midline domain until 6-somite pairs (s; approximately 8.5 dpc). Lastly, we have discovered several novel T sites, including the developing heart, visceral endoderm, extraembryonic ectoderm, and its derivative, chorionic ectoderm. Together, these data provide a unified picture of T in the mammalian conceptus, and demonstrate T's presence in unrelated cell types and tissues in highly dynamic spatiotemporal patterns in both embryonic and extraembryonic tissues.  相似文献   

16.
Angiogenesis is the generation of mature vascular networks from pre-existing vessels. Angiogenesis is crucial during the organism' development, for wound healing and for the female reproductive cycle. Several murine experimental systems are well suited for studying developmental and pathological angiogenesis. They include the embryonic hindbrain, the post-natal retina and allantois explants. In these systems vascular networks are visualised by appropriate staining procedures followed by microscopical analysis. Nevertheless, quantitative assessment of angiogenesis is hampered by the lack of readily available, standardized metrics and software analysis tools. Non-automated protocols are being used widely and they are, in general, time--and labour intensive, prone to human error and do not permit computation of complex spatial metrics. We have developed a light-weight, user friendly software, AngioTool, which allows for quick, hands-off and reproducible quantification of vascular networks in microscopic images. AngioTool computes several morphological and spatial parameters including the area covered by a vascular network, the number of vessels, vessel length, vascular density and lacunarity. In addition, AngioTool calculates the so-called "branching index" (branch points/unit area), providing a measurement of the sprouting activity of a specimen of interest. We have validated AngioTool using images of embryonic murine hindbrains, post-natal retinas and allantois explants. AngioTool is open source and can be downloaded free of charge.  相似文献   

17.
Organ Culture of Foetal Rat Pancreas   总被引:1,自引:0,他引:1  
The differentiation and growth of the foetal rat pancreas (20 days postcoitum) was studied in parabiotic organ culture with foetal adrenal tissue. In such co-cultures, characteristic pancreatic morphology was preserved and further acinar cell differentiation was fostered. Acinar cells continued to represent about 65% of the total explant volume following short-term incubation. The selective islet cell proliferation, previously observed in control pancreatic explants cultured alone, did not occur when adrenals were co-cultured. In addition, the amylase content of the incubation media and of the explanted pancreatic tissue remained high with adrenal co-culture, while the insulin content of the media and of the explanted tissue was markedly suppressed when compared to control pancreatic explants cultured alone. The effects of the adrenal in maintaining the differentiated acinar component of the pancreas and suppressing media insulin concentration diminished over extended incubation. The addition of adrenals to culture of foetal pancreatic explants after 6 days of control culture (at a time when differentiated acinar cells were not identifiable in the explant) did not result in redifferentiation of the acinar component, but did markedly depress media insulin content. Removal of adrenals after 4 days of co-culture resulted in an immediate rise in media insulin concentration and a rapid decline in pancreatic acinar mass. An adrenal-exocrine pancreatic axis is proposed and it is suggested that foetal adrenal secretions may play an important role in the development of the exocrine pancreas in vivo as well as in vitro.  相似文献   

18.
Oviposited eggs of Eumeces fasciatus contain embryos in the limb bud stage. Amniogenesis is complete and two yolk sac membranes, vascular trilaminar omphalopleure (choriovitelline membrane) and bilaminar omphalopleure, enclose the yolk vesicle. A small allantoic vesicle contacts the chorion. The choriovitelline membrane is the primary vascular system. Blood islands, sites of hematopoiesis, are associated with omphalomesenteric vessels of the choriovitelline membrane. The bilaminar omphalopleure, which contacts the eggshell over the abembryonic hemisphere of the egg, lies external to an isolated yolk mass and yolk cleft and is not vascularized. The definitive yolk sac (splanchnopleure) is formed when the extraembryonic coelom and allantoic vesicle intrude into the choriovitelline membrane. Omphalomesenteric vessels are retained with the yolk sac splanchnopleure and the associated hematopoietic sites are present throughout incubation. The chorioallantoic membrane reaches the equator of the egg, entirely supplanting the choriovitelline membrane, after 25% of incubation is completed. Further growth of the allantois is stalled until 65% of incubation is completed when rapid expansion of the allantoic vesicle, in conjunction with resorption of the isolated yolk mass, supplants the bilaminar omphalopleure. As a result, the chorioallantoic membrane completely envelopes the egg for the final 35% of incubation. This developmental event is coincident with published reports for the timing of increased growth and metabolism of embryos. As the isolated yolk mass regresses, intravitelline cells associated with the yolk cleft invade and resorb the yolk to form a large cavity. The wall of this cavity is a germinal epithelium that produces cells that fill the cavity. This structure appears to be a site of hematopoiesis previously undescribed in vertebrates.  相似文献   

19.
Traditionally, the avian allantois has been considered a respiratory organ and a dumping ground for metabolic wastes. We tested the hypothesis that the allantoic fluid is also a depot for free amino acids and related compounds. To gain further insight in the specific role of the allantoic fluid, we included plasma and the amniotic fluid in this study. The work was carried out in 13- and 14-day-old chicken embryos. Using an HPLC-fluorometric technique, 40 of the 41 amino acids and related compounds investigated were detected. The amniotic fluid contained 32 compounds, while plasma and allantoic fluid contained 38 and 39 compounds, respectively. The glucose concentration was determined with a hexokinase technique. It was highest in plasma and lowest in the amniotic fluid. We identified three barriers that hyper- and hyporegulate a number of compounds: (1) a blood/allantois barrier, (2) a blood/amnion barrier, and (3) an allantois/amnion barrier. Compared with plasma and allantoic fluid, the amniotic fluid is a mostly hyporegulated environment.  相似文献   

20.
Stress Responses in Avian Embryos   总被引:1,自引:0,他引:1  
The day 13–14 chicken embryo is a useful model for studieson prenatal stress responses. Free dopamine, norepinephrineand epinephrine in its plasma, amniotic and allantoic fluidrespond to a variety of stresses. The allantoic fluid also containsconjugated catecholamines and conjugated steroids. However,a blood/allantois barrier excludes free thyroid hormones andfree steroids, and insulin. On the other hand, the allantoicfluid contains at least 40 amino acids (including six excitatoryamino acids) and related compounds. Most, possibly all, componentsof the allantoic fluid are regulated at specific blood/allantoisand amnion/allantois barriers, and they respond to ethanol stressand metabolite loading differentially. The avian allantois isa depot for important metabolites and messenger substances whichseems to be controlled by as yet unidentified hormones  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号