首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Early repair (Elkind) after d(50) + Be neutron and gamma irradiation is assessed by determining the additional dose Dr necessary to reach a given biological effect when a single fraction Ds is split into 2 equal fractions 2Di separated by a time interval "i". LD50 at 180 days after thoracic irradiation is used as an evaluation of late pulmonary tolerance; LD50 at 5 days after abdominal irradiation is used as an evaluation of early intestinal tolerance. Dr is reduced but still important after neutron irradiation as compared to gamma irradiation. For LD50/180, after fast neutron irradiation Dr reaches 66, 90, 64, 162, 195, 150 cGy for "i" = 1, 2, 3, 5, 4, 12, and 24 hours respectively; after gamma irradiation, Field and Hornsey reported Dr = 390, 530, and 376 cGy for "i" = 2, 6, and 24 hours respectively; after neutron irradiation, they reported Dr = 190 cGy for "i" = 24 hours. For LD50/5, after fast neutron irradiation, Dr = 14, 45, 43, and 133 cGy for "i" = 1,5, 3,5, 5,5 and 24 hours respectively. Early repair is faster after gamma irradiation: Dr reaches a maximum for "i" = 3-4 hours. For neutrons, Dr reaches its maximum at 24 hours for both criteria.  相似文献   

2.
The influence of antibiotic decontamination of Pseudomonas contamination of the GI tract prior to whole-body neutron or gamma irradiation was studied. It was observed that for fission neutron doses greater than 5.5 Gy, cyclotron-produced neutron doses greater than 6.7 Gy, and 137Cs gamma-ray doses greater than 14.4 Gy, the median survival time of untreated rats was relatively constant at 4.2 to 4.5 days, indicating death was due to intestinal injury. Within the dose range of 3.5 to 5.5 Gy of fission neutrons, 4.9 to 6.7 Gy of cyclotron-produced neutrons, and 9.6 to 14.4 Gy of gamma rays, median survival time of these animals was inversely related to dose and varied from 12 to 4.6 days. This change in survival time with dose reflects a transition in the mechanisms of acute radiation death from pure hematopoietic, to a combination of intestinal and hematopoietic, to pure intestinal death. Decontamination of the GI tract with antibiotics prior to irradiation increased median survival time 1 to 5 days in this transitional dose range. Contamination of the intestinal flora with Pseudomonas aeruginosa prior to irradiation reduced median survival time 1 to 5 days in the same radiation dose range. Pseudomonas-contaminated animals irradiated within this transitional dose range had maximum concentrations of total bacteria and Pseudomonas in their livers at the time of death. However, liver bacteria concentration was usually higher in gamma-irradiated animals, due to a smaller contribution of hematopoietic injury in neutron-irradiated animals. The effects of both decontamination of the GI tract and Pseudomonas contamination of the GI tract were negligible in the range of doses in which median survival time was dose independent, i.e., in the pure "intestinal death" dose range. Finally, despite the marked changes in survival time produced by decontamination or Pseudomonas contamination in the "transitional dose range," these treatments had little effect on ultimate survival after irradiation as measured by the LD50/5 day and the LD50/30 day end points. The implications of these results with respect to treatment of acute radiation injury after whole-body irradiation are discussed.  相似文献   

3.
The relative biological effectiveness (RBE) of the 25-MeV (average energy) neutron beam at the Fermi National Accelerator Laboratory was measured using murine bone marrow (LD50/30) and gut (LD50/6) lethality and killing of hematopoietic colony forming units (CFU-S) or intestinal clonogenic cells (ICC). The reference radiation was 60Co gamma rays. The LD50/30 and LD50/6 for mice exposed to the Fermilab neutron beam were 6.6 and 8.7 Gy, respectively, intermediate between those of JANUS neutrons and 60Co gamma rays. The D0 values for CFU-S and ICC were 47 cGy and 1.05 Gy, respectively, also intermediate between the lowest values found for JANUS neutrons and the highest values found after 60Co gamma rays. The split-dose survival ratios for CFU-S at intervals of 1-6 hr between doses were essentially 1.0 for both neutron sources, while the corresponding split-dose survival ratio for 60Co gamma rays was consistantly above 1, reaching a maximum of 1.7 with a 1-hr interval between doses. The 3-hr split-dose survival ratios for ICC were 1.0 for JANUS neutrons, 1.85 for Fermilab neutrons, and 6.5 for 60Co gamma rays. The RBE estimates for LD50/30 were 1.5 and 2.3 for Fermilab and JANUS neutrons, respectively. Based on LD50/6, the RBEs were 1.9 (Fermilab) and 3.0 (JANUS). The RBEs for CFU-S D0 were 1.4 (Fermilab) and 1.9 (JANUS) and for jejunal microcolony D0 1.4 (Fermilab) and 2.8 (JANUS).  相似文献   

4.
The Comet assay (microgel electrophoresis) was used to study DNA damage in Raji cells, a B-lymphoblastoid cell line, after treatment with different doses of neutrons (0.5 to 16 Gy) or gamma rays (1.4 to 44.8 Gy). A better growth recovery was observed in cells after gamma-ray treatments compared with neutron treatments. The relative biological effectiveness (RBE) of neutron in cell killing was determined to be 2.5. Initially, the number of damaged cells per unit dose was approximately the same after neutron and gamma-ray irradiation. One hour after treatment, however, the number of normal cells per unit dose was much lower for neutrons than for gamma rays, suggesting a more efficient initial repair for gamma rays. Twenty-four hours after treatment, the numbers of damaged cells per unit dose of neutrons or gamma rays were again at comparable level. Cell cycle kinetic studies showed a strong G2/M arrest at equivalent unit dose (neutrons up to 8 Gy; gamma rays up to 5.6 Gy), suggesting a period in cell cycle for DNA repair. However, only cells treated with low doses (up to 2 Gy) seemed to be capable of returning into normal cell cycle within 4 days. For the highest dose of neutrons, decline in the number of normal cells seen at already 3 days after treatment was deeper compared with equivalent unit doses of gamma rays. Our present results support different mechanisms of action by these two irradiations and suggest the generation of locally multiply damaged sites (LMDS) for high linear energy transfer (LET) radiation which are known to be repaired at lower efficiency.  相似文献   

5.
The response of control and ataxia-telangiectasia (A-T) cells to increasing doses of high-linear-energy-transfer (LET) ionizing radiation (neutrons) was compared. Ataxia-telangiectasia cells were markedly more sensitive to neutron irradiation than were control cells. The D0 value for the two A-T cell lines was 0.4 Gy while the value for controls was approximately 1.4 Gy. Fast neutrons were considerably more effective than gamma rays in inducing cell death in both cell types, but the sensitivity factor remained approximately the same as with gamma rays. A minimal depression of DNA synthesis was observed in ataxia-telangiectasia cells after neutron irradiation, similar to that reported previously after gamma irradiation. The extent of inhibition was not significantly greater in control cells, contrary to that seen with gamma rays. In time-course experiments a significant difference in degree of inhibition of DNA synthesis was observed between the cell types. Low doses of fast neutrons induced a G2-phase delay in both cell types, but the degree and extent of this delay was greater in ataxia-telangiectasia cells as observed previously with low-LET radiation.  相似文献   

6.
Changes in the survival rate in adults and embryos of the pond snail Physa acuta were studied after acute whole-body gamma irradiation. The LD50 value of the adult snails was about 40 kR. The LD50 values of the embryos irradiated 0 and 1 day after oviposition were about 0.9 and 2 kR, respectively. Histological changes in the ovotestis, the number of eggs laid, and their hatchability were examined in the irradiated adult snails. A fall and a subsequent recovery were observed for these characteristics after irradiation with 8 kR of gamma rays. The relative constitution of the germ-cell populations was greatly changed by the same dose of gamma rays. The proportion of immature germ cells was reduced, and the total number of germ cells also diminished 11 days after irradiation. After depletion, the ovotestis was first repopulated with gonia , and then with oocytes, spermatocytes, and spermatids.  相似文献   

7.
The early effects of an irradiation on the intestinal epithelium have been evaluated, at the tissular level, by LD50 after single and multifraction irradiation, and, at the cellular level, by numeration of the regenerated intestinal crypts (Withers technique) after a single fraction irradiation. From the set of informations provided by both criteria, one derived the values of the parameters defining the survival curve of the intestinal clonogenic crypt cells after irradiation by gamma-rays (two component model): D0 = 1.5 Gy, 1D0 = 4.5 Gy, nD0 = 2.25 Gy and n = 20. In other respects, the p(65) + Be neutrons RBE (ref. 60-Cobalt) after a single fraction irradiation is equal to 1.75 +/- 0.2 and 1.64 +/- 0.25 for the LD50 at the 5th day and for the regeneration of 50 crypts after 3.5 days respectively.  相似文献   

8.
Plateau-phase V79 cells were exposed sequentially to fast neutrons and gamma rays. A dose-dependent reduction in the shoulder width of the gamma-ray survival curve was observed after preexposure of cells to neutrons. A similar effect was demonstrated on the neutron survival curve when cells were preirradiated with gamma rays. Treatment of cells with 150 microM beta-araA after either gamma or neutron irradiation reduced primarily the shoulder of the survival curve. When beta-araA was given to the cells after exposure to mixed radiation modalities, survival curves similar to those observed after exposure to a single radiation modality and treatment with beta-araA were obtained. The kinetics of loss of the interaction observed after exposure of cells to gamma rays following neutron irradiation was similar to the kinetics of loss of sensitivity to beta-araA (T1/2 = 1 h) measured by delaying drug administration after exposure to gamma rays. The results suggest that the PLD expressed by beta-araA is at least partly involved in the interactive effect observed after combined exposure of plateau-phase V79 cells to neutrons and gamma rays.  相似文献   

9.
The ventral surface of the tongue of male Fisher 344 rats was used to evaluate the response of oral mucosa to boron neutron capture irradiation. Three hours after i.p. injection of 700 mg/kg of the boron delivery agent p-boronophenylalanine (BPA), the boron concentrations in blood and tongue mucosal epithelium were approximately 21 and 23 microgram (10)B/g, respectively. The doses required to produce a 50% incidence of ulceration with X rays, the Brookhaven Medical Research Reactor thermal neutron beam alone, or the thermal neutron beam in the presence of BPA were 13.4 +/- 0.2, 4. 2 +/- 0.1, and 3.0 +/- 0.1 Gy, respectively. Ulceration of the tongue was evident by 6 to 7 days after irradiation, irrespective of the irradiation modality; healing was related to dose and was relatively rapid (相似文献   

10.
The long-term effects of ionizing radiation on male gonads may be the result of damage to spermatogonial stem cells. Doses of 10 cGy to 15 Gy (60)Co gamma rays or 10 cGy to 7 Gy 14 MeV neutrons were given to NMRI mice as single or split doses separated by a 24-h interval. The ratios of haploid spermatids/2c cells and the coefficients of variation of DNA histogram peaks as measures of both the cytocidal and the clastogenic actions of radiation were analyzed by DNA flow cytometry after DAPI staining. The coefficient of variation is not only a statistical examination of the data but is also used here as a measure of residual damage to DNA (i.e. a biological dosimeter). Testicular histology was examined in parallel. At 70 days after irradiation, the relative biological effectiveness for neutrons at 50% survival of spermatogonial stem cells was 3.6 for single doses and 2.8 for split doses. The average coefficient of variation of unirradiated controls of elongated spermatids was doubled when stem cells were irradiated with single doses of approximately 14 Gy (60)Co gamma rays or 3 Gy neutrons and observed 70 days later. Split doses of (60)Co gamma rays were more effective than single doses, doubling DNA dispersion at 7 Gy. No fractionation effect was found with neutrons with coefficients of variation.  相似文献   

11.
Mouse zygotes were irradiated with fast neutrons (0.06 to 1.00 Gy) 1 h after conception and examined at various intervals (24 to 100 h after conception) for embryonic development and micronucleus formation. The frequency of micronuclei per cell increased linearly with dose in 2-cell embryos observed at 24 h after conception and in 4-cell and 8-cell embryos at 48 h after conception. Compared with X rays, the relative biological effectiveness of neutrons for the induction of micronuclei per embryo was 2.5 at 24 h after conception and 3.5 at 48 h after conception. Neutron-induced micronucleus formation was accompanied by morphological growth delay and a significant decrease in the number of cells in the embryos. An inverse relationship was found between the number of cells in embryos and the number of micronuclei when observed at 48 h after conception following irradiation with 0.12 to 1.00 Gy and at 78 h after conception following exposure to 0.50 Gy. The effect of neutron irradiation on embryonic development was likely to be mediated by cell death, as suggested by a significantly increased dead cell index in blastocysts following irradiation of zygotes.  相似文献   

12.
中子属于高传能线密度电离辐射,能产生比κ射线更为严重的放射损伤,肠上皮对中子辐射高度敏感,迄今未见有关中子辐射致肠上皮细胞损伤中PI3K对NF-κB信号通路调控的研究报道.本研究旨在探讨中子照射后肠上皮细胞中PI3K对NF-κB信号通路的调控及其在中子辐射致肠上皮细胞损伤中的作用.选取肠上皮细胞系-6(intestinal epithelial cell No.6,IEC-6)进行传代培养,随机分为对照组、4Gy中子照射组和4Gy中子照射+LY294002处理组,照射组和LY294002处理组细胞采用4Gy中子均匀照射,LY294002处理组细胞在照前24h给予终浓度为10κmol/L的LY294002,各组于照射后6和24h采用MTT比色法、流式细胞术和免疫印迹(Western blot)方法检测IEC-6细胞增殖活力、凋亡与坏死率以及NF-κB信号通路相关分子NF-κB(p65),IKKκ和IκBκ的表达变化.研究发现,4Gy中子照射后6和24h,IEC-6细胞增殖活力下降,凋亡和坏死率增加;应用LY294002后IEC-6细胞增殖活力较照射组明显下降,IEC-6细胞凋亡和坏死率较照射组增加.4Gy中子照射后6和24h,IEC-6细胞NF-κB(p65)和IKKκ表达升高,IκBκ表达降低;应用LY294002后NF-κB(p65)和IKKκ表达降低,IκBκ表达升高,表明4Gy中子照射可引起IEC-6细胞增殖活力下降,凋亡和坏死率增加;PI3K可激活NF-κB信号通路,对中子辐射IEC-6细胞损伤发挥保护作用.  相似文献   

13.
Deep hypoxia was shown to influence the survival of animals, the state of the small intestine mucosa and the haemopoietic system. DMF (LD50/30) was 2.49 and 1.66 with X- and neutron radiation, respectively. As to haemopoietic stem cells X-irradiated in vivo, D0 was 0.96 +/- 0.04 Gy (control) and 2.82 +/- 0.14 Gy (anoxia). With neutron irradiation, D0 was 0.44 +/- 0.01 Gy and 0.8 +/- 0.03 for the control and experimental animals respectively.  相似文献   

14.
The combined action of gamma rays (1-4 Gy) and postradiation hyperthermia on the human lymphocyte culture induces intensification of the damaging effect at the stage of DNA synthesis, i.e. at the most radioresistant stage of the mitotic cycle, the thermal intensification factor (TIF) being 1.7-2.0. After the neutron action (0.5-1.5 Gy) the hyperthermia has no effect on the chromosome aberration spectrum, the TIF being 1.8-2.5 at G1 phase and 1.8-2.4 at S phase, which testifies to the possible modification of neutron irradiation.  相似文献   

15.
Two thiophosphoroate radiation protectors (WR-2721 and WR-151327) were assessed for their ability to modify the effects of neutron or gamma irradiation on the gastrointestinal tract. Three neutron sources (DOSAR, JANUS, and FERMILAB) were compared to the response obtained after 60Co irradiation. The end points studied were intestinal stem cell survival and LD50(6). DOSAR and JANUS, both fission-spectrum neutrons, showed somewhat different gut sensitivities [LD50(6)] of about 240 and 400 cGy respectively. The intestinal LD50 obtained with FERMILAB neutrons (25 meV) was closer (875 cGy) to that obtained after 60Co (1068 cGy) irradiation. WR-151327 protected against the lethal effects of fission neutron (DOSAR and JANUS) to a greater degree (DMF = 2.2) than with lower LET sources such as FERMILAB neutrons (DMF = 1.7) or 60Co (DMF = 1.7). The results did not correlate with the intestinal stem cell assays where WR-2721 when compared to WR-151327 showed either similar (DOSAR; fission spectrum neutrons) or somewhat better (60Co and FERMILAB neutrons) protection. Possible explanations for the differing results are discussed.  相似文献   

16.
Male BALB/c mice, 12 weeks old, were given a single exposure of either 137Cs gamma rays or d(50)-Be neutrons at a dose rate of 3 Gy/min. The animals were kept until death, and causes of death or possible causes of death were ascertained by autopsy and histology. The data were evaluated by competing risk methods. The survival time dose-effect curve for both types of exposure was linear and did not differ significantly (slopes: 55.8 +/- 4.0 days/Gy for neutrons and 46.2 +/- 4.3 days/Gy for gamma rays). The incidence of different diseases also was similar for both groups except that more carcinomas, sarcomas, and myeloid leukemias seemed to occur after neutron exposure and that nonstochastic lung and kidney diseases seemed to arise at lower doses.  相似文献   

17.
Young adult CBA/H mice were exposed to graded doses of whole-body irradiation with either fast fission neutrons or 300 kVp X rays at center-line dose rates of 0.1 and 0.3 Gy/min, respectively. Dose-response curves were determined at Days 2 and 5 after irradiation for the total thymic cell survival and for the survival of thymocytes defined by monoclonal anti-Thy-1, -Lyt-1, -Lyt-2, and -T-200 antibodies as measured by flow cytofluorometric analysis. Cell dose-response curves of thymocytes show, 2 days after irradiation, a two-component curve with a radiosensitive part and a part refractory to irradiation. The radiosensitive part of the dose survival curve of the Lyt-2+ cells, i.e., mainly cortical cells, has a D0 value of about 0.26 and 0.60 Gy for neutrons and X rays, respectively, whereas that of the other cell types has corresponding D0 values of about 0.30 and 0.70 Gy. The radiorefractory part of the dose-response curves cannot be detected beyond 5 days after irradiation. At that time, the Lyt-2+ cells are again most radiosensitive with a D0 value of 0.37 and 0.99 Gy for neutrons and X rays, respectively. The other measured cell types have corresponding D0 values of about 0.47 Gy. The fission neutron RBE values for the reduction in the thymocyte populations defined by either monoclonal anti-Thy-1, -Lyt-1, -Lyt-2, or -T-200 antibodies to 1.0% vary from 2.6 to 2.8. Furthermore, the estimated D0 values of the Thy-1-, T-200- intrathymic precursor cells which repopulate the thymus during the bone marrow independent phase of the biphasic thymus regeneration after whole-body irradiation are 0.64-0.79 Gy for fission neutrons and 1.32-1.55 Gy for X rays.  相似文献   

18.
The effects of gamma irradiation on the survival and development of C. sinensis metacercariae were studied to evaluate the feasibility of irradiation as a control measure for clonorchiasis. Pseudorasbora parva were collected at an endemic river of clonorchiasis and were used for irradiation of the fluke in three schemes. The first (Scheme 1) was irradiation of the isolated metacercariae from the fish followed by infection to experimental rats. The second (Scheme 2) was irradiation of the fish, and then the metacercariae were isolated and infected to rats. The third (Scheme 3) was irradiation on the rat livers after infection with normal metacercariae. Irradiation doses varied from 5 to 100 Gy for Schemes 1 and 2, and 10 to 25 Gy for Scheme 3. The rats were sacrificed 2 to 6 weeks after infection. In Scheme 1, the metacercariae irradiated at 50 Gy failed to survive in the rats after 2 or 6 weeks. However, 1 to 44% of the metacercariae irradiated at 5-30 Gy survived. The estimated LD50 of Scheme 1 was 16.5 Gy. The flukes irradiated in Scheme 2 survived better than those in Scheme 1. The average worm recovery rate in 50 Gy was 28%(7-39% individually). Increasing the dose up to 100 Gy brought a remarkably low survival rate of an average 1%(0-3% individually). The LD50 of Scheme 2 was 47.5 Gy. Worm recovery rates in the 10 Gy group of Scheme 3 were 21-39%, and those in the 25 Gy group were 2% and 34%. Although the metacercariae were irradiated, all of the recovered worms were morphologically normal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The effects of 60Co gamma-ray and d(20 MeV)Be neutron irradiation on DNA supercoiling have been studied using a nucleoid rewinding technique. Irradiation of viable CHO AA8 cells on ice with from 4 to 25 Gy of either radiation produced a similar resistance to rewinding of nuclear supercoils after treatment with ethidium bromide. The restitution from the effects of 12 Gy of either radiation was also similar, leaving no detectable residual damage. The discrepancy between these data and the reduced ability of neutrons to produce DNA breaks, as defined by the alkaline elution assay, is explained by the discontinuous deposition of dose associated with neutron irradiation. It is suggested from a microdosimetric analysis that the neutron radiation interacts with DNA at sites on average 5-10 times further apart than the interactions with gamma rays. The long DNA sequences which results after neutron irradiation are consequently eluted inefficiently during alkaline elution, giving a reported RBE of approximately 0.3. Restrictions in the rewinding of individual supercoils are not dependent on the interionization distance and thus give rise to an RBE of approximately 1. Furthermore, the complete removal of DNA damage, as measured by this technique, supports the hypothesis that neutron toxicity is associated with incorrect, not incomplete, rejoining of the DNA molecule.  相似文献   

20.
The radiosensitivity as measured by LD50/6 or LD50/30 of the F1 hybrid B6CF1 (C57BL/6 X BALB/c) is similar to that of C57BL/6 mice but markedly different from BALB/c. The LD50/6 for BALB/c mice was about 8.8 Gy compared to 16.4 Gy for the B6CF1. The difference in LD50/6 between the parent strains or between BALB/c and the F1 hybrid could not be explained by any differences in crypt cell number, cell cycle time, or transit time. Likewise, the observed differences in the LD50/6 do not appear to result from marked differences in the radiosensitivity of marrow stem cells (CFU-S) since the D0's for the three genotypes of mice were similar. Also, there were no apparent differences in the red blood cell contents of several enzymes associated with antioxidant defenses. The microcolony assay was used to determine the D0 for the crypt clonogenic cells and the D0 values for 60Co gamma rays were about 0.8 Gy for BALB/c mice and 1.4 Gy for B6CF1 mice. However, the D0 values for JANUS fission neutrons were similar; 0.6 Gy for the BALB/c mice and 0.5 for the B6CF1 mice. A comparison of clonogenic cell kinetics, using prolonged colcemid block to distinguish between slowly and rapidly cycling cells suggest that, normally, the stem cells are slowly cycling in both the BALB/c and the B6CF1 hybrid. However, the stem cells of the B6CF1 appear to go into rapid cell cycle more rapidly than those of the BALB/c following irradiation or prolonged colcemid treatment. The more rapid recovery in intestinal epihelial cell production in the B6CF1 hybrid after irradiation may provide an increased mucosal barrier and may, in part, explain the difference in the response to radiation compared to that in the BALB/c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号