首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alterations in DNA methylation have been implicated in mammalian development. Hence, the identification of tissue-specific differentially methylated regions (TDMs) is indispensable for understanding its role. Using restriction landmark genomic scanning of six mouse tissues, 150 putative TDMs were identified and 14 were further analyzed. The DNA sequences of the 14 mouse TDMs are analyzed in this study. Six of the human homologous regions show TDMs to both mouse and human and genes in five of these regions have conserved tissue-specific expression: preferential expression in testis. A TDM, DDX4, is further analyzed in nine testis tissues. An increase in methylation of the promoter region is significantly associated with a marked reduction of the gene expression and defects in spermatogenesis, suggesting that hypomethylation of the DDX4 promoter region regulates DDX4 gene expression in spermatogenic cells. Our results indicate that some genomic regions with tissue-specific methylation and expression are conserved between mouse and human and suggest that DNA methylation may have an important role in regulating differentiation and tissue-/cell-specific gene expression of some genes.  相似文献   

2.
3.
We examined DNA methylation and DNase I hypersensitivity of the alpha-fetoprotein (AFP) and albumin gene region in hepatoma cell lines which showed drastic differences in the level of expression of these genes. We assayed for methylation of the CCGG sequences by using the restriction enzyme isoschizomers HpaII and MspI. We found two methylation sites located in the 5' region of the AFP gene and one in exon 1 of the albumin gene for which hypomethylation is correlated with gene expression. Another such site, located about 4,000 base pairs upstream from the AFP gene, seems to be correlated with the tissue specificity of the cells. DNase I-hypersensitive sites were mapped by using the indirect end-labeling technique with cloned genomic DNA probes. Three tissue-specific DNase I-hypersensitive sites were mapped in the 5' flanking region of the AFP gene when this gene was transcribed. Similarly, three tissue-specific DNase I-hypersensitive sites were detected upstream from the albumin gene in producing cell lines. In both cases, the most distal sites were maintained after cessation of gene activity and appear to be correlated with the potential expression of the gene. Interestingly, specific methylation sites are localized in the same DNA region as DNase I hypersensitive sites. This suggests that specific alterations of chromatin structure and changes in methylation pattern occur in specific critical regulatory regions upstream from the albumin and AFP genes in rat hepatoma cell lines.  相似文献   

4.
5.
6.
DNA methylation is important for mammalian development and the control of gene expression. Recent data suggest that DNA methylation causes chromatin closure and gene silencing. During development, tissue specifically expressed gene loci become selectively demethylated in the appropriate cell types by poorly understood processes. Locus control regions (LCRs), which are cis-acting elements providing stable, tissue-specific expression to linked transgenes in chromatin, may play a role in tissue-specific DNA demethylation. We studied the methylation status of the LCR for the mouse T-cell receptor alpha/delta locus using a novel assay for scanning large distances of DNA for methylation sites. Tissue-specific functions of this LCR depend largely on two DNase I-hypersensitive site clusters (HS), HS1 (T-cell receptor alpha enhancer) and HS1'. We report that these HS induce lymphoid organ-specific DNA demethylation in a region located 3.8 kilobases away with little effect on intervening, methylated DNA. This demethylation is impaired in mice with a germline deletion of the HS1/HS1' clusters. Using 5'-deletion mutants of a transgenic LCR reporter gene construct, we show that HS1' can act in the absence of HS1 to direct this tissue-specific DNA demethylation event. Thus, elements of an LCR can control tissue-specific DNA methylation patterns both in transgenes and inside its native locus.  相似文献   

7.
8.
9.
CpG islands are GC-rich regions located in the promoter regions of housekeeping genes and many tissue-specific genes. While most CpG islands are normally unmethylated, island methylation can occur and is associated with silencing of the corresponding gene. Experiments with transgenic mice and DNA transfection in pluripotential embryonic cells have led to the conclusion that the information required for protecting the islands from methylation is contained within the CpG islands themselves and have identified Sp1 binding sites as an important element in establishing and/or maintaining the methylation-free state of CpG islands. To examine the generality of these observations, we analyzed the methylation of one of the mouse Igf2 CpG islands and its flanks in transgenic mice. We observed that the undermethylated state of this region is dependent on the presence of a separate cis-regulatory element, the H19 enhancers. These tissue-specific enhancers had a ubiquitous, non-tissue-specific effect on island region methylation. Structural alterations outside of the island and these enhancers also affected this region's methylation. These findings indicate that the methylation of some CpG island-containing regions is more sensitive than previously believed to the activity of distant cis-regulatory elements and to structural alterations in nonisland sequences in cis.  相似文献   

10.
11.
12.
In mammalians, demethylation of specific promoter regions often correlates with gene activation; inversely, dense methylation of CpG islands leads to gene silencing, probably mediated by methyl-CpG binding proteins. In cell lines and cancers, inhibition of tissue-specific genes and tumor suppressor genes expression seems to be related to such hypermethylation. The 5' end of the breast cancer predisposition gene BRCA1 is embedded in a large CpG island of approximately 2.7 kb in length. In human sporadic breast cancers, the down-regulation of BRCA1 does not seem to be related to BRCA1 gene alterations. Southern blot analysis and the bisulfite sequencing method indicate that the BRCA1 CpG island is regionally methylated in all human tissues analyzed and unmethylated in the gametes, suggesting a role for DNA methylation in the control of gene expression. We have therefore investigated the potential role of methyl-CpG binding proteins in the regulation of BRCA1 gene expression. In vitro, partial methylation of constructs containing this region strongly inhibits gene expression in the presence of MeCP2 protein. Moreover, in the five human cell lines analyzed, chemically induced hypomethylation is associated with BRCA1 gene activation. These data suggest that methyl-CpG binding proteins might be associated with the control of BRCA1 gene expression and that methyl-DNA binding proteins may participate in the regulation of gene expression in mammalian cells.  相似文献   

13.
Mesenchymal stem cells (MSCs) are multipotent stem cells and show distinct features such as capability for self-renewal and differentiation into several lineages of cells including osteoblasts, chondrocytes, and adipocytes. In this study, the methylation status of the promoter region of zinc finger and BTB domain containing 16 (ZBTB16), twist-related protein 1(Twist1), de novo DNA methyltransferases 3A (DNMT3A), SRY-box 9 (Sox9), osteocalcin (OCN), and peroxisome proliferator-activated receptor γ2 (PPARγ2) genes and their messenger RNA (mRNA) expression levels were evaluated during the osteoblastic differentiation of MSCs (ODMSCs). We planned two experimental groups including zoledronic acid (ZA)-treated and nontreated cells (negative control) which both were differentiated into the osteoblasts. Methylation level of DNA in the promoter regions was assayed by methylation-specific-quantitative polymerase chain reaction (MS-qPCR), and mRNA levels of the target inhibitory/stimulatory genes during osteoblastic differentiation of MSCs were measured using real-time PCR. During the experimental induction of ODMSCs, the mRNA expression of the OCN gene was upregulated and methylation level of its promoter region was decreased. Moreover, Sox9 and PPARγ2 mRNA levels were attenuated and their promoter regions methylation levels were significantly augmented. However, the mRNA expression of the DNMT3A was not affected during the ODMSCs though its methylation rate was increased. In addition, ZA could enhance the expression of the ZBTB16 and decrease its promoter regions methylation and on the opposite side, it diminished mRNA expression of Sox9, Twist1, and PPARγ2 genes and increased their methylation rates. Intriguingly, ZA did not show a significant impact on gene expression and methylation levels the OCN and DNMT3A. We found that methylation of the promoter regions of Sox9, OCN, and PPARγ2 genes might be one of the main mechanisms adjusting the genes expression during the ODMSCs. Furthermore, we noticed that ZA can accelerate the MSCs differentiation to the osteoblast cells via two regulatory processes; suppression of osteoblastic differentiation inhibitor genes including Sox9, Twist1, and PPARγ2, and through promotion of the ZBTB16 expression.  相似文献   

14.
15.
16.
17.
18.
《Epigenetics》2013,8(4):241-247
A subset of mammalian genes exhibits genomic imprinting, whereby one parental allele is preferentially expressed. Differential DNA methylation at imprinted loci serves both to mark the parental origin of the alleles and to regulate their expression. In mouse, the imprinted gene Rasgrf1 is associated with a paternally methylated imprinting control region which functions as an enhancer blocker in its unmethylated state. Because Rasgrf1 is imprinted in a tissue-specific manner, we investigated the methylation pattern in monoallelic and biallelic tissues to determine if methylation of this region is required for both imprinted and non-imprinted expression. Our analysis indicates that DNA methylation is restricted to the paternal allele in both monoallelic and biallelic tissues of somatic and extraembryonic lineages. Therefore, methylation serves to mark the paternal Rasgrf1 allele throughout development, but additional factors are required for appropriate tissue-specific regulation of expression at this locus.  相似文献   

19.
DNA methylation and the regulation of aldolase B gene expression   总被引:4,自引:0,他引:4  
DNA methylation was studied as a potential factor for the regulation of tissue-specific and developmentally specific expression of the rat aldolase B gene. We examined cytosine methylation in the HpaII and HhaI recognition sequences in the aldolase B gene in aldolase expressing and nonexpressing tissues and cells. Out of the 15 methyl-sensitive restriction sites examined, the sites in the 3'-half and 3'-flanking regions were found to be heavily methylated in all the tissues or cells, regardless of the level of aldolase B gene expression. However, the methylation pattern in the region immediately upstream and in the 5'-half of the gene exhibited tissue-specificity: the site located about 0.13 kb upstream of the cap site (just next to the CCAAT box), and the sites in the first intron (intron 1) were heavily methylated in nonexpressing cells and tissues (ascites hepatoma AH130 and brain), whereas those in an expressing tissue (liver) were considerably less methylated. These results suggest that cytosine methylation at the specific sites in the 5'-flanking and 5'-half regions of the gene is associated with repression of the gene activity. However, the gene is still substantially methylated in the fetal liver on day 16 of gestation, when it is in a committed state for rapid activation in the period immediately afterwards (Numazaki et al. (1984) Eur. J. Biochem. 152, 165-170). This suggests that demethylation of the methylated cytosine residues in the specific gene region is not necessarily required before activation of the gene during development, but it may occur along with or after the activation.  相似文献   

20.
Ornithine carbamoyl transferase (Oct) is an X-linked gene which exhibits tissue-specific expression. To determine whether methylation of specific CpG sequences plays a role in dosage compensation or tissue-specific expression of the gene, 13 potentially methylatable sites were identified over a 30-kilobase (kb) region spanning from approximately 15 kb upstream to beyond exon II. Fragments of the Mus hortulanus Oct gene were used as probes to establish the degree of methylation at each site. By considering the methylation status in liver (expressing tissue) versus kidney (nonexpressing tissue) from male and female mice, the active and inactive genes could be investigated on active and inactive X-chromosome backgrounds. One MspI site, 12 kb 5' of the Oct-coding region, was cleaved by HpaII in liver DNA from males but not in kidney DNA from males and thus exhibited complete correlation with tissue-specific expression of the gene. Six other sites showed partial methylation, reflecting incomplete correlation with tissue-specific expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号