首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
R Sager  C Grabowy  H Sano 《Cell》1981,24(1):41-47
The inheritance of chloroplast genes in Chlamydomonas is regulated by methylation of chloroplast DNA during gametogenesis. The wild-type pattern of maternal inheritance results from the methylation of chloroplast DNA in female (mt+) but not in male (mt-) gametes, leading to preferential degradation of chloroplast DNA of male origin in zygotes. This paper describes the distribution of 5-methyl cytosine residues in restriction fragments of chloroplast DNA sampled during gametogenesis by two methods: ethidium bromide staining of agarose gels, and binding of antibody directed against 5-methyl cytosine onto restriction fragments blotted to nitro-cellulose paper. Methylated cytosines are located in most if not all Eco RI and Msp I fragments, but the extent of methylation is not proportional to fragment size. The mat-1 mutation carried by males converts maternal inheritance. Chloroplast DNA of male gametes carrying the mat-1 mutation becomes methylated during gametogenesis. This methylation protects against restriction enzyme-promoted degradation in zygotes, as shown by physical data demonstrating the transmission to progeny of chloroplast genes carried on chloroplast DNA of the mat-1 male parent. Thus the mat-1 gene, which is linked to the mating-type locus, determines whether or not methylation of chloroplast DNA will occur in males during gametogenesis.  相似文献   

2.
An analysis of the methylated constituents of L cell mRNA by a combination of chromatographic methods and enzymatic treatments indicates that they comprise both 2'-O-methyl nucleosides and N6-methyl adenine, and/or 1-methyl adenine, and suggests that the 2'-O-methyl nucleotides, Ym, are part of an unusual class of sequences forming the 5' terminus of mRNA. These sequences seem to contain two 2'-O-methyl residues and a terminal residue that is not phosphorylated but, nevertheless, is blocked with respect to polynucleotid kinase reactivity. A strong candidate is a sequence of the type XppY1mpY2mpZp..., where X represents a blocking group which is itself occasionally methylated. The sequences isolated from total poly(A)+ mRNA contain all four species of 2'-O-methylated nucleoside, indicating some variability among different mRNA species. The methylated sequences do not appear to be enriched in the mRNA which hybridizes with repetitive DNA. The average L cell mRNA molecule also contains three residues of N6-methyl adenine. These residues are not part of the poly(A) segment, but appear to be located internal to the poly(A) near the 3' end of the mRNA molecules.  相似文献   

3.
We have characterized a deoxyribonuclease from Streptomyces glaucescens that cleaves double-stranded DNA preferably between the dinucleotide 5'-CC-3'. The cleavage specificity was demonstrated by both analysis of the terminal nucleotides of the generated fragments and DNA sequencing of partially digested DNA. Digestion of lambda DNA with this enzyme resulted in the production of double-stranded fragments with 5' and/or 3'-protruding single-stranded tails. DNase I footprinting experiments indicated that the nuclease specifically binds to its cleavage sites on the DNA under non-catalytic conditions. The enzyme is not affected by cytosine methylation in hemimethylated DNA.  相似文献   

4.
In order to model the interaction of hemin with DNA and other polynucleotides, we have studied the degradation of DNA, RNA, and polynucleotides of defined structure by [meso-tetrakis(N-methyl-4-pyridyl)porphinato]manganese(III) (MnTMPP) + KHSO5. The activated porphyrin was shown to release adenine, thymine, and cytosine from DNA; RNA degradation afforded adenine, uracil, and cytosine. The same products were obtained from single- and double-stranded DNA oligonucleotides of defined sequence, and also from single-stranded DNA and RNA homopolymers. The overall yield of bases from the dode-canucleotide d(CGCT3A3GCG) was equal to 14% of the nucleotides present initially, indicating that each porphyrin catalyzed the release of approximately 4 bases. Although no guanine was detected as a product from any of the substrates studied, the ability of MnTMPP + KHSO5 to degrade guanine nucleotides was verified by the destruction of pGp, and by the appearance of bands corresponding to guanosine cleavage following treatment of 32P end labeled DNA restriction fragments with activated MnTMPP. Inspection of a number of sites of MnTMPP-promoted cleavage indicated that the process was sequence-selective, occurring primarily at G residues that were part of 5'-TG-3' or 5'-AG-3' sequences, or at T residues. Also formed in much greater abundance were alkali-labile lesions; these were formed largely at guanosine residues. Also studied was the degradation of a 47-nucleotide RNA molecule containing two hairpins. Degradation of the 5'-32P end labeled RNA substrate afforded no distinct, individual bands, suggesting that multiple modes of degradation may be operative.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
L Wang  M Heinlein    R Kunze 《The Plant cell》1996,8(4):747-758
The maize transposable element Activator (Ac) transposes after replication from only one of the two daughter chromatids. It has been suggested that DNA methylation in conjunction with methylation-sensitive transposase binding to DNA may control the association of Ac transposition and replication. We present here a detailed genomic sequencing analysis of the cytosine methylation patterns of the transposase binding sites within both Ac ends in the wx-m9::Ac allele, where Ac is inserted into the tenth exon of the Waxy gene. The Ac elements in wx-m9::Ac kernels exhibit intriguing methylation patterns and fall into two distinct groups. Approximately 50% of the elements are fully unmethylated at cytosine residues through the 256 nucleotides at the 5' end (the promoter end). The other half is partially methylated between Ac residues 27 and 92. In contrast, at the 3' end, all Ac molecules are heavily methylated between residues 4372 and 4554. The more internally located Ac sequences and the flanking Waxy DNA are unmethylated. Although most methylated cytosines in Ac are in the symmetrical CpG and CpNpG arrangements, nonsymmetrical cytosine methylation is also common in the hypermethylated regions of Ac. These results suggest a model in which differential activation of transposon ends by hemimethylation controls the chromatid selectivity of transposition and the association with replication.  相似文献   

6.
Reasons for the different levels of 5-methyl cytosine encountered in the DNA of two baby hamsters kidney fibroblast lines, BHK-21/C13 and BHK-21/PyY have been investigated. From enzymic studies it does not seem that there are large numbers of potentially methylatable cytosine residues in the C13 line DNA which contains a lower level of 5-methyl cytosine. Rather it is possible that the difference may be due to the reiteration in the PyY strain of certain sequences containing 5-methyl cytosine which simply occur less frequently in the other line.  相似文献   

7.
A deoxyribonuclease of Diplococcus pneumoniae specific for methylated DNA.   总被引:36,自引:0,他引:36  
A deoxyribonuclease specific for methylated DNA was isolated from Diplococcus pneumoniae. The enzyme, an endonuclease, degrades DNA for Escherichia coli to fragments of average molecular weight about half a million; it forms discrete fragments from phage lambda DNA. Methyl-deficient E. coli DNA is not attacked, neither is DNA from Micrococcus radiodurans, which contains no methylated adenine or cytosine. Nor is DNA from D. pneumoniae or phage T7 attacked. However, DNA from M. radiodurans, D. pneumoniae, and T7 is attacked after methylation with and E. coli extract. Methylated T7 DNA is degraded to discrete fragments. Although the genetic transforming activity of normal DNA from D. pneumoniae is not affected by the enzyme, transforming activity of methylated DNA is destroyed. The enzyme is designated endonuclease R Dpn I. Under certain conditions another enzyme of complementary specificity can be isolated. This enzyme, designated endonuclease R Dpn II, produces a similar pattern of fragments from the DNA of T7 without prior methylation of the DNA. It also degrades normal DNA for D. pneumoniae. It is suggested that this pair of enzymes plays a role in some unknown control process, which would involve a large fraction of the specific base sequences that are methylated in E. coli DNA and are present but not methylated in DNA from other sources.  相似文献   

8.
In contrast to the complex sequence specificities of the prokaryotic DNA methylating systems, the mammalian machinery identified thus far methylates cytosine residues within the context of a 5'-CG-3' dinucleotide. To explore the possibility that cytosine residues that do not precede guanine may be independently methylated in mammalian DNA, we have examined a region of the human myogenic gene, Myf-3, which is not targeted by the methylating system that methylates 5'-CG-3' dinucleotides. Our investigations have revealed cytosine methylation within the 5'-CCTGG-3' pentanucleotides specified by the 0.8-kb Myf-3 probe. We have also found that in DNA from neoplastic cells, in which 5'-CG-3' dinucleotides within Myf-3 become abnormally hypermethylated, cytosine residues within 5'-CCTGG-3' pentanucleotides are not methylated. Moreover, methylation of 5'-CCTGG-3' pentanucleotides was not detected within the closely related Myf-4 gene, which is normally 5'-CG-3' hypermethylated. These findings indicate the existence of a system that methylates 5'-CCTGG-3' pentanucleotides independently of the system that methylates cytosine residues within 5'-CG-3' dinucleotides. It is possible that the 5'-CCTGG-3' methylating system influences the fate of foreign integrated DNA.  相似文献   

9.
10.
11.
High sensitivity mapping of methylated cytosines.   总被引:79,自引:16,他引:63       下载免费PDF全文
An understanding of DNA methylation and its potential role in gene control during development, aging and cancer has been hampered by a lack of sensitive methods which can resolve exact methylation patterns from only small quantities of DNA. We have now developed a genomic sequencing technique which is capable of detecting every methylated cytosine on both strands of any target sequence, using DNA isolated from fewer than 100 cells. In this method, sodium bisulphite is used to convert cytosine residues to uracil residues in single-stranded DNA, under conditions whereby 5-methylcytosine remains non-reactive. The converted DNA is amplified with specific primers and sequenced. All the cytosine residues remaining in the sequence represent previously methylated cytosines in the genome. The work described has defined procedures that maximise the efficiency of denaturation, bisulphite conversion and amplification, to permit methylation mapping of single genes from small amounts of genomic DNA, readily available from germ cells and early developmental stages.  相似文献   

12.
D Poncet  G Verdier  V M Nigon 《Biochimie》1983,65(7):417-425
Available restriction endonucleases including CG dinucleotides in their target sequences (most of them being unable to cut the DNA when the cytosine of the CG sequence is methylated) have been used to map cloned DNA covering the human gamma-delta-beta globin gene cluster. Since the human DNA fragments were cloned in Escherichia coli, only the internal cytosine in the sequence CCAT GG could be methylated. Thus, any recognized "CG enzyme" site can be detected since they are unmethylated. Results show that frequencies of "CG enzyme" sites regularly decrease from the gamma-globin region to the beta-globin region, the latter being very poor in "CG enzyme"' sites. The array of enzymes used here detects 4 times more CG sites than the classical MspI/HpaII system. Examination of previously sequenced parts of the gamma-delta-beta globin gene cluster shows that CG dinucleotides correspond to an average frequency of 1 out of 104 nucleotides in the gamma-globin region and 1 out of 138 nucleotides in the beta-globin region. In the gamma-globin region, 1 CG out of 4 or 5 may be detected by the enzymes used; the detected frequency is less than 1 out of 10 CG in the beta-region. Analysis of nucleotide environment around CG dinucleotides shows occurrence of local differences, the main sequences being CGG in the 5' side flanking the gamma genes and ACG in the corresponding area of the beta gene. The results presented introduce some new considerations about analysis of cytosine methylation which has been previously proposed as playing a role in the control of the activity of gamma, delta and beta genes respectively.  相似文献   

13.
The methylcytosine-containing sequences in the DNA of Bacillus subtilis 168 Marburg (restriction-modification type BsuM) were determined by three different methods: (i) examination of in vivo-methylated DNA by restriction enzyme digestion and, whenever possible, analysis for methylcytosine at the 5' end; (ii) methylation in vitro of unmethylated DNA with B. subtilis DNA methyltransferase and determination of the methylated sites; and (iii) the methylatability of unmethylated DNA by B. subtilis methyltransferase after potential sites have been destroyed by digestion with restriction endonucleases. The results obtained by these methods, taken together, show that methylcytosine was present only within the sequence 5'-TCGA-3'. The presence of methylcytosine at the 5' end of the DNA fragments generated by restriction endonuclease AsuII digestion and the fact that in vivo-methylated DNA could not be digested by the enzyme XhoI showed that the recognition sequences of these two enzymes contained methylcytosine. As these two enzymes recognized a similar sequence containing a 5' pyrimidine (Py) and a 3' purine (Pu), 5'-PyTCGAPu-3', the possibility that methylcytosine is present in the complementary sequences 5'-TTCGAG-3' and 5'-CTCGAA-3' was postulated. This was verified by the methylation in vitro, with B. subtilis enzyme, of a 2.6-kilobase fragment of lambda DNA containing two such sites and devoid of AsuII or XhoI recognition sequences. By analyzing the methylatable sites, it was found that in one of the two PyTCGAPu sequences, cytosine was methylated in vitro in both DNA strands. It is concluded that the sequence 5'-PyTCGAPu-3' is methylated by the DNA methyltransferase (of cytosine) of B. subtilis Marburg.  相似文献   

14.
The distribution of 5-methylcytosine in Eco RI-Bam HI fragments of phage lambda DNA in vitro methylated by Eco RII methylase has been studied. The general picture of distribution of methylated sites in phage lambda DNA is slightly different from the statistical distribution. However, the sites have been found, where the distribution of 5-methylcytosine is not accidental. A complete absence of 5-methylcytosine in the J-fragment, a genome lambda area essential for site-specific recombination, has been found. The absence of Eco RII is supposed to be the best protection of this area of phage genome from the increased mutagenesis, characteristic for nucleotide sequences methylated by DNA-methylated Eco RII and Eco RII type.  相似文献   

15.
A member of Sillago japonica satellite DNA contained internal subrepeats in its 174 bp unit. S. Japonica genomic DNA isolated from liver tissue was subjected to bisulfite modification, and the DNA sequences of about 40 bp flanked by both subrepeats were amplified by polymerase chain reaction (PCR). This protocol, combination of bisulfite reaction and PCR, converts cytosines in the genomic DNA to thymines in the amplified DNA, whereas 5-methylcytosines in the genomic DNA remain as cytosines. Sequence analysis of the amplified DNA fragments revealed that most of the cytosine residues at CpG were methylated in this region.  相似文献   

16.
17.
Alternating (dC-dG)n regions in DNA restriction fragments and recombinant plasmids were methylated at the 5 position of the cytosine residues by the HhaI methylase. Methylation lowers the concentration of NaCl or MgCl2 necessary to cause the B-Z conformational transition in these sequences. Ionic strengths higher than physiological conditions are required to form the Z conformation when the methylated (dC-dG)n tract is contiguous with regions that do not form Z structures, in contrast to the results with the DNA polymer poly(m5dC-dG) . poly(m5dC-dG). In supercoiled plasmids containing (dC-dG)n sequences, methylation reduces the number of negative supercoils necessary to stabilize the Z conformation. Calculations of the observed free energy contributions of the B-Z junction and cytosine methylation suggest that two junctions offset the favorable effect of methylation on the Z conformation in (dC-dG)n sequences (about 29 base-pairs in length). Studies with individual methylated topoisomers demonstrate that increasing Na+ concentration up to approximately 0.2 M inhibits the formation of the Z conformation in the (m5dC-dG)n region of supercoiled plasmids. The results suggest that methylation may serve as a triggering mechanism for Z DNA formation in supercoiled DNAs.  相似文献   

18.
DNA methylation in the fungi   总被引:18,自引:0,他引:18  
A systematic study on the incidence and patterns of cytosine methylation in the fungi has been carried out by restriction and nearest-neighbor analysis of DNAs isolated from undifferentiated cells of several fungal species. With respect to DNA modification, the fungi appear to be a heterogeneous group, with a 5-methylcytosine content ranging from undetectable levels (less than or equal to 0.1% of cytosine residues methylated in 18 out of 20 species tested) to low but detectable levels (e.g. congruent to 0.2 and congruent to 0.5% of the total cytosines methylated in Sporotrichum dimorphosporum and Phycomyces blakesleeanus, respectively). In the species where it has been detected, 5-methylcytosine is located mostly at CpG doublets, and the methylated sites are clustered in long tracts (10-30 kilobase pairs) separated from essentially unmethylated regions. This methylated compartment, which comprises a small fraction (1-11%) of the total DNA, contains at least a specific set of repetitive sequences. These results contrast with the higher 5-methylcytosine content found in the fungus Physarum polycephalum and in vertebrates and higher plants.  相似文献   

19.
We have previously shown that the pyrimidine oligonucleotide 5'CTTCCTCCTCT (Y11) recognizes the double-helical stem of hairpin 5'GAAGGAGGAGA-T4-TCTCCTCCTTC (h26) by triple-helix formation (1). In this paper, we report the effect on triplex formation of substituting the cytosine residues of Y11 with 5-methylcytosines (5meY11). In addition, we have studied the thermodynamics of the interaction between h26 and 5meY11. The results can be summarised as follows: (i) gel electrophoresis shows that at T = 5 degrees C and pH 5, both Y11 and 5meY11 form DNA triple helices with h26, whereas at pH 6.8 only the methylated strand binds to h26; (ii) pH-stability curves of the DNA triplexes formed from h26 + Y11 and h26 + 5meY11 show that Y11 and 5meY11 are semi-protonated at pH 5.7 and 6.7, respectively. Thus, it is concluded that cytosine methylation expands the pH range compatible with triplex formation by one pH unit; (iii) as the unmethylated triplex (h26:Y11), the methylated one (h26:5meY11) denatures in a biphasic manner, in which the low temperature transition results from the dissociation of 5meY11 from h26. The Tm of the triplex to h26 plus 5meY11 transition is strongly enhanced (about 10 degrees C) by cytosine methylation. A van 't Hoff analysis of denaturation curves is presented; (iv) DSC experiments show that triplex formation between 5meY11 and h26 is characterized by delta H = -237 +/- 25 kJ/mol and delta S = -758 +/- 75 J/Kmol, corresponding to an average delta H of -21 kJ/mol and delta S of -69 J/Kmol per Hoogsteen base pair; (v) the thermodynamic analysis indicates that the extra stability imparted to the triplex by methylcytosine is entropic in origin.  相似文献   

20.
Replacement of virtually all the cytosine residues with 5-methylcytosine residues in the complementary strand of the replicative form (RF) of phi X174 DNA caused a 300- to 500-fold loss in its transfecting activity. Similar results were obtained with analogously methylated M13 RF. Transfection experiments with phi X RF hemimethylated in only part of the molecule, as assessed by analysis with restriction endonucleases, indicated that gene A of phi X, which needs to be nicked at a specific site by the gene A protein for RF replication, was not the main target for this inhibition by DNA methylation. We propose that the loss of transfecting activity was due to hemimethylation of the phi X RF interfering with the processively catalyzed movement of the replication fork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号