首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using synthetic peptides, the identification of the retinal cyclic-GMP phosphodiesterase (cGMP PDE) interaction sites for the inhibitory gamma-subunit in the catalytic alpha-subunit were recently localized to residues #16-30 and 78-90 in the alpha-subunit (1). In this study, a binding radioimmunoassay (RIA) showed a weak interaction between PDE gamma and PDE beta subunits in PDE beta residues #15-34, and stronger interaction sites were found in residues #91-110 and 211-230. Sequence comparison between PDE alpha and PDE beta illustrate some differences in these regions, particularly in PDE alpha 16-30 and PDE beta 15-34 regions. Differences in interaction sites in PDE alpha and PDE beta for PDE gamma may account for the differences in affinities observed between PDE gamma and the catalytic subunits.  相似文献   

2.
A substantial fraction (20-30%) of the bovine rod outer segment phosphodiesterase (PDE) activity is not associated with outer segment membranes prepared with buffers of moderate ionic strength; this PDE activity appears to represent a distinct, soluble isozyme. Although this PDE isozyme can be demonstrated to be present in sealed rod outer segments, it is discarded from most standard rod outer segment preparations. A method was developed that allowed the rapid purification of the soluble rod PDE by 2600-fold, to apparent homogeneity, using a monoclonal antibody column (ROS-1a). The soluble rod PDE isozyme has a novel Mr = 15,000 subunit (delta) in addition to subunits of Mr = 88,000 (alpha sol), 84,000 (beta sol), and 11,000 (gamma sol). The delta subunit comigrates with and may be identical to the cone PDE 15-kDa subunit. The small subunits of the soluble rod PDE and the membrane-associated rod PDE were isolated by reverse-phase chromatography. The gamma sol subunit was a potent inhibitor of trypsin-activated rod PDE, inhibiting 50% of 1 pM PDE activity at a concentration of 11 pM. This concentration was similar to that observed for the gamma subunit of the membrane-associated rod PDE. The purified delta subunit did not appear to affect PDE activity; this subunit was, however, unusually difficult to keep in solution. All of the kinetic and physical properties of the soluble rod PDE tested thus far are similar to those of the membrane-associated form, except for the presence of the delta subunit, suggesting that this unique subunit could mediate the solubility of the soluble rod PDE and the cone PDE in the intact photoreceptor.  相似文献   

3.
The rod outer segments of the bovine and frog retina possess a cyclic GMP phosphodiesterase (PDE) that is composed of two larger subunits, alpha and beta (P alpha beta), which contain the catalytic activity and a smaller gamma (P gamma) subunit which inhibits the catalytic activity. We studied the binding of P gamma to P alpha beta in both the bovine and frog rod outer segment membranes. Analysis of these data indicates that there are two classes of P gamma binding sites per P alpha beta in both species. The activation of PDE by the guanosine 5'-[gamma-thio]triphosphate form of the alpha subunit of transducin, T alpha.GTP gamma S, was also studied. These data indicate that the two classes of P gamma binding sites contribute to the formation of two classes of binding sites for T alpha.GTP gamma S. We demonstrate solubilization of a portion of the P gamma by T alpha.GTP gamma S in both species. There is also present, in both species, a second class of P gamma which is not solubilized even when it is dissociated from its inhibitory site on P alpha beta by T alpha.GTP gamma S. The amount of full PDE activity which results from release of the solubilizable P gamma is about 50% in the frog PDE but only approx. 17% in the bovine PDE. We also show that activation of frog rod outer segment PDE by trypsin treatment releases the PDE from the membranes. This type of release by trypsin has already been demonstrated in bovine rod outer segments [Wensel & Stryer (1986) Proteins: Struct. Funct. Genet. 1, 90-99].  相似文献   

4.
Synthetic peptides corresponding to various regions of the light-activated guanosine 3',5'-cyclic monophosphate phosphodiesterase (PDE) gamma-subunit (PDE gamma) from bovine retinal rod outer segments were synthesized and tested for their ability to inhibit PDE activity, and GTPase activity of transducin. One of these peptides, corresponding to PDE gamma residues 31-45, inhibited PDE activity and GTPase activity in a dose-dependent manner. The GTPase activity was inhibited by PDE gamma-3 non-competitively. This region of the PDE gamma subunit may be involved in the direct interaction of transducin and PDE alpha beta with PDE gamma.  相似文献   

5.
Cook TA  Ghomashchi F  Gelb MH  Florio SK  Beavo JA 《Biochemistry》2000,39(44):13516-13523
PDE6 (type 6 phosphodiesterase) from rod outer segments consists of two types of catalytic subunits, alpha and beta; two inhibitory gamma subunits; and one or more delta subunits found only on the soluble form of the enzyme. About 70% of the phosphodiesterase activity found in rod outer segments is membrane-bound, and is thought to be anchored to the membrane through C-terminal prenyl groups. The recombinant delta subunit has been shown to solubilize the membrane-bound form of the enzyme. This paper describes the site and mechanism of this interaction in more detail. In isolated rod outer segments, the delta subunit was found exclusively in the soluble fraction, and about 30% of it did not coimmunoprecipitate with the catalytic subunits. The delta subunit that was bound to the catalytic subunits dissociated slowly, with a half-life of about 3.5 h. To determine whether the site of this strong binding was the C-termini of the phosphodiesterase catalytic subunits, peptides corresponding to the C-terminal ends of the alpha and beta subunits were synthesized. Micromolar concentrations of these peptides blocked the phosphodiesterase/delta subunit interaction. Interestingly, this blockade only occurred if the peptides were both prenylated and methylated. These results suggested that a major site of interaction of the delta subunit is the methylated, prenylated C-terminus of the phosphodiesterase catalytic subunits. To determine whether the catalytic subunits of the full-length enzyme are methylated in situ when bound to the delta subunit, we labeled rod outer segments with a tritiated methyl donor. Soluble phosphodiesterase from these rod outer segments was more highly methylated (4.5 +/- 0.3-fold) than the membrane-bound phosphodiesterase, suggesting that the delta subunit bound preferentially to the methylated enzyme in the outer segment. Together these results suggest that the delta subunit/phosphodiesterase catalytic subunit interaction may be regulated by the C-terminal methylation of the catalytic subunits.  相似文献   

6.
There is considerable evidence which suggests that the gamma-subunit of cGMP phosphodiesterase (PDE gamma) is a multifunctional protein which may interact directly with both the catalytic subunits of PDE (PDE alpha beta) and the alpha-subunit of transducin (T alpha) (Whalen, M., and Bitensky, M. (1989) Biochem. J. 259, 13-19; Griswold-Prenner, I., Young, J. H., Yamane, H. K., and Fung, B. K.-K. (1988) Invest. Ophthalmol. & Visual Sci. 29, (Suppl.) 218). To determine the region of interaction between the multifunctional PDE gamma and T alpha, and to determine the significance of this interaction, peptides corresponding to various regions of PDE gamma were synthesized and tested for their ability to inhibit the GTPase activity of T alpha. One of these peptides, PDE gamma-3 (bovine amino acid residues 31-45), inhibited the GTPase activity of T alpha with an I50 of 450 microM. The peptide (PDE gamma-3) was found to inhibit the GTPase activity of T alpha by inducing the binding of transducin to the rod outer segment membrane and by altering the GTP/GDP exchange. Analogs of PDE gamma-3 were synthesized to determine the required structure of the PDE gamma-3 region needed for the interaction of PDE gamma with T alpha. The results of these studies indicated that the removal of the positively charged amino acids or any of the potential hydrogen-bonding amino acids increased the I50 for the inhibition of the GTPase activity of T alpha Substitution of the hydrophobic amino acids had no effect. These results indicate the hydrophilic interactions may be essential for the binding of PDE gamma to T alpha and for the inhibition of the GTPase activity of T alpha by PDE gamma. The observed effects of PDE gamma-3 on T alpha and on PDE suggest that PDE gamma is a multifunctional protein which may play more than one role in the deactivation of the retinal transduction cascade.  相似文献   

7.
T G Wensel  L Stryer 《Biochemistry》1990,29(8):2155-2161
The cyclic GMP phosphodiesterase (PDE) of vertebrate retinal rod outer segments (ROS) is kept inactive in the dark by its gamma subunits and is activated following illumination by the GTP form of the alpha subunit of transducin (T alpha-GTP). Recent studies have shown that the stoichiometry of the inhibited holoenzyme is alpha beta gamma 2. T alpha-GTP and gamma act reciprocally. We have investigated the activation mechanism using fluorescein-labeled gamma subunit (gamma F) as a probe. gamma F containing a single covalently attached fluorescein was prepared by reaction of PDE with 5-(iodoacetamido)fluorescein and purification by reversed-phase high-pressure liquid chromatography (HPLC). gamma F, like native gamma, inhibits the catalytic activity of trypsin-activated PDE and transducin-activated PDE. Inhibition by gamma F was overcome by further addition of T alpha-GTP. gamma F binds very weakly to ROS membranes stripped of PDE and other peripheral membrane proteins. gamma F added to ROS membranes became incorporated into a component that could be extracted with a low ionic strength buffer. HPLC gel filtration showed that gamma F became part of the PDE holoenzyme. Incorporation occurred in less than 1 min in the presence of light and GTP, but much more slowly (t1/2 approximately 500 s) in the absence of GTP. This result indicates that transducin activates PDE by binding to the holoenzyme and accelerating the dissociation of gamma from the inhibitory sites. The binding of gamma F to trypsin-activated PDE alpha beta was monitored by steady-state emission anisotropy measurements and compared with PDE activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
cGMP-specific phosphodiesterase (PDE) of vertebrate retinal rod outer segments (ROS) is composed of two catalytic subunits (PDE alpha and PDE beta) and two identical inhibitory subunits (PDE gamma). Native PDE alpha beta gamma 2 is peripherally bound to the membranes of ROS discs. We studied quantitatively its partition between soluble and membrane-bound fractions in ROS homogenates. In the presence of its activator, the alpha-subunit of transducin loaded with a triphosphate guanine nucleotide (T alpha*), PDE displayed a greatly enhanced membrane binding. Neither the purified PDE gamma.T alpha* complex, nor the PDE alpha beta and PDE alpha beta gamma forms of active PDE, showed a membrane binding comparable to that of PDE alpha beta gamma 2 in the presence of T alpha*. The T alpha*-activated PDE is therefore an undissociated complex tightly bound to the ROS membranes. Using limited proteolysis, we showed that the membrane anchoring of the whole complex implies not only PDE (mainly by the C terminus of PDE beta) but also both termini of T alpha*. The membrane binding of the purified PDE alpha beta species was also enhanced in the presence of T alpha*; a direct link would therefore exist between the activator and the catalytic subunits. From this work emerges a plausible structural model of the T alpha*-activated PDE, with its internal interactions and its sites of anchoring into the ROS membrane.  相似文献   

10.
R L Brown 《Biochemistry》1992,31(25):5918-5925
In the dark, the activity of the cGMP phosphodiesterase (PDE) of retinal rod outer segments is held in check by its two inhibitory gamma subunits. Following illumination, gamma is rapidly removed from its inhibitory site by transducin, the G-protein of the visual system. In order to probe the functional roles of specific regions in the PDE gamma primary sequence, 10 variants of PDE gamma have been produced by site-specific mutagenesis and expression in bacteria and their properties compared to those of protein containing the wild-type bovine PDE gamma amino acid sequence. Three questions were asked about each mutant: What is its affinity for the alpha beta catalytic subunit of PDE? Does it inhibit catalytic activity? If so, can transducin relieve this inhibition? Binding to PDE alpha beta was determined directly using fluorescein-labeled gamma by measuring the increase in emission anisotropy that occurs when gamma binds to alpha beta. Inhibition of PDE alpha beta was measured by reconstitution of the gamma variants with gamma-free PDE generated by limited digestion with trypsin or endoproteinase Arg-C. Unlike trypsin, the latter enzyme did not remove PDE's ability to bind membranes and be activated by transducin, so that transducin activation of PDE containing specific gamma variants could be assayed directly. The results indicate that mutations in many regions of gamma affect its binding to alpha beta. A mutant missing the last five carboxy-terminal residues (83-87) was totally lacking in inhibitory activity. However, it still bound to PDE alpha beta tightly, although with a 100-fold lower dissociation constant (approximately 5 nM) than that of wild-type gamma (approximately 50 pM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Cyclic GMP phosphodiesterase (PDE) in rod disk membranes has three subunits of molecular weight 88 000 (alpha), 84 000 (beta), and 13 000 (gamma). Physiological activation of the enzyme by light is mediated by a GTP binding protein (G protein). The enzyme can also be activated by controlled digestion with trypsin, which destroys the gamma subunit, leaving the activated enzyme as PDE alpha beta [Hurley, J. B., & Stryer, L. (1982) J. Biol. Chem. 257, 11094-11099]. Addition of purified gamma subunit to PDE alpha beta inhibited the enzyme fully. This suggested the possibility that G protein could also activate PDE by removing the gamma subunit and leaving the active enzyme in the form of PDE alpha beta. Should this be true, the properties of light- and trypsin-activated enzymes should be comparable. We found this not to be the case. The Km of light-activated enzyme for cyclic GMP was about 0.9-1.4 mM while that of trypsin-activated enzyme was about 140 microM. The cyclic AMP Km was also different for the two enzymes: 6.7 mM for light-activated enzyme and 2.0 mM for trypsin-activated enzyme. The inhibition of both enzymes by the addition of purified gamma subunit also differed significantly. Trypsin-activated enzyme was fully inhibited by the addition of about 200 nM gamma, but light-activated enzyme could not be fully inhibited even with 2600 nM inhibitor subunit. The Ki of the trypsin-activated enzyme for gamma was 15 nM and of the light-activated enzyme 440 nM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The visual transduction cascade of the retinal rod outer segment responds to light by decreasing membrane current. This ion channel is controlled by cyclic GMP which is, in turn, controlled by its synthesis and degradation by guanylate cyclase and phosphodiesterase, respectively. When light bleaches rhodopsin there is an induced exchange of GTP for GDP bound to the alpha subunit of the retinal G-protein, transducin (T). The T alpha.GTP then removes the inhibitory constraint of a small inhibitory subunit (PDE gamma) on the retinal cGMP phosphodiesterase (PDE). This results in activation of the PDE and in hydrolysis of cGMP. Recently both low and high affinity binding sites have been identified for PDE gamma on the PDE alpha/beta catalytic subunits. The discovery of two PDE gamma subunits, each with different binding affinities, suggests that a tightly regulated shut-off mechanism may be present.  相似文献   

13.
Retinal rod cGMP phosphodiesterase (PDE6 family) is the effector enzyme in the vertebrate visual transduction cascade. Unlike other known PDEs that form catalytic homodimers, the rod PDE6 catalytic core is a heterodimer composed of alpha and beta subunits. A system for efficient expression of rod PDE6 is not available. Therefore, to elucidate the structural basis for specific dimerization of rod PDE6, we constructed a series of chimeric proteins between PDE6alphabeta and PDE5, which contain the N-terminal GAFa/GAFb domains, or portions thereof, of the rod enzyme. These chimeras were co-expressed in Sf9 cells in various combinations as His-, myc-, or FLAG-tagged proteins. Dimerization of chimeric PDEs was assessed using gel filtration and sucrose gradient centrifugation. The composition of formed dimeric enzymes was analyzed with Western blotting and immunoprecipitation. Consistent with the selectivity of PDE6 dimerization in vivo, efficient heterodimerization was observed between the GAF regions of PDE6alpha and PDE6beta with no significant homodimerization. In addition, PDE6alpha was able to form dimers with the cone PDE6alpha' subunit. Furthermore, our analysis indicated that the PDE6 GAFa domains contain major structural determinants for the affinity and selectivity of dimerization of PDE6 catalytic subunits. The key dimerization selectivity module of PDE6 has been localized to a small segment within the GAFa domains, PDE6alpha-59-74/PDE6beta-57-72. This study provides tools for the generation of the homodimeric alphaalpha and betabeta enzymes that will allow us to address the question of functional significance of the unique heterodimerization of rod PDE6.  相似文献   

14.
The cGMP-specific phosphodiesterase (PDE) of vertebrate retinal rod outer segments (ROS) is a peripheral enzyme activated in vivo by transducin. In vitro artificial activation can be achieved using trypsin. This was described as resulting from degradation of the inhibitory gamma subunit (2 copies/PDE molecule), leaving intact the alpha beta catalytic core. It was, however, observed that trypsin could induce the release of PDE (or solubilization) from the ROS membranes before its activation [Wensel, T. G. & Stryer, L. (1986) Proteins Struct. Funct. Genet. 1, 90-99]. Studying the time course of this solubilization, we were able to purify a trypsin-solubilized PDE still completely inhibited (i.e. with its two gamma subunits bound). The tryptic solubilization of PDE is therefore complete before any functional degradation of the gamma subunits occurs. It was recently suggested that this solubilization could coincide with the cleavage of a C-terminal fragment of the alpha subunit, which can be labeled by methylation of a terminal cysteine residue [Ong, O. C., Ota, I. M., Clarke, S. & Fung, B. K. K. (1989) Proc. Natl Acad. Sci. USA 86, 9238-9242]. We present the following evidence indicating that the C-terminus of the PDE beta subunit is mainly responsible for PDE anchorage to the ROS membrane. (a) The trypsin-solubilized PDE alpha beta gamma 2 has intact blocked N-termini. (b) It is still methylated on PDE alpha. (c) The C-terminus of PDE beta can also be labeled by methylation and its tryptic cleavage coincides well with the PDE solubilization. (d) Sequential cleavage of the alpha and beta polypeptides can also be detected by high-resolution gel electrophoresis: the first cleavage appears on the beta subunit and is completed when cleavage of the alpha subunit begins. The time course for cleavage of the gamma subunits appears to be slower than for the beta subunit and comparable to that of the alpha subunit. Upon longer trypsinization, a 70-kDa polypeptide appears which seems to be a degradation product of PDE beta. Gel-filtration analysis, however, shows that this 70-kDa fragment does not dissociate from the catalytic core.  相似文献   

15.
T G Wensel  L Stryer 《Proteins》1986,1(1):90-99
The switching on of the cGMP phosphodiesterase (PDE) in retinal rod outer segments by activated transducin (T alpha-GTP) is a key step in visual excitation. The finding that trypsin activates PDE (alpha beta gamma) by degrading its gamma subunit and the reversal of this activation by gamma led to the proposal that T alpha-GTP activates PDE by relieving an inhibitory constraint imposed by gamma (Hurley and Stryer: J. Biol. Chem. 257:11094-11099, 1982). We report here studies showing that the addition of gamma subunit also reverses the activation of PDE by T alpha-GTP-gamma S. A procedure for preparing gamma in high yield (50-80%) is presented. Analyses of SDS polyacrylamide gel slices confirmed that inhibitory activity resides in the gamma subunit. Nanomolar gamma blocks the activation of PDE by micromolar T alpha-GTP gamma S. The degree of activation of PDE depends reciprocally on the concentrations of gamma and T alpha-GTP gamma S. gamma remains bound to the disk membrane during the activation of PDE by transducin. The binding of gamma to the alpha beta subunits of native PDE is very tight; the dissociation constant is less than 10 pM, indicating that fewer than 1 in 1,700 PDE molecules in rod outer segments are activated in the absence of T alpha-GTP.  相似文献   

16.
The central effector of visual transduction in retinal rod photoreceptors, cGMP phosphodiesterase (PDE6), is a catalytic heterodimer (alphabeta) to which low molecular weight inhibitory gamma subunits bind to form the nonactivated PDE holoenzyme (alphabetagamma(2)). Although it is known that gamma binds tightly to alphabeta, the binding affinity for each gamma subunit to alphabeta, the domains on gamma that interact with alphabeta, and the allosteric interactions between gamma and the regulatory and catalytic regions on alphabeta are not well understood. We show here that the gamma subunit binds to two distinct sites on the catalytic alphabeta dimer (K(D)(1) < 1 pm, K(D)(2) = 3 pm) when the regulatory GAF domains of bovine rod PDE6 are occupied by cGMP. Binding heterogeneity of gamma to alphabeta is absent when cAMP occupies the noncatalytic sites. Two major domains on gamma can interact independently with alphabeta with the N-terminal half of gamma binding with 50-fold greater affinity than its C-terminal, inhibitory region. The N-terminal half of gamma is responsible for the positive cooperativity between gamma and cGMP binding sites on alphabeta but has no effect on catalytic activity. Using synthetic peptides, we identified regions of the amino acid sequence of gamma that bind to alphabeta, restore high affinity cGMP binding to low affinity noncatalytic sites, and retard cGMP exchange with both noncatalytic sites. Subunit heterogeneity, multiple sites of gamma interaction with alphabeta, and positive cooperativity of gamma with the GAF domains are all likely to contribute to precisely controlling the activation and inactivation kinetics of PDE6 during visual transduction in rod photoreceptors.  相似文献   

17.
Previously, we have domain-mapped the 87 amino acid PDE gamma inhibitory subunit of the retinal phosphodiesterase (PDE) alpha beta gamma 2 complex using synthetic peptides. The PDE gamma subunit has a binding domain for transducin-alpha (T alpha) and for PDE alpha/beta within residues # 24-45 and an inhibitory region for PDE alpha/beta within residues # 80-87. In order to establish the role of individual amino acids in the function of the PDE gamma inhibitory subunit, peptides of PDE gamma # 63-87 and mutant peptides were synthesized and utilized in PDE inhibition assays. The following peptides exhibited a decreased ability to inhibit PDE alpha/beta: All were from PDE gamma # 63-87; PDE gamma Tyr 84----Gly, PDE gamma Phe 73----Gly and PDE gamma Gln 83----Gly.  相似文献   

18.
The binding of cGMP to the noncatalytic sites on two isoforms of the phosphodiesterase (PDE) from mammalian rod outer segments has been characterized to evaluate their role in regulating PDE during phototransduction. Nonactivated, membrane-associated PDE (PDE-M, alpha beta gamma2) has one exchangeable site for cGMP binding; endogenous cGMP remains nonexchangeable at the second site. Non-activated, soluble PDE (PDE-S, alpha beta gamma2 delta) can release and bind cGMP at both noncatalytic sites; the delta subunit is likely responsible for this difference in cGMP exchange rates. Removal of the delta and/or gamma subunits yields a catalytic alphabeta dimer with identical catalytic and binding properties for both PDE-M and PDE-S as follows: high affinity cGMP binding is abolished at one site (KD >1 microM); cGMP binding affinity at the second site (KD approximately 60 nM) is reduced 3-4-fold compared with the nonactivated enzyme; the kinetics of cGMP exchange to activated PDE-M and PDE-S are accelerated to similar extents. The properties of nonactivated PDE can be restored upon addition of gamma subunit. Occupancy of the noncatalytic sites by cGMP may modulate the interaction of the gamma subunit with the alphabeta dimer and thereby regulate cytoplasmic cGMP concentration and the lifetime of activated PDE during visual transduction in photoreceptor cells.  相似文献   

19.
Polyclonal antipeptide antisera have been utilized to quantitate the amount of retinal rod outer segment cGMP phosphodiesterase alpha and beta catalytic subunits present in retinas from C57BL/6J mice which are normal or carriers for the rd gene defect. Results suggest that the quantity of PDE-beta subunit is reduced in carrier mice while PDE-alpha and PDE-gamma are not affected. In 21-day-old mice, the PDE-beta was reduced by about one-half while adult carrier mice had even more reduced levels of PDE-beta. Since PDE alpha was not reduced, this suggests that synthesis of PDE alpha and PDE beta may not be coordinately controlled.  相似文献   

20.
We investigated the specificity of CAAX box-related isoprenylation of rod photoreceptor cGMP phosphodiesterase (PDE) subunits expressed in bacteria and the consequences of this modification on rod disk membrane association. Full-length cDNA sequences of the alpha and beta subunits of mouse PDE, inserted into bacterial pET expression vectors, were overexpressed as fusion proteins containing 28 (bMP-alpha) and 26 (bMP-beta) additional amino acid residues at their N termini. Both fusion proteins were overexpressed and stored in inclusion bodies. Purified bMP-alpha and bMP-beta were recognized by bovine PDE-specific polyclonal antibodies, but did not associate with depleted rod disk membranes and were catalytically inactive. Using bovine brain or retina extracts as sources of protein prenyltransferases and tritiated farnesyl- or geranylgeranylpyrophosphate as donors, bMP-alpha (CAAX sequence CCIQ) was exclusively farnesylated, and bMP-beta (CAAX sequence CCIL) was exclusively geranylgeranylated. After isoprenylation, bMP-alpha and bMP-beta each associated with rod photoreceptor outer segment disk membranes under isotonic, but not under hypotonic, conditions. The results indicate that isoprenylated bMP-alpha and bMP-beta each interact independently with membranes and that isoprenylation is the key modification that facilitates membrane association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号