首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
下丘脑是人体的摄食中枢,它通过抑制食欲的阿黑皮素原(POMC)神经元和促进食欲的神经肽相关蛋白(AgRP)神经元调节摄食及能量代谢。叉头转录因子O亚族1(FoxO1)是胰岛素信号通路和瘦素信号通路中重要的调节蛋白,FoxO1的生理作用是促进下丘脑Agrp基因表达、抑制Pomc基因表达,抑制瘦素信号通路的转录激活因子3(STAT3)蛋白对Pomc基因转录的促进作用,从而促进食欲。瘦素和胰岛素均可激活经典的IRS/PI(3)K/Akt信号通路,使FoxO1磷酸化失去活性,抑制食欲。此外,沉默信息调节因子Sirt1也可以通过去乙酰化,影响FoxO1的转录活性。本文综述了胰岛素、瘦素、Sirt1通过FoxO1调节下丘脑摄食中枢的作用机制。  相似文献   

2.
Agouti-related peptide (AgRP), the endogenous antagonist to the melanocortin 3 and 4 receptors, elicits robust hyperphagia and weight gain in rodents when administered directly into the central nervous system. The relative influence of AgRP to cause weight gain in rodents partially depends on the activity level of the melanocortin agonist-producing proopiomelanocortin neurons. Both proopiomelanocortin and AgRP neurons within the arcuate nucleus receive energy storage information from circulating peripheral signals such as leptin and insulin. Another modulator of AgRP activity includes the cell surface molecule syndecan-3. Because leptin and insulin affect food intake in a sexually dimorphic way in rodents and syndecan-3-deficient mice regulate adiposity levels through distinct physiological mechanisms, we hypothesized that AgRP-induced weight gain would also be sexually dimorphic in rats. In the present study, the behavioral and physiological effects of centrally-administered AgRP in male and female were investigated. In male rats, AgRP (1 nmol) induced 5 days (P < 0.0001) of significantly elevated feeding compared with vehicle-treated controls, while females displayed 3 days of hyperphagia (P < 0.05). However, 1 wk after the injection, both male and female rats gained the same percent body weight (6%). Interestingly, female rats exhibited a greater reduction in energy expenditure (Vo2) following AgRP compared with male rats (P < 0.05). Removal of the gonads did not alter cumulative food intake in male or female rats but did attenuate the dramatic reduction in Vo2 exhibited by females. Both intact and gonadectomized rats demonstrated significantly increased respiratory quotient supporting the anabolic action of AgRP (P < 0.01). These findings are novel in that they reveal sex-specific underlying physiology used to achieve weight gain following central AgRP in rats.  相似文献   

3.
The hormone leptin plays a crucial role in maintenance of body weight and glucose homeostasis. This occurs through central and peripheral pathways, including regulation of insulin secretion by pancreatic beta cells. To study this further in mice, we disrupted the signaling domain of the leptin receptor gene in beta cells and hypothalamus. These mice develop obesity, fasting hyperinsulinemia, impaired glucose-stimulated insulin release, and glucose intolerance, similar to leptin receptor null mice. However, whereas complete loss of leptin function causes increased food intake, this tissue-specific attenuation of leptin signaling does not alter food intake or satiety responses to leptin. Moreover, unlike other obese models, these mice have reduced fasting blood glucose. These results indicate that leptin regulation of glucose homeostasis extends beyond insulin sensitivity to influence beta cell function, independent of pathways controlling food intake. These data suggest that defects in this adipoinsular axis could contribute to diabetes associated with obesity.  相似文献   

4.
Estradiol is a potent hypophagic agent that reduces food intake and body weight without a concomitant fall in plasma leptin levels. We investigated whether the hypophagic effect of estradiol is mediated by stimulating POMC and/or inhibiting NPY neuronal pathways in the hypothalamus, which respectively inhibit and stimulate feeding. We examined hypothalamic gene expression of Ob-Rb, NPY, POMC, MC4-R, and AgRP in intact Wistar rats treated with estradiol for 48 hours. Food intake and body weight were reduced in estradiol-treated rats but fat mass was unchanged; plasma leptin and insulin levels were not significantly different from untreated, freely fed controls. In untreated rats that were pair-fed to match the estradiol-treated group, body weight was also reduced without changes in fat mass, although leptin and insulin levels decreased significantly. Ob-Rb expression was increased in both hypophagic groups despite serum leptin were only decreased in pair-fed animals, suggesting an estradiol-stimulating effect on Ob-Rb expression. No significant differences were found in POMC, AgRP, or MC4-R expression among any of the experimental groups. A significant but small decrease in NPY expression was also found in both hypophagic groups; this was explained by the combined effect of both surgery and reduced food intake. These results indicate that estradiol mediated hypophagia in intact rats could be brought about by an enhanced hypothalamic leptin sensitivity but is unlikely to be driven by changes in NPY or melanocortin system.  相似文献   

5.
The adiposity hormone leptin has been shown to decrease food intake and body weight by acting on neuropeptide circuits in the hypothalamus. However, it is not clear how this primary hypothalamic action of leptin is translated into a change in food intake. We hypothesize that the behavioral effect of leptin ultimately involves the integration of neuronal responses in the forebrain with those in the nucleus tractus solitarius in the caudal brainstem, where ingestive behavior signals are received from the gastrointestinal system and the blood. One example is the peptide cholecystokinin, which is released from the gut following ingestion of a meal and acts via vagal afferent nerve fibers to activate medial nucleus tractus solitarius neurons and thereby decrease meal size. While it is established that leptin acts in the arcuate nucleus in the hypothalamus to stimulate anorexigenic neurons that inhibit food intake while simulataneously inhibiting orexigenic neurons that increase food intake, the mechanisms linking these effects with regions of the caudal brainstem that integrate cues related to meal termination are unclear. Based on an increasing body of supportive data, we hypothesize that this integration involves a pathway comprising descending projections from neurons from the paraventricular nucleus to neurons within the nucleus tractus solitarius that are activated by meal-related satiety factors. Leptin's anorexic effect comprises primarily decreased meal size, and at subthreshold doses for eliciting an effect on food intake, leptin intensifies the satiety response to circulating cholecystokinin. The location of neurons subserving the effects of intracerebroventricular administration of leptin and intraperitoneal injection of cholecystokinin on food intake has been identified by analysis of Fos expression. These studies reveal a distribution that includes the paraventricular nucleus and regions within the caudal brainstem, with the medial nucleus tractus solitarius having the most pronounced Fos expression in response to leptin and cholecystokinin, and support the hypothesis that the long-term adiposity signal leptin and the short-term satiety signal cholecystokinin act in concert to maintain body weight homeostasis.  相似文献   

6.
7.
8.
We have previously shown that growth hormone (GH) overexpression in the brain increased food intake, accompanied with increased hypothalamic agouti-related protein (AgRP) expression. Ghrelin, which stimulates both appetite and GH secretion, was injected intracerebroventricularly to GHR-/- and littermate control (+/+) mice to determine whether ghrelin's acute effects on appetite are dependent on GHR signaling. GHR-/- mice were also analyzed with respect to serum levels of lipoproteins, apolipoprotein (apo)B, leptin, glucose, and insulin as well as body composition. Central injection of ghrelin into the third dorsal ventricle increased food consumption in +/+ mice, whereas no change was observed in GHR-/- mice. After ghrelin injection, AgRP mRNA expression in the hypothalamus was higher in +/+ littermates than in GHR-/- mice, indicating a possible importance of AgRP in the GHR-mediated effect of ghrelin. Compared with controls, GHR-/- mice had increased food intake, leptin levels, and total and intra-abdominal fat mass per body weight and deceased lean mass. Moreover, serum levels of triglycerides, LDL and HDL cholesterol, and apoB, as well as glucose and insulin levels were lower in the GHR-/- mice. In summary, ghrelin's acute central action to increase food intake requires functionally intact GHR signaling. Long-term GHR deficiency in mice is associated with high plasma leptin levels, obesity, and increased food intake but a marked decrease in all lipoprotein fractions.  相似文献   

9.
You YJ  Kim J  Raizen DM  Avery L 《Cell metabolism》2008,7(3):249-257
Despite the prevalence of obesity and its related diseases, the signaling pathways for appetite control and satiety are not clearly understood. Here we report C. elegans quiescence behavior, a cessation of food intake and movement that is possibly a result of satiety. C. elegans quiescence shares several characteristics of satiety in mammals. It is induced by high-quality food, it requires nutritional signals from the intestine, and it depends on prior feeding history: fasting enhances quiescence after refeeding. During refeeding after fasting, quiescence is evoked, causing gradual inhibition of food intake and movement, mimicking the behavioral sequence of satiety in mammals. Based on these similarities, we propose that quiescence results from satiety. This hypothesized satiety-induced quiescence is regulated by peptide signals such as insulin and TGF-beta. The EGL-4 cGMP-dependent protein kinase functions downstream of insulin and TGF-beta in sensory neurons including ASI to control quiescence in response to food intake.  相似文献   

10.
Objective: Chronic central administration of neuropeptide Y (NPY) has dramatic effects on energy balance; however, the exact role of the hypothalamic paraventricular nucleus (PVN) in this is unknown. The aim of this study was to further unravel the contribution of NPY signaling in the PVN to energy balance. Research Methods and Procedures: Recombinant adeno‐associated viral particles containing NPY (rAAV‐NPY) were injected in the rat brain with coordinates targeted at the PVN. For three weeks, body weight, food intake, endocrine parameters, body temperature, and locomotor activity were measured. Furthermore, effects on insulin sensitivity and expression of NPY, agouti‐related protein (AgRP), and pro‐opiomelanocortin in the arcuate nucleus were studied. Results: Food intake was increased specifically in the light period, and dark phase body temperature and locomotor activity were reduced. This resulted in obesity characterized by increased fat mass; elevated plasma insulin, leptin, and adiponectin; decreased AgRP expression in the arcuate nucleus; and decreased insulin sensitivity; whereas plasma corticosterone was unaffected. Discussion: These data suggest that increased NPY expression targeted at the PVN is sufficient to induce obesity. Interestingly, plasma concentrations of leptin and insulin were elevated before a rise in food intake, which suggests that NPY in the PVN influences leptin and insulin secretion independently from food intake. This strengthens the role of the PVN in regulation of energy balance by NPY.  相似文献   

11.
大部分肥胖患者体内出现瘦素抵抗,表现为血清瘦素水平异常升高,但机体对瘦素不敏感或无反应,使瘦素抑制食欲、增加能量消耗和降低血糖等功能不能有效发挥.减轻瘦素抵抗被认为是治疗肥胖及肥胖相关疾病的有效途径.运动减轻肥胖、改善糖脂代谢和增强胰岛素敏感性的作用与运动降低瘦素水平、改善瘦素抵抗密切相关.本文在概述瘦素实现生理功能的机制、肥胖症的中枢及外周瘦素抵抗的基础上,主要综述近年来运动减轻肥胖症瘦素抵抗机制的研究进展,包括减轻高瘦素血症、改善中枢和外周瘦素抵抗,以期为运动防治肥胖机制的研究提供新视角.  相似文献   

12.
The hormone leptin is secreted from white adipocytes, and serum levels of leptin correlate with adipose tissue mass. Leptin was first described as acting on the satiety centre in the hypothalamus through specific receptors (ob-R) to restrict food intake and enhance energy expenditure. Leptin plays a crucial role in the maintenance of body weight and glucose homeostasis hrough central and peripheral pathways, including regulation of insulin secretion by pancreatic b cells. Leptin may also directly affect the metabolism and function of peripheral tissues. Leptin has been implicated in causing peripheral insulin resistance by attenuating insulin action, and perhaps insulin signalling, in various insulin-responsive cell types. Research has demonstrated a significant relationship between leptin and insulin, but the mechanisms underlying the changes of leptin induced by insulin, and vice versa, remain to be studied in more detail. Recent data provides convincing evidence that leptin has beneficial effects on glucose homeostasis in mouse models of insulin-deficient type 1 diabetes mellitus. Our study suggests that leptin could be used as an adjunct of insulin therapy in insulin-deficient diabetes, thereby providing an insight into the therapeutic properties of leptin as an anti-diabetic agent. Safety evaluation should include a careful assessment of the effects of this combination therapy on the counterregulatory response to hypoglycaemia. The role of leptin in alpha-cell function has not been studied in detail. Extensive studies will be needed to determine the long-term safety and efficacy of this therapy.  相似文献   

13.
Pregnancy is characterized by an increase in food intake that, in turn, produce a positive energy balance in order to face the considerable metabolic demands associated with the challenge of reproduction. Since hypothalamus is a key brain region involved in many peripheral signals and neuronal pathways that control energy homeostasis and food intake, we investigated if during pregnancy the increase in food intake is mediated by stimulating orexigenic and/or inhibiting anorexigenic neural pathways. We examined hypothalamic gene expressions of Ob-Rb, NPY, AgRP, POMC, MC4-R, and preproorexins in pregnant Wistar rats at day 19 of gestation. Food intake and body weight were increased progressively during the pregnancy. Visceral fat mass depots and serum leptin levels were also increased when compared with virgin animals. No differences were found in mRNA expression of Ob-Rb, POMC, MC4-R, NPY or preproorexin between virgin and pregnant animals. However, pregnancy produced a selective increase in AgRP mRNA levels. These results indicate that the positive energy balance that occurred during pregnancy can hardly be explained by changes in Ob-Rb despite hyperleptinemia associated with pregnancy. The enhanced expression of AgRP suggests the involvement of this neuropeptide in mediating pregnancy-associated hyperphagia.  相似文献   

14.
Hindbrain projections of oxytocin neurons in the parvocellular paraventricular nucleus (pPVN) are hypothesized to transmit leptin signaling from the hypothalamus to the nucleus of the solitary tract (NTS), where satiety signals from the gastrointestinal tract are received. Using immunocytochemistry, we found that an anorectic dose of leptin administered into the third ventricle (3V) increased twofold the number of pPVN oxytocin neurons that expressed Fos. Injections of fluorescent cholera toxin B into the NTS labeled a subset of pPVN oxytocin neurons that expressed Fos in response to 3V leptin. Moreover, 3V administration of an oxytocin receptor antagonist, [d-(CH2)5,Tyr(Me)2,Orn8]-vasotocin (OVT), attenuated the effect of leptin on food intake over a 0.5- to 4-h period (P < 0.05). Furthermore, to determine whether oxytocin contributes to leptin's potentiation of Fos activation within NTS neurons in response to CCK, we counted the number of Fos-positive neurons in the medial NTS (mNTS) after 3V administration of OVT before 3V leptin and intraperitoneal CCK-8 administration. OVT resulted in a significant 37% decrease (P < 0.05) in the potentiating effect of leptin on CCK activation of mNTS neuronal Fos expression. Furthermore, 4V OVT stimulated 2-h food intake by 43% (P < 0.01), whereas 3V OVT at the same dose was ineffective. These findings suggest that release of oxytocin from a descending pPVN-to-NTS pathway contributes to leptin's attenuation of food intake by a mechanism that involves the activation of pPVN oxytocin neurons by leptin, resulting in increased sensitivity of NTS neurons to satiety signals.  相似文献   

15.
16.
Orexigenic neuropeptides NPY and AgRP play major roles in feeding and are closely related to obesity and diabetic metabolic syndrome. This study explored the inhibitory effect of rutecarpine on feeding and obesity in high-fat-diet-induced (C57BL/6) and leptin-deficient (ob/ob) obese mice. Both mice strains developed obesity, but the obesity was inhibited by the reduced food intake resulting from rutecarpine treatment (0.01%, < 0.01). Blood cholesterol, non-fasting glucose, insulin, and leptin levels were reduced, compared with the control group. Rutecarpine inhibited the expression of NPY and AgRP in the arcuate nucleus (ARC) of the hypothalamus and suppressed the expression of both neuropeptides in N29-4 neuronal cells. These results indicate that rutecarpine ameliorates obesity by inhibiting food intake, which involves inhibited expression of the orexigenic neuropeptides NPY and AgRP.  相似文献   

17.
High-protein diets are effective in achieving weight loss which is mainly explained by increased satiety and thermogenic effects. Recent studies suggest that the effects of protein-rich diets on satiety could be mediated by amino acids like leucine or arginine. Although high-protein diets require increased intestinal amino acid absorption, amino acid and peptide absorption has not yet been considered to contribute to satiety effects. We here demonstrate a novel finding that links intestinal peptide transport processes to food intake, but only when a protein-rich diet is provided. When mice lacking the intestinal peptide transporter PEPT1 were fed diets containing 8 or 21 energy% of protein, no differences in food intake and weight gain were observed. However, upon feeding a high-protein (45 energy%) diet, Pept1(-/-) mice reduced food intake much more pronounced than control animals. Although there was a regain in food consumption after a few days, no weight gain was observed which was associated with a reduced intestinal energy assimilation and increased fecal energy losses. Pept1(-/-) mice on high-protein diet displayed markedly reduced plasma leptin levels during the period of very low food intake, suggesting a failure of leptin signaling to increase energy intake. This together with an almost two-fold elevated plasma arginine level in Pept1(-/-) but not wildtype mice, suggests that a cross-talk of arginine with leptin signaling in brain, as described previously, could cause these striking effects on food intake.  相似文献   

18.
AgRP in energy balance: Will the real AgRP please stand up?   总被引:1,自引:0,他引:1  
The neuropeptide AgRP promotes food intake and weight gain by antagonizing signaling at melanocortin 3 and 4 receptors in the brain, but the limited phenotype of mice lacking AgRP raised questions about its importance. Four recent studies addressed this by creating mice in which AgRP neurons, which also express NPY and GABA, are ablated postnatally, and although details vary, they suggest that AgRP neurons are more essential to feeding and weight gain than is AgRP itself. A recent paper in Cell Metabolism (Wortley et al., 2005) indicates that AgRP itself is important for feeding and weight gain, but only as mice age, and the mechanism may involve dysfunction of the thyroid axis.  相似文献   

19.
We previously demonstrated that 3rd ventricular (3V) neuropeptide Y (NPY) or agouti-related protein (AgRP) injection potently stimulates food foraging/hoarding/intake in Siberian hamsters. Because NPY and AgRP are highly colocalized in arcuate nucleus neurons in this and other species, we tested whether subthreshold doses of NPY and AgRP coinjected into the 3V stimulates food foraging, hoarding, and intake, and/or neural activation [c-Fos immunoreactivity (c-Fos-ir)] in hamsters housed in a foraging/hoarding apparatus. In the behavioral experiment, each hamster received four 3V treatments by using subthreshold doses of NPY and AgRP for all behaviors: 1) NPY, 2) AgRP, 3) NPY+AgRP, and 4) saline with a 7-day washout period between treatments. Food foraging, intake, and hoarding were measured 1, 2, 4, and 24 h and 2 and 3 days postinjection. Only when NPY and AgRP were coinjected was food intake and hoarding increased. After identical treatment in separate animals, c-Fos-ir was assessed at 90 min and 14 h postinjection, times when food intake (0-1 h) and hoarding (4-24 h) were uniquely stimulated. c-Fos-ir was increased in several hypothalamic nuclei previously shown to be involved in ingestive behaviors and the central nucleus of the amygdala (CeA), but only in NPY+AgRP-treated animals (90 min and 14 h: magno- and parvocellular regions of the hypothalamic paraventricular nucleus and perifornical area; 14 h only: CeA and sub-zona incerta). These results suggest that NPY and AgRP interact to stimulate food hoarding and intake at distinct times, perhaps released as a cocktail naturally with food deprivation to stimulate these behaviors.  相似文献   

20.
Oxytocin (Oxt) is secreted both peripherally and centrally and is involved in several functions including parturition, milk let‐down reflex, social behavior, and food intake. Recently, it has been shown that mice deficient in Oxt receptor develop late‐onset obesity. In this study, we characterized a murin model deficient in Oxt peptide (Oxt?/?) to evaluate food intake and body weight, glucose tolerance and insulin tolerance, leptin and adrenaline levels. We found that Oxt?/? mice develop late‐onset obesity and hyperleptinemia without any alterations in food intake in addition to having a decreased insulin sensitivity and glucose intolerance. The lack of Oxt in our murin model also results in lower adrenalin levels which led us to hypothesize that the metabolic changes observed are associated with a decreased sympathetic nervous tone. It has been shown that Oxt neurons in the paraventricular nucleus (PVN) are a component of a leptin‐sensitive signaling circuit between the hypothalamus and caudal brain stem for the regulation of food intake and energy homeostasis. Nevertheless, the lack of Oxt in these mice does not have a direct impact on feeding behavior whose regulation is probably dependent on the complex interplay of several factors. The lack of hyperphagia evident in the Oxt?/? mice may, in part, be attributed to the developmental compensation of other satiety factors such as cholecystokinin or bombesin‐related peptides which merits further investigation. These findings identify Oxt as an important central regulator of energy homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号