首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
2.
3.
4.
Bacteria which utilize mannuronic acid as an energy source were isolated from nature. One of the organisms, identified as a member of the genus Aeromonas, used glucuronate, galacturonate, and mannuronate as the sole source of carbon and energy. Glucuronate- and galacturonate-grown resting cells oxidized both glucuronate and galacturonate rapidly, but mannuronate slowly. Mannuronate-grown cells oxidized all three rapidly, with the rate of mannuronate utilization somewhat lower. Cell-free extracts from glucuronate-, galacturonate-, and mannuronate-grown Aeromonas C11-2B contained glucuronate and galacturonate isomerases, fructuronate, tagaturonate, and mannuronate reductases, and mannonate and altronate dehydratases, with the exception of glucuronate-grown cells which lacked altronate dehydratase. Thus, the pathway for glucuronate and galacturonate catabolism for Aeromonas was identical to Escherichia coli. Glucuronate and galacturonate were isomerized to d-fructuronate and d-tagaturonate which were then reduced by reduced nicotinamide adenine dinucleotide to d-mannonate and d-altronate, respectively. The hexonic acids were dehydrated to 2-keto-3-deoxy gluconate which was phosphorylated by adenosine triphosphate to 2-keto-3-deoxy-6-phospho gluconate. The latter was then cleaved to pyruvate and glyceraldehyde-3-phosphate. Mannuronate was reduced directly to d-mannonate by a reduced nicotinamide adenine dinucleotide phosphate-linked oxidoreductase. d-Mannonate was then further broken down as in the glucuronate pathway. The mannuronate reducing enzyme, for which the name d-mannonate:nicotinamide adenine dinucleotide (phosphate) oxidoreductase (d-mannuronate-forming) was proposed, was shown to be distinct from altronate and mannoate oxidoreductases. This is the first report of a bacterial oxidoreductase which reduces an aldohexuronic acid to a hexonic acid. The enzyme should prove to be a useful analytical tool for determining mannuronate in the presence of other uronic acids.  相似文献   

5.
6.
In the hexuronate system of Escherichia coli, the uxuAB operon is negatively controlled by the UxuR and ExuR repressors. A Mudlac phage was used, by the method of Casadaban, to construct strains where a truncated lacZ was fused to uxuB. From these fusion strains, deletions of various lengths extending into the uxu region were created in vivo by selecting temperature-insensitive mutants. Operator-constitutive mutations were also selected for in such strains and their preliminary analysis is presented. Large amounts of either ExuR or UxuR repressor caused a strong decrease of the constitutive expression of the uxuAB operon in the operator mutants. The implications of this repression for the presence of one or two operator sites in the uxuAB operon are discussed.  相似文献   

7.
8.
9.
S Tong  A Porco  T Isturiz    T Conway 《Journal of bacteriology》1996,178(11):3260-3269
Three genes involved in gluconate metabolism, gntR, gntK, and gntU, which code for a regulatory protein, a gluconate kinase, and a gluconate transporter, respectively, were cloned from Escherichia coli K-12 on the basis of their known locations on the genomic restriction map. The gene order is gntU, gntK, and gntR, which are immediately adjacent to asd at 77.0 min, and all three genes are transcribed in the counterclockwise direction. The gntR product is 331 amino acids long, with a helix-turn-helix motif typical of a regulatory protein. The gntK gene encodes a 175-amino-acid polypeptide that has an ATP-binding motif similar to those found in other sugar kinases. While GntK does not show significant sequence similarity to any known sugar kinases, it is 45% identical to a second putative gluconate kinase from E. coli,gntV. The 445-amino-acid sequence encoded by gntU has a secondary structure typical of membrane-spanning transport proteins and is 37% identical to the gntP product from Bacillus subtilis. Kinetic analysis of GntU indicates an apparent Km for gluconate of 212 microM, indicating that this is a low-affinity transporter. Studies demonstrate that the gntR gene is monocistronic, while the gntU and gntK genes, which are separated by only 3 bp, form an operon. Expression of gntR is essentially constitutive, while expression of gntKU is induced by gluconate and is subject to fourfold glucose catabolite repression. These results confirm that gntK and gntU, together with another gluconate transport gene, gntT, constitute the GntI system for gluconate utilization, under control of the gntR gene product, which is also responsible for induction of the edd and eda genes of the Entner-Doudoroff pathway.  相似文献   

10.
Summary The uxuAB operon is under the dual control of uxuR- and exuR-encoded repressors whereas the exu regulon genes are regulated by the sole ExuR repressor. Mutations affecting the two exuR and uxuR regulatory genes were selected to investigate the relationship between the two repressors. The isolation of exuR and uxuR negative dominant mutations on a multicopy plasmid indicated that the active form of the two repressors was multimeric.The introduction of a uxuR negative dominant allele into a wild-type strain resulted in a significant increase in exu gene expression. This unexpected effect may have been the consequence of the formation of hybrid repressor molecules. This protein must be composed of native ExuR+ subunits aggregated with altered UxuR subunits. The same interference was observed for the exuR negative dominant allele on uxu gene derepression. The hypothesis given here implies that the two regions of the ExuR and UxuR repressors involved in the subunit aggregation present enough homologies to allow the formation of hybrid repressor molecules.  相似文献   

11.
In Escherichia coli K-12, the specificity of the aldohexuronate transport system (THU) is restricted to glucuronate and galacturonate. There is a relatively high basal-level activity in uninduced wild-type or isomeraseless strains. Supplementary activity is obtained with the inducers mannonic amide (five-fold), galacturonate (fourfold), fructuronate (fivefold), and tagaturonate (sevenfold). Specific THU- mutants were selected as strains unable to grow on either aldohexuronate but able to grow on fructuronate or tagaturonate. The remaining transport activity in uninduced and induced THU- starins represents less than 20% of that found in the wild type. Conjugation and transduction experiments indicate that all of the THU- mutations are located in a unique locus, exuT, half-way between the tolC (59 min) and argG (61 min) markers. exuT is closely linked to the uxaC-uxaA operon (60 min) and to the regulatory gene exuR (60 min), which controls the above-mentioned operon and the uxaB operon (45 min). Growth on either aldohexuronate and transport activity are fully recovered when exuT mutants are allowed to revert to exuT+ on galacturonate or glucuronate. Reversion on glucuronate alone may lead to the mutational derepression of the 2-keto-3-deoxygluconate transport system, which is uninducible in the wild type, which also takes up glucuronate, and whose structural gene belongs to the kdg regulon. Such strains, which remain unable to grow on galacturonate, are exuT and kdgR (constitutive allele of the regulatory gene kdgR of the kdg regulon). THU activity is superrepressed in an exuR mutant in which the uxaC-uxaA operon and the uxaB operon are superrepressed; exuR+/exuR merodiploids are also superrepressed. In a thermosensitive exuR mutant in which the above-mentioned operons are constitutive at 42 degrees C, the THU activity is fully derepressed at this temperature. On the basis of these and other results, it is concluded that THU is coded for by the structural gene exuT, which is negatively controlled by the exuR gene product and which probably belongs to an operon distinct from the uxaA-uxaC operon.  相似文献   

12.
13.
Analysis of the gluconate (gnt) operon of Bacillus subtilis   总被引:7,自引:0,他引:7  
  相似文献   

14.
The divergent nag regulon located at 15.5 min on the Escherichia coli map encodes genes necessary for growth on N-acetylglucosamine and glucosamine. Full induction of the regulon requires both the presence of N-acetylglucosamine and a functional cyclic AMP (cAMP)-catabolite activator protein (CAP) complex. Glucosamine produces a lower level of induction of the regulon. A nearly symmetric consensus CAP-binding site is located in the intergenic region between nagE (encoding EIINag) and nagB (encoding glucosamine-6-phosphate deaminase). Expression of both nagE and nagB genes is stimulated by cAMP-CAP, but the effect is more pronounced for nagE. In fact, very little expression of nagE is observed in the absence of cAMP-CAP, whereas 50% maximum expression of nagB is observed with N-acetylglucosamine in the absence of cAMP-CAP. Two mRNA 5' ends separated by about 100 nucleotides were located before nagB, and both seem to be similarly subject to N-acetylglucosamine induction and cAMP-CAP stimulation. To induce the regulon, N-acetylglucosamine or glucosamine must enter the cell, but the particular transport mechanism used is not important.  相似文献   

15.
The nag regulon located at 15.5 min on the Escherichia coli chromosome consists of two divergent operons, nagE and nagBACD, encoding genes involved in the uptake and metabolism of N-acetylglucosamine. Null mutations have been created in each of the genes by insertion of antibiotic resistance cartridges. The phenotypes of the strains carrying the insertions in nagE, B and A were consistent with the previous identification of gene products: nagE, EII(Nag), the N-acetylglucosamine specific transporter of the phosphotransferase system and nagB and nagA, the two enzymes necessary for the degradation of N-acetylglucosamine. Insertions in the nagC result in derepression of the nag genes, which is consistent with earlier observations that the nagC gene encodes the repressor of the regulon. Insertions in nagA also provoke a derepression, implying that nagA has a role in the regulation of the expression of the nag regulon as well as in the degradation of the amino-sugars. N-acetylglucosamine-6-phosphate, the intracellular product of N-acetylglucosamine transport and the substrate of the nagA gene product, is shown to be an inducer of the regulon and this suggests how nagA mutations result in derepression: the absence of N-acetylglucosamine-6-phosphate deacetylase allows N-acetylglucosamine-6-phosphate to accumulate and induce the regulon.  相似文献   

16.
17.
Wild-type strains of Escherichia coli are unable to utilize aromatic beta-glucosides such as arbutin and salicin because the major genetic system that encodes the functions for their catabolism, the bgl operon, is silent and uninducible. We show that strains that carry an activated bgl operon exhibit a growth advantage over the wild type in stationary phase in the presence of the rpoS819 allele that causes attenuated rpoS regulon expression. Our results indicate a possible evolutionary advantage in retaining the silent bgl operon by wild-type bacteria.  相似文献   

18.
19.
Dissimilation of L-fucose as a carbon and energy source by Escherichia coli involves a permease, an isomerase, a kinase, and an aldolase encoded by the fuc regulon at minute 60.2. Utilization of L-rhamnose involves a similar set of proteins encoded by the rha operon at minute 87.7. Both pathways lead to the formation of L-lactaldehyde and dihydroxyacetone phosphate. A common NAD-linked oxidoreductase encoded by fucO serves to reduce L-lactaldehyde to L-1,2-propanediol under anaerobic growth conditions, irrespective of whether the aldehyde is derived from fucose or rhamnose. In this study it was shown that anaerobic growth on rhamnose induces expression of not only the fucO gene but also the entire fuc regulon. Rhamnose is unable to induce the fuc genes in mutants defective in rhaA (encoding L-rhamnose isomerase), rhaB (encoding L-rhamnulose kinase), rhaD (encoding L-rhamnulose 1-phosphate aldolase), rhaR (encoding the positive regulator for the rha structural genes), or fucR (encoding the positive for the fuc regulon). Thus, cross-induction of the L-fucose enzymes by rhamnose requires formation of L-lactaldehyde; either the aldehyde itself or the L-fuculose 1-phosphate (known to be an effector) formed from it then interacts with the fucR-encoded protein to induce the fuc regulon.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号